Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T06:13:27.511Z Has data issue: false hasContentIssue false

Diverse and durophagous: Early Carboniferous chondrichthyans from the Scottish Borders

Published online by Cambridge University Press:  13 July 2018

Kelly R. Richards*
Affiliation:
University Museum of Zoology, Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
Janet E. Sherwin
Affiliation:
School of Geography, Geology and the Environment, University of Leicester, University Road, Leicester LE1 7RH, UK.
Timothy R. Smithson
Affiliation:
University Museum of Zoology, Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
Rebecca F. Bennion*
Affiliation:
University Museum of Zoology, Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
Sarah J. Davies
Affiliation:
School of Geography, Geology and the Environment, University of Leicester, University Road, Leicester LE1 7RH, UK.
John E. A. Marshall
Affiliation:
Ocean and Earth Science, University of Southampton, National Oceanography Centre, European Way, Southampton SO14 3ZH, UK.
Jennifer A. Clack
Affiliation:
University Museum of Zoology, Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
*
*Current address: University of Oxford Museum of Natural History, Parks Road, Oxford, OX3 1PW, UK.
**Current addresses: (1) Geology Research Unit, Université de Liège, 14 Allée du 6 Août, 4000 Liège, Belgium. (2) Directorate of Earth and History of Life, Royal Belgian Institute of Natural Sciences, 29 rue Vautier, 1000 Brussels, Belgium.

Abstract

Chondrichthyan teeth from a new locality in the Scottish Borders supply additional evidence of Early Carboniferous chondrichthyans in the UK. The interbedded dolostones and siltstones of the Ballagan Formation exposed along Whitrope Burn are interpreted as representing a restricted lagoonal environment that received significant amounts of land-derived sediment. This site is palynologically dated to the latest Tournaisian–early Viséan. The diverse dental fauna documented here is dominated by large crushing holocephalan toothplates, with very few, small non-crushing chondrichthyan teeth. Two new taxa are named and described. Our samples are consistent with worldwide evidence that chondrichthyan crushing faunas are common following the Hangenberg extinction event. The lagoonal habitat represented by Whitrope Burn may represent a temporary refugium that was host to a near-relict fauna dominated by large holocephalan chondrichthyans with crushing dentitions. Many of these had already become scarce in other localities by the Viséan and become extinct later in the Carboniferous. This fauna provides evidence of early endemism or niche separation within European chondrichthyan faunas at this time. This evidence points to a complex picture in which the diversity of durophagous chondrichthyans is controlled by narrow spatial shifts in niche availability over time.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

8. References

Agassiz, L. 1838. Recherches sur les Poisons Fossiles. Volume 3. Neuchâtel, Switzerland: Petitpierre.Google Scholar
Agassiz, L. 1843. Recherches sur les Poisons Fossiles. Volume 5. Neuchâtel, Switzerland: Petitpierre.Google Scholar
Behan, C., Walkden, G. & Cuny, G. 2012. A Carboniferous chondrichthyan assemblage from residues within a Triassic Karst system at Cromhall Quarry. Palaeontology 55, 12451263.Google Scholar
Bennett, C. E., Siveter, D. J., Davies, S. J., Williams, M., Wilkinson, I. P., Browne, M. & Miller, C. G. 2012. Ostracods from freshwater and brackish environments of the Carboniferous of the Midland Valley of Scotland: the early colonization of terrestrial water bodies. Geological Magazine 149, 366396.Google Scholar
Berg, L. S. 1940. Sistema ryboobraznykh i ryb, nyne zhivushchikh i iskopaemykh. [Classification of fishes, both recent and fossil]. Trudy Zoologicheskogo Instituta Akademii Nauk SSSR [Proceedings of the Zoological Institute, USSR Academy of Sciences] 5, 1–517.Google Scholar
Bonaparte, C. L. 1831. Saggio di una distribuzione metodica degli animali vertebrati. Giornale Arcadico di Scienze 49, 177.Google Scholar
Bonaparte, C. L. 1838. Selachorum tabula analytica. Nuovi Annali delle Scienze Naturali (Bologna) 1, 195214.Google Scholar
Brandon, A., Riley, N. J., Wilson, A. A. & Ellison, R. A. 1995. Three new early Namurian (E1c–E2a) marine bands in central and northern England, UK, and their bearing on correlations with the Askrigg Block. Proceedings of the Yorkshire Geological Society 50, 333335.Google Scholar
Bromley, R. G. 1996. Trace fossil: biology, taphonomy and applications. London: Chapman & Hall. 378 pp.Google Scholar
Capetta, H., Duffin, C. J. & Zidek, J. 1993. Chondrichthyes. In Benton, M. J. (ed.) The Fossil Record, Vol 2, 593609. London: Chapman & Hall. xviii+846 pp.Google Scholar
Compagno, L. J. V. 1977. Phyletic Relationships of Living Sharks and Rays. American Zoologist. 17, 303322.Google Scholar
Davis, J. W. 1883. On the fossil fishes of the Carboniferous limestone series of Great Britain. Scientific Transactions of the Royal Dublin Society 1, 327600.Google Scholar
Dean, B. 1909. Studies on fossil fishes (sharks, chimaeroids, and arthrodires). Memoirs of the American Museum of Natural History 9, 211287.Google Scholar
Duffin, C. J. & Ginter, M. 2006. Comments on the Selachian Genus “Cladodus” Agassiz, 1843. Journal of Vertebrate Paleontology 26, 253266.Google Scholar
Duffin, C. J. & Ward, D. 1983. Neoselachian sharks' teeth from the Lower Carboniferous of Britain and the Lower Permian of the USA. Palaeontology 26, 93110.Google Scholar
Duncan, M. 2003. Early Carboniferous chondrichthyan Thrinacodus from Ireland, and a reconstruction of jaw apparatus. Acta Palaeontological Polonica 48, 113122.Google Scholar
Duncan, M. 2004. Chondrichthyan genus Lissodus from the Lower Carboniferous of Ireland. Acta Palaeontologica Polonica 49, 417428.Google Scholar
Duncan, M. 2006. Various chondrichthyan microfossil faunas from the Lower Mississippian (Carboniferous) of Ireland. Irish Journal of Earth Sciences 24, 5169.Google Scholar
Edwards, W. & Stubblefield, C. J. 1947. Marine bands and other faunal marker-horizons in relation to the sedimentary cycles of the middle coal measures of Nottinghamshire and Derbyshire. Quarterly Journal of the Geological Society 103, 209256.Google Scholar
Finarelli, J. A. & Coates, M. I. 2014. Chondrenchelys problematica (Traquair, 1888) redescribed: a Lower Carboniferous, eel-like holocephalan from Scotland. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 105, 3559.Google Scholar
Garvey, J. & Turner, S. 2006. Vertebrate remains from the presumed earliest Carboniferous of the Mansfield Basin, Victoria. Alcheringa 30, 4362.Google Scholar
Ginter, M. 1999. Famennian-Tournaisian chondrichthyan microremains from the eastern Thuringian Slate Mountains. Abhandlungen und Berichte für Naturkunde, Magdeburg 21, 2547.Google Scholar
Ginter, M., Hairapetian, V. & Klug, S. 2002. Famennian chondrichthyans from the shelves of North Gondwana. Acta Geologica Polonica 52, 169215.Google Scholar
Ginter, M., Hampe, O. & Duffin, C. J. 2010. Chondrichthyes. Paleozoic Elasmobranchii: teeth. In Schultze, H-P. (ed.) Handbook of Paleoichthyology, Volume 3D. München: Verlag Dr. Friedrich Pfeil. 512 pp.Google Scholar
Ginter, M., Duffin, C. J., Dean, M. T. & Korn, D. 2015. Late Viséan pelagic chondrichthyans from northern Europe. Acta Palaeontologica Polonica 60, 899922.Google Scholar
Ginter, M. & Sun, Y. 2007. Chondrichthyan remains from the Lower Carboniferous of Muhua, southern China. Acta Palaeontologica Polonica 52, 705727.Google Scholar
Glikman, L. S. 1964. Akuly paleogena I ih stratigrafičeskoe značenie [Sharks of the Paleogene and their stratigraphic significance]. Moscow: Doklady Akademii Nauk SSSR [Academy of Sciences of the USSR].Google Scholar
Gunnell, F. H. 1933. Conodonts and fish remains from the Cherokee, Kansas City, and Wabaunsee Groups of Missouri and Kansas. Journal of Paleontology 7, 261297.Google Scholar
Habibi, T. & Ginter, M. 2011. Early Carboniferous chondrichthyans from the Mobarak Formation, central Alborz Mountains, Iran. Acta Geologica Polonica 61, 2734.Google Scholar
Hairapetian, V. & Ginter, M. 2009. Fammenian chondrichthyan remains from the Chariseh section, Central Iran. Acta Geologica Polonica 59, 173200.Google Scholar
Hay, O. P. 1899. On some changes in the names, generic and specific, of certain fossil fishes. American Naturalist 33, 783792.Google Scholar
Hay, O. P. 1902. Bibliography and catalogue of the fossil vertebrata of North America. Bulletin of the United States Geological Survey 179, 1–868.Google Scholar
Huxley, T. H. 1880. On the application of the laws of evolution to the arrangement of the Vertebrata, and more particularly of the Mammalia. Proceedings of the Zoological Society of London 43, 649662.Google Scholar
Ivanov, A. O. 1996. The Early Carboniferous chondrichthyans of the South Urals, Russia. Geological Society, London, Special Publications 107, 417425.Google Scholar
Ivanov, A. 2000. Permian elasmobranchs (Chondrichthyes) of Russia. Ichthyolith Issues, Special Publication 6, 3942.Google Scholar
Ivanov, A. 2005. Early Permian Chondrichthyans of the Middle and South Urals. Revista Brasileira de Paleontologia 8, 127138.Google Scholar
Jaekel, O. 1925. Das Mundskelett der Wirbeltiere. Gegenbaurs Morphologisches Jahrbuch 55, 402409.Google Scholar
Jerve, A., Johanson, Z., Ahlberg, P. & Boisvert, C. 2014. Embryonic development of fin spine in Callorhincus milii (Holocephali); implications for chondrichthyan fin spine evolution. Evolution & Development 16, 339353.Google Scholar
Kriwet, J., Kiessling, W. & Klug, S. 2009. Diversification trajectories and evolution life-history traits in early sharks and batoids. Proceedings of the Royal Society, London, Series B 276, 945951.Google Scholar
Lebedev, O. A. 1996. Fish assemblages in the Tournaisian–Viséan environments of the East European Platform. Geological Society, London, Special Publications 107, 387415.Google Scholar
Lund, R. 1982. Harpagofututor volsellorhinus New genus and species (Chondrichthyes, Chondrenchelyiformes) from the Namurian Bear Gulch Limestone, Chondrenchelys problematica Traquair (Viséan), and their sexual dimorphism. Journal of Paleontology 56, 938958.Google Scholar
Lund, R. & Grogan, E. D. 1997. Relationships of the Chimaeriformes and the basal radiation of the Chondrichthyes. Reviews in Fish Biology and Fisheries 7, 65123.Google Scholar
Maisey, J. G. 1975. The interrelationships of the phalacanthous selachians. Neues Jahrbuch für Geologie und Paläontologie 9, 553567.Google Scholar
Maisey, J. G. 1977. The fossil selachian fishes Palaeospinax Egerton, 1872 and Nemacanthus Agassiz, 1837. Zoological Journal of the Linnean Society 60, 259273.Google Scholar
Maisey, J. G. 1978. Growth and form of finspines in hybodont sharks. Palaeontology 21, 657666.Google Scholar
Manski, C. F. & Lucas, S. G. 2013. Romer's Gap Revisited: Continental Assemblages and Ichno-assemblages from the basal Carboniferous of Blue Beach, Nova Scotia, Canada. The Carboniferous–Permian Transition. Bulletin of the New Mexico Museum of Natural History and Science 60, 244273.Google Scholar
Mapes, R. H. & Hansen, M. C. 1984. Pennsylvanian shark-cephalopod predation: a case study. Lethaia 17, 175183.Google Scholar
McCoy, F. A. 1855. A Systematic description of the British Palaeozoic fossils in the Geological Museum of the University of Cambridge. 1–661.Google Scholar
McKenzie, M. A. & Bamber, E. W. 1979. An occurrence of Lower Carboniferous fish remains from Alberta, Canada. Canadian Journal of Earth Sciences 16, 16281631.Google Scholar
Morris, J. & Roberts, G. E. 1862. On the Carboniferous limestone of Oreton and Farlow, Clee Hills, Shropshire. Quarterly Journal of the Geological Society of London 18, 94106.Google Scholar
Newberry, J. S. & Worthen, A. H. 1866. Descriptions of new species of vertebrates, mainly from the Sub-Carboniferous Limestone and Coal Measures of Illinois. Geological Survey of Illinois 2, 9–134.Google Scholar
Newberry, J. S. & Worthen, A. H. 1870. Geology and Paleontology. Descriptions of fossil vertebrates. Geological Survey of Illinois 4, 343374.Google Scholar
Obruchev, D. V. 1953. Lzuchenie edestid y raboty A. P. Karpinskogo [Studies on edestids and the works of A. P. Karpinski]. Trudy Paleontologièeskog Instituta Akademii Nauk SSSR [Proceedings of the Paleontological Institute, USSR Academy of Sciences] 45, 185.Google Scholar
Owen, R. 1867. On the dental characters of genera and species, chiefly of fishes from the Low Main Seam and shales of coal, Northumberland. Transactions of the Odontological Society of Great Britain 5, 329334.Google Scholar
Patterson, C. 1965. The phylogeny of chimaeroids. Philosophical Transactions of the Royal Society, London, Series B 249, 101219.Google Scholar
Patterson, C. 1992. Interpretation of the toothplates of chimaeroid fishes. Zoological Journal of the Linnean Society 106, 3361.Google Scholar
Pemberton, S. G., Spila, M., Pulham, A. J., Saunders, T., MacEachern, J. A., Robbins, D. & Sinclair, I. K. 2001. Ichnology and sedimentology of shallow to marginal marine systems: Ben Nevis & Avalon reservoirs, Jeanne D'Arc Baisin. Geological Association of Canada, Short Course Notes 15. St Johns, Newfoundland: Geological Association of Canada. 343 pp.Google Scholar
Richards, K. R. 2016. Carboniferous chondrichthyans from the Derbyshire limestones. Doctoral Thesis, University of Cambridge. 326 pp.Google Scholar
Roelofs, B., Barham, M., Mory, A. J. & Trinajstic, K. 2016. Late Devonian and Early Carboniferous chondrichthyans from the Fairfield Group, Canning Basin, Western Australia. Palaeontologia Electronica 19, 128.Google Scholar
Salamon, M. A., Gorzelak, P., Niedźwiedzki, R., Trzęsiok, D. & Baumiller, T. K. 2014. Trends in shell fragmentation as evidence of mid-Paleozoic changes in marine predation. Paleobiology 40, 1423.Google Scholar
Sallan, L. C., Kammer, T. W., Ausich, W. I. & Cook, L. A. 2011. Persistent predator–prey dynamics revealed by mass extinction. Proceedings of the National Academy of Sciences USA 108, 83358338.Google Scholar
Sallan, L. C. & Coates, M. I. 2010. End-Devonian extinction and a bottleneck in the early evolution of modern jawed vertebrates. Proceedings of the National Academy of Sciences USA 107, 10131–35.Google Scholar
Sallan, L. C. & Coates, M. I. 2013. Styracopterid (Actinopterygii) ontogeny and the multiple origins of post-Hangenberg deep-bodied fishes. Zoological Journal of the Linnean Society 169, 156199.Google Scholar
Schram, F. R. 1979. British Carboniferous Malacostraca. Fieldiana Geology 40, 1–129.Google Scholar
Smithson, T. R., Richards, K. R. & Clack, J. A. 2015. Lungfish diversity in Romer's Gap: reaction to the end-Devonian extinction. Palaeontology 59, 2944.Google Scholar
Stahl, B. J. 1999. Chondrichthyes III. Holocephali, In Schultze, H-P. (ed.) Handbook of Paleoichthyology, Volume 3. München: Verlag Dr. Friedrich Pfeil.Google Scholar
St John, O. H. & Worthen, A. H. 1875. Descriptions of fossil fishes. Geological Survey of Illinois 6, 245488.Google Scholar
St John, O. H. & Worthen, A. H. 1883. Descriptions of fossil fishes; a partial revision of the Cochliodonts and Psammodonts. Geological Survey of Illinois 7, 55264.Google Scholar
Stoddart, W. W. 1875. The Geology of the Bristol coal-field. Proceedings of the Bristol Naturalist's Society 1, 115140.Google Scholar
Stone, P., Millward, D., Young, B., Merritt, J. W., Clarke, S. M., McCormac, M. & Lawrence, D. J. D. 2010. British Regional Geology: Northern England (Fifth edition). Keyworth, Nottingham, UK: British Geological Survey.Google Scholar
Turnau, E., Avchimovitch, V.I., Byvsheva, T. V., Carson, B., Clayton, G. & Owens, B. 1997. The first appearance in Europe of Lycospora pusilla (Ibrahim) Somers and its relationship to the Tournaisian/Viséan boundary. Prace Państwowego Instytutu Geologicznego 157, 289293.Google Scholar
Turner, S. 1982. Middle Palaeozoic elasmobranch remains from Australia. Journal of Vertebrate Paleontology 2, 117131.Google Scholar
Turner, S. 1991. Palaeozoic vertebrate microfossils of Australia. In Vickers-Rich, P., Monaghan, J. N., Baird, R. F. & Rich, T. H. (eds) Vertebrate palaeontology of Australasia, 429464. Melbourne: Pioneer Design Studios. xvi+1437 pp.Google Scholar
Turner, S. 1993. Palaeozoic microvertebrates biostratigraphy of Eastern Gondwana. In Long, J. A. (ed.) Palaeozoic vertebrate biostratigraphy and biogeography, 174207. London: Belhaven Press. 384 pp.Google Scholar
Underwood, C. J., Mitchell, S. F. & Veltkamp, K. J. 1999. Shark and ray teeth from the Hauterivian (Lower Cretaceous) of northeast England. Palaeontology 42, 287302.Google Scholar
Waters, C. N., Waters, R. A., Jonas, N. S., Cleal, C. J. & Davies, J. R. 2011. Bristol, Mendips and Forest of Dean. In Waters, C. N., Somerville, I. D., Jones, N. S., Cleal, C. J., Collinson, J. D., Waters, R. A., Besly, B. M., Dean, M. T., Stephenson, M. H., Davies, J. R., Freshney, E. C., Jackson, D. I., Mitchell, W. I., Powell, J. H., Barclay, W. J., Browne, M. A. E., Leveridge, B. E., Long, S. L. & McLean, D. (eds) A revised correlation of Carboniferous rocks in the British Isles. Geological Society of London, Special Report 26, 3743. London & Bath: The Geological Society. 186 pp.Google Scholar
Whitenack, L. B., Simkins, D. C. & Motta, P. J. 2011. Biology meets engineering: the structural mechanics of fossil and extant shark teeth. Journal of Morphology 272, 169179.Google Scholar
Whitenack, L. B. & Motta, P. J. 2010. Performance of shark teeth during puncture and draw: implications for the mechanics of cutting. Biological Journal of the Linnean Society 100, 271286.Google Scholar
Williams, M., Leng, M. L., Stephenson, M. H., Andrews, J. E., Wilkinson, I. P., Siveter, D. J., Horne, D. J. & Vannier, J. M. C. 2006. Evidence that Early Carboniferous ostracods colonised coastal flood plain brackish water environments. Palaeogeography, Palaeoclimatology, Palaeoecology 230, 299318.Google Scholar
Williams, M. E. 1990. Feeding behavior in Cleveland Shale fishes. In Boucot, A. J. (ed.) Evolutionary Paleobiology of Behavior and Coevolution, 273287. Amsterdam: Elsevier Science. 725 pp.Google Scholar
Wood, S. P. & Rolfe, W. D. I. 1985. Introduction to the palaeontology of the Dinantian of Foulden, Berwickshire, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 76, 16.Google Scholar
Woodward, A. S. 1889. Catalogue of the fossil fishes in the British Museum (Natural History) Part 1. London: British Museum (Natural History).Google Scholar
Zangerl, R. 1981. Chondrichthyes I. Paleozoic Elasmobranchii. In Schultze, H-P. (ed.) Handbook of Paleoichthyology, Vol. 3A. Stuttgart: Gustav Fischer. 115 pp.Google Scholar