Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T04:43:38.578Z Has data issue: false hasContentIssue false

Eleven million years of arc volcanism at the Aucanquilcha Volcanic Cluster, northern Chilean Andes: implications for the life span and emplacement of plutons

Published online by Cambridge University Press:  11 January 2017

Anita L. Grunder
Affiliation:
Department of Geosciences, Oregon State University, Corvallis, OR 97331, USA, e-mail: [email protected]
Erik W. Klemetti
Affiliation:
Department of Geosciences, Oregon State University, Corvallis, OR 97331, USA, e-mail: [email protected]
Todd C. Feeley
Affiliation:
Department of Earth Sciences, Montana State University, Bozeman, MT 59717, USA, e-mail: [email protected]
Claire M. McKee
Affiliation:
Department of Geosciences, Oregon State University, Corvallis, OR 97331, USA, e-mail: [email protected]

Abstract

The arid climate of the Altiplano has preserved a volcanic history of ∼11 million years at the Aucanquilcha Volcanic Cluster (AVC), northern Chile, which is built on thick continental crust. The AVC has a systematic temporal, spatial, compositional and mineralogical development shared by other long-lived volcanic complexes, indicating a common pattern in continental magmatism with implications for the development of underlying plutonic complexes, that in turn create batholiths.

The AVC is a ∼700-km2, Tertiary to Recent cluster of at least 19 volcanoes that have erupted andesite and dacite lavas (∼55 to 68 wt.% SiO2) and a small ash-flow tuff, totalling 327 ± 20 km3. Forty 40Ar/39Ar ages for the AVC range from 10.97 ± 0.35 to 0.24 ± 0.05 Ma and define three major 1-5 to 3 million-year pulses of volcanism followed by the present pulse expressed as Volcán Aucanquilcha. The first stage of activity (∼ll-8 Ma, Alconcha Group) produced seven volcanoes and the 2-km3 Ujina ignimbrite and is a crudely bimodal suite of pyroxene andesite and dacite. After a possible two million year hiatus, the second stage of volcanism (∼ 6-4 Ma, Gordo Group) produced at least five volcanoes ranging from pyroxene andesite to dacite. The third stage (∼4-2 Ma, Polan Group) represents a voluminous pulse of activity, with eruption of at least another five volcanoes, broadly distributed in the centre of the AVC, and composed dominantly of biotite amphibole dacite; andesites at this stage occur as magmatic inclusions. The most recent activity ( 1 Ma to recent) is in the centre of the AVC at Volcán Aucanquilcha, a potentially active composite volcano made of biotite-amphibole dacite with andesite and dacite magmatic inclusions.

These successive eruptive groups describe (1) a spatial pattern of volcanism from peripheral to central, (2) a corresponding change from compositionally diverse andesite-dacite volcanism to compositionally increasingly restricted and increasingly silicic dacite, (3) a change from early anhydrous mafic silicate assemblages (pyroxene dominant) to later biotite amphibole dacite, (4) an abrupt increase in eruption rate; and (5) the onset of pervasive hydrothermal alteration.

The evolutionary succession of the 327-km3 AVC is similar to other long-lived intermediate volcanic complexes of very different volumes, e.g., eastern Nevada (thousands of km3, Gans et al. 1989; Grander 1995), Yanacocha, Perú (tens of km3, Longo 2005), and the San Juan Volcanic System (tens of thousands of km3, Lipman 2007) and finds an analogue in the 10-m.y. history and incremental growth of the Cretaceous Tuolumne Intrusive Suite (Coleman et al. 2004; Glazner et al. 2004). The present authors interpret the AVC to reflect episodic sampling of the protracted and fitful development of an integrated and silicic middle to upper crustal magma reservoir over a period of at least 11 million years.

Type
Research Article
Copyright
Copyright © The Royal Society of Edinburgh 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Annen, C., Blundy, J.D. & Sparks, R.S.J. 2006. The genesis of intermediate and silicic magmas in deep crustal hot zones. Journal ofPetrology 47 (3), 505-39.Google Scholar
Bacon, C.R., Persing, H.M., Wooden, J.L. & Ireland, T.R. 2000. Late Pleistocene granodiorite beneath Crater Lake caldera, Oregon dated by ion microprobe. Geology 28 (5), 467-70.Google Scholar
Baker, M. C. W. 1977. Geoehronology and volcanology of Upper Cenozoic volcanic activity in north Chile and south-west Bolivia. Ph.D. Dissertation, The Open University, UK.Google Scholar
Baker, M.C.W. 1981. The nature and distribution of upper Cenozoic ignimbrite centres in the Central Andes. Journal of Volcanology and Geothermal Research 11(2--4), 293-315.Google Scholar
Baker, M.C.W. & Francis, P.W. 1978. Upper Cenozoic volcanism in the central Andes; ages and volumes. Earth and Planetary Science Letters 41 (2), 175-87.Google Scholar
Ballar, I. R., Palin, J.M., Williams, I.S. & Campbell, I.H. 2001. Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit of northern Chile by ELA-ICP-MS and SHRIMP. Geology 29 (5), 383-6.Google Scholar
Barton, M.D., Staude, J.-M., Snow, E.A. & Johnson, D.A. 1991. Aureole Systematics, In Kerrick, D.M. (ed.) Contact Metamorphism. Reviews in Mineralogy 26, 723-847.Google Scholar
Boden, D.R. 1986. Eruptive history and structural development of the Toquima caldera complex, central Nevada. Geological Society of America Bulletin 97, 61-74.Google Scholar
Chmielowski, J., Zandt, G. & Haberlan, C. 1999. The Central Andean Altiplano-Puna magma body. Geophysical Research Letters 26, 783 6.CrossRefGoogle Scholar
Clark, A.H. 1970. An occurrence of the assemblage, native sulfure- covellite-’Cu5.5FexS6.5x’, Aucanquilcha, Chile. American Mineralogist 55, 913-18.Google Scholar
Coleman, D.S., Gray, W. & Glazner, A.F. 2004. Rethinking the emplacement and evolution of zoned plutons: Geochronologie evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology 32, 433-6.Google Scholar
Cooper, K.M., Reid, M.R., Murrell, M.T. & Clague, D.A. 2001. Crystal and magma residence at Kilauea Volcano, Hawaii: 230Th-226Ra dating of the 1955 east rift eruption. Earth and Planetary Science Letters 184, 703-18.Google Scholar
Costa, F. & Singer, B. 2002. Evolution of Holocene dacite and compositionally zoned magma, Volcán San Pedro, Southern Volcanic Zone, Chile. Journal of Petrology 43 (8), 1571-93.Google Scholar
Crock, J.G. & Lichte, F. E. 1982. Determination of rare earth elements in geological materials by inductively coupled argon plasma atomic emission spectrometry. Analytical Chemistry 54 (8), 1329-32.Google Scholar
Davidson, J.P., McMillan, N.J., Moorbath, S., Worner, G., Harmon, R. S. & Lopez-Escobar, L. 1990. The Nevados de Payachata volcanic region (18S/69W, N. Chile): II. Evidence for widespread crustal involvement in Andean magmatism. Contributions to Mineralogy and Petrology 105, 412-32.CrossRefGoogle Scholar
Davidson, J.P., Harmon, R.S. & Worner, G. 1991. The source of central Andean magmas; Some considerations. In Harmon, R.S. & Rápela, C. W. (eds) Andean magmatism and its tectonic setting, 233-13. Boulder, C.O: Geological Society of America.CrossRefGoogle Scholar
Deruelle, B., Harmon, R.S. & Moorbath, S. 1983. Combined Sr-O isotope relationships and petrogenesis of Andean volcanoes of South America. Nature 302, 814-16.CrossRefGoogle Scholar
Deruelle, B., Medina, E. T., Figueroa, O. A., Maragano, M. C. & Viramonte, J.G. 1995. The recent eruption of Lascar volcano (Atacama-Chile, April 1993): petrological and volcanological relationships. Comptes Rendus de l’Académie des Sciences, Serie II 321 (5), 377-84.Google Scholar
de Silva, S. L. 1989. Geoehronology and stratigraphy of the ignimbrites from the 21.30S to 23.30S portion of the Central Andes of Northern Chile. Journal of Volcanology and Geothermal Research 37, 93-131.CrossRefGoogle Scholar
De Silva, S.L., Self, S., Francis, P.W., Drake, R.E. & Ramirez, R.C., 1994. Effusive silicic volcanism in the Central Andes: The Chao dacite and other young lavas of the Altiplano-Puna Volcanic Complex. Journal of Geophysical Research B 99 (9), 17805-25.Google Scholar
De Silva, S.L. & Francis, P.W. 1991. Volcanoes of the Central Andes. New York: Springer-Verlag.Google Scholar
De Silva, S.L. & Gosnold, W.D. 2007. Episodic construction of batholiths: Insights from the spatio-temporal development of an ignimbrite flare-up. Journal of Volcanology and Geothermal Research 167 (3), 320-35.Google Scholar
Ducea, M. 2001. The California Arc: thick granitic batholiths, eelogite residues, lithospheric-scale thrusting, and magmatic flare-ups. GSA Today 11, 4-10.Google Scholar
Dilles, J.H. & Wright, J.E. 1988. The chronology of early Mesozoic arc magmatism in the Yerington district of western Nevada and its regional implications. Geological Society of America Bulletin 100, 644-52.Google Scholar
Duncan, R.A. & Hogan, L.G. 1994. Radiometrie dating of young MORB using 40Ar-39Ar incremental heating method. Geophysical Research Letters 21 (18), 1927-30.Google Scholar
Evernden, J.F. & Kistler, R.W. 1970. Chronology of emplacement of Mesozoic batholithic complexes in California and western Nevada. United States Geological Survey Professional Paper 623.Google Scholar
Feeley, T.C., Davidson, J.P. & Armendia, A. 1993. The volcanic and magmatic evolution of Zone. Journal of Volcanology and Geothermal Research 54, 221-45.Google Scholar
Feeley, T. C. & Davidson, J.P. 1994. Petrology of calc-alkaline lavas at Volcán Ollagüe and the origin of compositional diversity at Central Andean Stratovolcanoes. Journal of Petrology 35 (5), 1295-340.Google Scholar
Francis, P.W. & Hawksworth, C.J. 1994. Late Cenozoic rates of magmatic activity in the Central Andes and their relationships to continental crust formation and thickening. Journal of the Geological Society, London 151, 845-54.Google Scholar
Galli-Oliver, C. 1967. Pediplain in northern Chile and the Andean uplift. Science 158, 653-5.Google Scholar
Gans, P.B., Mahood, G.A. & Schermer, E. 1989. Synextensioal magmatism in the Basin and Range Province: a case study from the eastern Great Basin. Geological Society of America Special Paper 233.Google Scholar
Gardner, J.N., Goff, F., Garcia, S. & Hagan, R.C. 1986. Strati-graphic relations and lithologie variations in the Jemez volcanic field, New Mexico. Journal of Geophysical Research B 91 (2), 1763-78.Google Scholar
Giese, P. 1994. Geothermal structure of the Central Andean crust: implications for heat transport and rheology. In Ruetter, K.J., Scheuber, E. & Wigger, P.J. (eds) Tectonics of the southern Central Andes; structure and evolution of an active continental margin, 69-76. Berlin, Germany: Springer-Verlag.Google Scholar
Glazner, A.F., Bartley, J.M., Coleman, D.S., Gray, W. & Taylor, R.Z. 2004. Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today 14 (4/5), 4-11.Google Scholar
Graeber, F.M. & Asch, G. 1999. Three-dimensional models of P waves velocity and P-to-S velocity ratio in the southern central Andes by simultaneous inversion of local earthquake data. Journal of Geophysical Research B 104 (9), 20237-56.Google Scholar
Gregory-Wodzicki, K.M. 2000. Uplift history of the Central and Northern Andes: A review. Geological Society of America Bulletin 112 (7), 1091-105.Google Scholar
Grunder, A.L. 1995. Material and thermal roles of basalt in crustal magmatism: Case study from eastern Nevada. Geology 23 (10), 952-6.Google Scholar
Grunder, A.L. 1997. Report on the Miocene to Recent volcanic rocks from the eastern margin of the project area. In Tomlinson, A. et al. (eds) Proyecto de Estudio Geològico de la Franja Longitudinal entre Quebrada Blanca y Chuųuicamata, Fase I. SERNAGL-OMIN de Chile report to Coldelco.Google Scholar
Gustafson, L.B., Orquera, W., McWilliams, M., Castro, M., Olivares, O., Rojas, G., Maluenda, J. & Méndez, M. 2001. Multiple centers of mineralization in the Indio Muerto District, El Salvador, Chile. Economic Geology 96 (2), 325-50.CrossRefGoogle Scholar
Haberland, C. & Rietbrock, A. 2001. Attenuation tomography in the western Central Andes; a detailed insights into the structure of a magmatic arc. Journal of Geophysical Research B 106 (6), 11, 151 67.Google Scholar
Harmon, R.S., Barreiro, B.A., Moorbath, S., Hoefs, J. & Francis, P. W. 1984. Regional O, Sr- and Pb-isotopic relationships in late-Cenozoic calcalkaline lavas of the Andean Cordillera. Journal of the Geological Society, London 141, 803-22.Google Scholar
Hildreth, W. & Moorbath, S. 1988. Crustal contributions to arc magmatism in the Andes of Central Chile. Contributions to Mineralogy and Petrology 98, 455-89.Google Scholar
Hildreth, W. & Lanphere, M.A. 1994. Potassium-argon geoehronology of a basalt-andesite-dacite arc system: The Mt. Adams volcanic field, Cascade Range of southern Washington. Geological Society of America Bulletin 106, 1413-29.2.3.CO;2>CrossRefGoogle Scholar
Hildreth, W., Fierstein, J. & Lanphere, M.A. 2003. Eruptive history and geoehronology of the Mount Baker volcanic field, Washington. Geological Society of America Bulletin 115 (6), 729-64.Google Scholar
James, D.E. 1981. Role of subducted continental material in the genesis of calc-alkaline volcantes of the Central Andes. Geological Society of America Memoir 154, 769-90.Google Scholar
Johnson, D.M., Hooper, P.R. & Conrey, R.M. 1999. XRF analysis of rocks and minerals for major and trace elements on a single low dilution Li-tetraborate fused bead. Advances in X-ray Analysis 41, 843-67.Google Scholar
Kistler, R.W. & Fleck, R.J. 1994, Field guide for a transect of the central Sierra Nevada, California: Geochronology and isotope geology. US Geological Survey Open File Report 94-267.Google Scholar
Kistler, R.W., Chappell, B.W., Peck, D.L. & Bateman, P.C. 1986. Isotopie variation in the Tuolumne Intrusive Suite, central Sierra Nevada, California. Contributions to Mineralogy and Petrology 94, 205 20.Google Scholar
Klemetti, E.K. 2005. Constraining the magmatic evolution of the Andean arc at 21° S using the volcanic and petrologie history of Volcán Aucanquilcha, Central volcanic zone, northern Chile. Ph.D. Dissertation, Oregon State University, USA.Google Scholar
Klemetti, E.K. & Gründer, A.L. 2008. Volcanic evolution of Volcán Aucanquilcha, a long-lived, dacite volcano in the Central Andes of Northern Chile. Bulletin of Volcanology 70(5), 633-50.Google Scholar
Koppers, A. 2002. ArArCALC; software for 40Ar/39Ar age calculations. Computers and Geosciences 28 (5), 605-19.Google Scholar
Laul, J.C. 1979. Neutron activation analysis of geological materials. Atomic Energy Review 17 (3), 603-95.Google Scholar
Le Bas, M. J., Le Maitre, R.W., Streckeisen, A. & Zanettin, B.A. 1986. Chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology 27 (3), 745-50.Google Scholar
Lipman, P.W. 1984. The roots of ash-flow calderas in western North America: Windows into the tops of granitic batholiths. Journal of Geophysical Research 89, 8801 -41CrossRefGoogle Scholar
Lipman, P.W. 2000. Central San Juan caldera cluster: regional volcanic framework. In Bethke, P.M. & Hay, R.L. (eds) Ancient Lake Creede: Its Volcano-Tectonic Setting, History of Sedimentation, and Relation to Mineralization in the Creede Mining District. Geological Society of America Special Paper 346, 9-70.Google Scholar
Lipman, P.W. 2007. Incremental assembly and prolonged consolidation of Cordilleran magma chambers: Evidence from the southern Rocky Mountain volcanic field. Geosphere 3, 42-70.Google Scholar
Longo, A. A. 2005. Evolution and volcanism and hydrothermal activity in the Yanacocha Mining District, northern Perú. Ph.D. Dissertation, Oregon State University, USA.Google Scholar
Lowenstern, J.B., Persing, H.M., Wooden, J.L., Lanphere, M.A., Donnelly Nolan, J.M. & Grove, T.L. 2000. U-Th dating of single zircons from young granitoid xenoliths: new tools for understanding volcanic processes. Earth and Planetary Science Letters 183, 291-302.Google Scholar
McDonough, W.F. & Sun, S.S. 1995. The composition of the Earth. Chemical Geology 120(3-4), 223-53.Google Scholar
McKee, C.M. 2001, Volcanology and petrology of Volcán Miño, Andean central volcanic zone’. Master’s Thesis, Oregon State University, USA.Google Scholar
McNulty, B. A., Tong, W. & Tobisch, O. T. 1996. Assembly of a dike-fed magma chamber: The Jackass Lakes pluton, central Sierra Nevada, California. Geological Society of America Bulletin 108 (8), 926-40.Google Scholar
Marsh, T. M., Einaudi, M.T. & McWilliams, M. 1997. 40Ar/39 Ar geochronology of Cu-Au and Au-Ag mineralization in the Potre-rillos District, Chile. Economic Geology 92 (7/8), 784-806.Google Scholar
Mathieu, L., van Wyk de Vries, B., Holohan, E.P. & Troll, V.R. 2008. Dykes, cups, saucers and sills: analogue experiments on magma intrusion into brittle rocks. Earth Planetary Science Letters. doi:10.1016/jepsl2008.02.020Google Scholar
Mattinson, J.M. 1977. Emplacement history of the Tatoosh volcanic-plutonic complex, Washington: Age of zircons. Geological Society of America Bulletin 88, 1509-14.Google Scholar
Miller, J.S., Matzel, J.E.P., Miller, C. F., Burgess, S.D. & Miller, R.B. 2007. Zircon growth and recycling during assembly of large, composite arc plutons. Journal of Volcanology and Geothermal Research 167, 282-99.Google Scholar
Pitcher, W.S. 1978. The anatomy of a batholith. Journal of the Geological Society, London 135, 157-82.Google Scholar
Ramirez, C.F. & Huete, C. 1981. Hoja Ollagüe, region de Antofa-gasta: Sernageomin, Carta Geol. de Chile 40, scale 1:250,000, 47 p.Google Scholar
Reid, M.R., Coath, C.D., Harrison, T.M. & McKeegan, K.D. 1997. Prolonged residence times for the youngest rhyolites associated with Long Valley Caldera: 230Th-238U ion microprobe dating of young zircons. Earth and Planetary Science Letters 150, 27-39.Google Scholar
Richards, J.P., Boyce, A.J. & Pringle, M.S. 2001. Geologic evolution of the Escondida Area, Northern Chile: A model for spatial and temporal localization of porphyry Cu mineralization. Economic Geology 96 (2), 271-306.Google Scholar
Richards, J.P. & Villeneuve, M. 2001. The Llullaillaco volcano, northwest Argentina: construction by Pleistocene volcanism and destruction by sector collapse. Journal of Volcanology and Geothermal Research 105, 77-105.CrossRefGoogle Scholar
Rogers, G. & Hawkesworth, C.J. 1989. A geochemical traverse across the North Chilean Andes: evidence for crust generation from the mantle wedge. Earth and Planetary Science Letters 91, 271-85.Google Scholar
Sawyer, D.A., Fleck, R.J., Lanphere, M.A., Warren, R.G., Broxton, D.E. & Hudson, M.R. 1994. Episodic caldera volcanism in the Miocene southwestern Nevada volcanic field: Revised strati-graphic framework, 40Ar/39Ar geochronology, and implications for magmatism and extension. Geological Society of America Bulletin 106, 1304-18.2.3.CO;2>CrossRefGoogle Scholar
Schilling, F., Partzsch, G.M., Brasse, H. & Schwarz, G. 1997. Partial melting below the magmatic arc in the Central Andes deduced from geoelectromagnetic field experiments and laboratory data. Physics of the Earth and Planetary Interiors 103 (1-2), 17-31.Google Scholar
Schmitz, M. Heinsohn, W.-D. & Schilling, F.R. 1997. Seismic, gravity and petrological evidence for partial melt beneath the thickened Central Andean crust (21-23S). Tectonophvsics 270, 313-26.Google Scholar
Schwarz, G. & Krueger, D. 1997. Resistivity cross section through the southern Central Andes as inferred from magnetotelluric and geomagnetic deep soundings. Journal of Geophysical Research B 102 (6), 11957-78.Google Scholar
Trumbull, R.B., Wittenbrink, R., Hahne, K., Emmermann, R., Busch, W., Gerstenberger, H. & Siebel, W. 1999. Evidence for Late Miocene to Recent contamination of arc andesites by crustal melts in the Chilean Andes (25-26S) and its geodynamic implications. Journal of South American Earth Sciences 12, 135-55.Google Scholar
Vergara, H. 1978. Cuadrangulo Quehita y sector occidental del cuadragulo volcan Miño, Región de Tarapaca. Santiago Instituto de Investigaciones Geológicas, Carta Geológica de Chile (1:50,000)31, pp. 1-44.Google Scholar
Wenner, J.M., & Coleman, D.S. 2004. Magma mixing and Cretaceous crustal growth: Geology and geochemistry of grantites in the central Sierra Nevada Batholith, California. International Geology Review 46, 880-903.Google Scholar
White, S.M., Crisp, J.A. & Spera, F.J. 2006. Long-term volumetric eruption rates and magma budgets. Geochemistry, Geophysics, Geosystems 7 (3) doi: 10.1029/2005GC001002.Google Scholar
Wiebe, R.A. 1996. Mafic-silicic layered intrusions: The role of basaltic injections on magmatic processes and the evolution of silicic magma chambers. Transactions of the Royal Society of Edinburgh: Earth Sciences 87, 233-12.Google Scholar
Wigger, P.J., Schmitz, M., Araneda, M., Asch, G., Baldzuhn, S., Giese, P., Heinsohn, W.-D., Martinez, E., Ricaldi, E., Rower, P. & Viramonte, J. 1994. Variation in the crustal structure of the Southern Central Andes deduced from seismic refraction investigations. In Ruetter, K.J., Scheuber, E. & Wigger, P.J. (eds) Tectonics of the southern Central Andes; structure and evolution of an active continental margin, 23-48. Berlin, Germany: Springer-Verlag.Google Scholar
Wörner, G., Harmon, R.S., Davidson, J., Moorbath, S., Turner, D.L., McMillan, N., Nye, C., Lopez-Escobar, L. & Moreno, H. 1988. The Nevados de Payachata volcanic region (18S/69W, N. Chile): I. Geological, geochemical, and isotopie observations. Bulletin of Volcanology 50, 287-303.Google Scholar
Wörner, G., Moorbath, S. & Harmon, R.S. 1992. Andean Cenozoic volcanic centers reflect basement isotopie domains. Geology 20, 1103-6.Google Scholar
Wörner, G., Moorbath, S., Horn, S., Entenmann, J., Harmon, R.S., Davidson, J.P. & Lopez-Escobar, L. 1994. Large- and fine-scale geochemical variations along the Andean arc of Northern Chile (17.5-22S). In Ruetter, K.J., Scheuber, E. & Wigger, P.J. (eds) Tectonics of the southern Central Andes; structure and evolution of an active continental margin, 77-92. Berlin, Germany: Springer-Verlag.Google Scholar
Zandt, G., Velasco, A.A. & Beck, S.L. 1994. Composition and thickness of the southern Altiplano crust, Bolivia. Geology 22 (11), 1003-6.Google Scholar
Zellmer, G., Turner, S.P. & Hawkesworth, C.J. 2000. Timescales of destructive plate margin magmatism: new insights from Santorini, Aegean volcanic arc. Earth and Planetary Science Letters 174, 265-81.Google Scholar