Published online by Cambridge University Press: 03 November 2011
Finite difference numerical simulations were used to characterise the rates of diffusion-controlled dissolution and growth of zircon in melts of granitic composition under geologically realistic conditions. The simulations incorporated known solubility and Zr diffusivity relationships for melts containing 3 wt% dissolved H2O and were carried out in both one and thre dimensions under conditions of constant temperature, linearly time-dependent temperature and for a variety of host system thermal histories. The rate of zircon dissolution at constant temperature depends systematically on time (t½−12;), temperature (exp T−1) and degree of undersaturation of the melt with respect to zircon (in ppm Zr). Linear dissolution and growth rates fall in the range 10−19 10−15 cm s−1 at temperatures of 650-850°C. Radial rates are strongly dependent on crystal size (varying in inverse proportion to the radius, r): for r>30 μm, dissolution and growth rates fall between 10−17 and 10−13 cm s−1. During crustal magmatism, the chances of survival for relict cores of protolith zircons depend on several factors, the most important of which are: the initial radius of the zircon; the intensity and duration of the magmatic event; and the volume of the local melt reservoir with which the zircon interacts. In general, only the largest protolith zircons (>120 μm radius) are likely to survive magmatic events exceeding 850°C. Conversely, only the smallest zircons (<50 μm radius) are likely to be completely consumed during low-temperature anatexis (i.e. not exceeding ≍700°C).
The effects of stirring the zircon-melt system are unimportant to dissolution and growth behaviour; except under circumstances of extreme shearing (e.g. filter pressing?), zircon dissolution is controlled by diffusion of Zr in the melt.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.