Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T07:11:13.010Z Has data issue: false hasContentIssue false

Clay mineralogical characteristics and the palaeoclimatic significance of a Holocene to Late Middle Pleistocene loess–palaeosol sequence from Chaoyang, China

Published online by Cambridge University Press:  17 October 2016

Zhong-Xiu Sun
Affiliation:
College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning, 110866, P. R. China. Email: [email protected]; [email protected]; [email protected]; [email protected]
Qiu-Bing Wang*
Affiliation:
College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning, 110866, P. R. China. Email: [email protected]; [email protected]; [email protected]; [email protected]
Chun-Lan Han
Affiliation:
College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning, 110866, P. R. China. Email: [email protected]; [email protected]; [email protected]; [email protected]
Qing-Jie Zhang
Affiliation:
College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning, 110866, P. R. China. Email: [email protected]; [email protected]; [email protected]; [email protected]
Phillip R. Owens
Affiliation:
Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA. Email: [email protected]; [email protected]
*
*Corresponding author.

Abstract

Changes in soil chemistry in response to varying climatic regimes can alter the equilibria of soil systems and result in different clay minerals. Variations in phyllosilicate clay composition can reflect temporal and spatial climatic changes, such as summer/winter monsoon cycles. The objective of this research was to investigate the mineralogy of the clay fractions as a proxy for determining variations in the East Asian monsoon climate, based on a section at Chaoyang in China spanning the last 0.423 Ma BP. The clay mineralogy record in the Chaoyang section was compared with other proxies as recorded in this section and with other palaeoclimatic indicators, including oxygen isotopes from oceanic sediments and loess–palaeosol sections on the Chinese Loess Plateau (CLP). The results from clay mineralogy and related climatic studies show that the summer monsoon has a trend of four increased stages and four decreased stages; whereas the winter monsoon displays the opposite trend. During the last 0.423 Ma BP, the strongest winter monsoon occurred around 0.243–0.311 Ma BP. During this period, which included an intense winter monsoon, the soil in the section had the least illite, one of the smallest kaolinite and illite/Chlorite (I/C) indices and an overall decreasing clay content. The period 0.225–0.243 Ma BP had the strongest summer monsoon over the last 0.423 Ma BP. This period had the greatest amount of illite, the highest I/C index, greater overall clay content and the strongest magnetic susceptibility signal. Additionally, this section contained the smallest mean grain size. The multi-monsoon climate cycles of alternating cold-dry and warm-moist conditions as recorded in the Chaoyang section corresponded well with multiple glaciation cycles based on deep sea sediments. This indicates that the Chaoyang section provides a record of palaeoclimate changes in northeast China that can be linked to mineralogical suites to assist in reconstructing the palaeoclimate over the Late Middle Pleistocene, and complements the global palaeoclimate records in the CLP.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

6. References

Ackerley, D., Booth, B. B. B., Knight, S. H. E., Highwood, E. J., Frame, D. J., Allen, M. R. & Rowell, D. P. 2011. Sensitivity of twentieth-century Sahel rainfall to Sulfate aerosol and CO2 forcing. Journal of Climate 24(19), 49995014.Google Scholar
Amundson, R. G., Doner, H. E., Chadwick, O. A. & Sowers, J. M. 1989. The stable isotope chemistry of pedogenic carbonates at Kyle Canyon, Nevada. Soil Science Society of America Journal 53(1), 201–10.Google Scholar
An, Z. S. 2000. The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews 19(1), 171–87.Google Scholar
An, Z. S., Kukla, G., Porter, S. C. & Xiao, J. L. 1991a. Late Quaternary dust flow on the Chinese loess plateau. Catena 18(2), 125–32.Google Scholar
An, Z. S., Kukla, G. J., Porter, S. C. & Xiao, J. L. 1991b. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years. Quaternary Research 36(1), 2936.Google Scholar
An, Z. S. & Porter, S. C. 1997. Millennial-scale climatic oscillations during the last interglaciation in central China. Geology 25(7), 603–06.Google Scholar
Arkley, R. J. 1963. Calculation of carbonate and water movement in soil from climatic data. Soil Science 96(4), 239–48.Google Scholar
Arkley, R. J. 1967. Climates of some great soil groups of the western United States. Soil Science 103(6), 389400.Google Scholar
Bühmann, C. 1994. Parent material and pedogenic processes in South Africa. Clay Minerals 29(2), 239–46.Google Scholar
Beaven, P. J. & Dumbleton, M. J. 1966. Clay minerals and geomorphology in four Caribbean islands. Clay Minerals 6, 371–82.Google Scholar
Bekryaev, R. V., Polyakov, I. V. & Alexeev, V. A. 2010. Role of polar amplification in long-term surface air temperature variations and modern arctic warming. Journal of Climate 23(14), 3888–906.Google Scholar
Birkeland, P. W. 1969. Quaternary paleoclimatic implications of soil clay mineral distribution in a Sierra Nevada-Great Basin transect. The Journal of Geology 77, 289302.Google Scholar
Borchardt, G. 1989. Smectites. In Dixon, J. B. & Weed, S. B. (eds) Minerals in Soil Environment. SSSA Book Series 1, 675727. Madison, Wisconsin: Soil Science Society of America Inc. 1244 pp.Google Scholar
Brindley, G. W. 1980. Quantitative X-ray mineral analysis of clays. In Brindley, G. W. & Brown, G. (eds) Crystal Structures of Clay Minerals and their X-Ray Identification. Mineralogical Society Monograph 5, 411–38. London: Mineralogical Society of Grear Britain and Ireland.Google Scholar
Brown, G. & Brindley, G. W. 1980. X-ray diffraction procedures for clay mineral identification. In Brindley, G. W. & Brown, G. (eds) Crystal structures of clay minerals and their X-ray identification, 305–59. London: Mineralogical Society.Google Scholar
Chadwick, O. A., Nettleton, W. D. & Staidl, G. J. 1995. Soil polygenesis as a function of Quaternary climate change, northern Great Basin, USA. Geoderma 68(1), 126.Google Scholar
Chadwick, O. A., Gavenda, R. T., Kelly, E. F., Ziegler, K., Olson, C. G., Elliott, W. C. & Hendricks, D. M. 2003. The impact of climate on the biogeochemical functioning of volcanic soils. Chemical Geology 202(3–4), 195223.Google Scholar
Chamley, H. 1989. Clay Sedimentology: Springer-Verlag. 623 pp.Google Scholar
Chen, H. 2009. [Grain-Size Characteristics and Paleoclimatic Reconstruction during the Late Middle Pleistocene and the last interglacial stage of a Palaeosol Sequence at Fenghuang Mountain in Chaoyang, Liaoning Province.] [In Chinese.] PhD Thesis, Shenyang Agricultural University.Google Scholar
Chen, H., Wang, Q. B. & Han, C. L. 2009a. Grain-size characteristics and climatic changes of a palaeosol sequence at Fenghuang Mountain in Chaoyang, Liaoning Province Geological Journal of China Universities 15, 563–68.Google Scholar
Chen, H., Wang, Q. B., Han, C. L. & Wu, D. L. 2009b. Grain-size distribution and material origin of a palaeosol sequence at Fenghuang Mountain, Chaoyang, Liaoning Province Earth and Environment 37(3), 243–48.Google Scholar
Ding, Z. L., Yu, Z. W., Rutter, N. W. & Liu, T. S. 1994. Towards an orbital time scale for Chinese loess deposits. Quaternary Science Reviews 13(1), 3970.Google Scholar
Ding, Z. L., Xiong, S. F., Sun, J. M., Yang, S. L., Gu, Z. Y. & Liu, T. S. 1999. Pedostratigraphy and paleomagnetism of a ∼7.0 Ma eolian loess-red clay sequence at Lingtai, Loess Plateau, north-central China and the implications for paleomonsoon evolution. Palaeogeography, Palaeoclimatology, Palaeoecology 152(1), 4966.Google Scholar
Ding, Z. L., Sun, J. M., Yang, S. L. & Liu, T. S. 2001. Geochemistry of the Pliocene red clay formation in the Chinese Loess Plateau and implications for its origin, source provenance and paleoclimate change. Geochimica et Cosmochimica Acta 65(6), 901–13.Google Scholar
Ding, Z. L., Derbyshire, E., Yang, S. L., Yu, Z. W., Xiong, S. F. & Liu, T. S. 2002. Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ18O record. Paleoceanography 17(3), 5-15-21.Google Scholar
Ding, Z. L. & Yu, Z. W. 1995. Forcing mechanisms of paleomonsoons over East Asia. Quaternary Sciences 1, 6374.Google Scholar
Dixon, J. B. & Weed, S. B. 1989. Minerals in Soil Environments. Madison, Wisconsin: Soil Science Society of America Inc. 1244 pp.Google Scholar
Dole, R. M. 2012. Toward understanding and predicting regional climate variations and change. (Findings from NOAA Science Challenge Workshop 2011). Boulder, Colorado: NOAA. 32 pp.Google Scholar
Feng, J. L., Hu, Z. G., Ju, J. T. & Zhu, L. P. 2011. Variations in trace element (including rare earth element) concentrations with grain sizes in loess and their implications for tracing the provenance of eolian deposits. Quaternary International 236(1–2), 116–26.Google Scholar
Fink, J. & Kukla, G. J. 1977. Pleistocene climates in Central Europe: at least 17 interglacials after the Olduvai event. Quaternary Research 7(3), 363–71.Google Scholar
Fiskell, J. G. & Perkins, H. 1970. Selected coastal plain soil properties. Southern Cooperative Bulletin 148. Gainesville: University of Florida. 141 pp.Google Scholar
Folkoff, M. E. & Meentemeyer, V. 1985. Climatic control of the assemblages of secondary clay minerals in the A-horizon of United States soils. Earth Surface Processes and Landforms 10(6), 621–33.Google Scholar
Folkoff, M. E. & Meentemeyer, V. 1987. Climatic control of the geography of clay minerals genesis. Annals of the Association of American Geographers 77(4), 635–50.Google Scholar
Gao, Y. X. & Chen, H. Z. 1983. Salient characteristics of soil-forming processes in Xizang (Tibet). Soil Science 135(1), 1117.Google Scholar
Gibbs, R. J. 1965. Error due to segregation in quantitative clay mineral X-ray difraction mounting techniques. American Mineralogist 50, 741–51.Google Scholar
Grim, R. E. 1968. Clay mineralogy, 2nd Edition. New York: McGraw-Hill. 596 pp.Google Scholar
Gylesjö, S. & Arnold, E. 2006. Clay mineralogy of a red clay–loess sequence from Lingtai, the Chinese Loess Plateau. Global and Planetary Change 51(3–4), 181–94.Google Scholar
Hall, R. D. & Anderson, A. K. 2000. Comparative soil development of Quaternary palaeosols of the central United States. Palaeogeography, Palaeoclimatology, Palaeoecology 158(1), 109–45.Google Scholar
Heller, F. & Liu, T. S. 1982. Magnetostratigraphical dating of loess deposits in China. Nature 300, 431–33.Google Scholar
Hu, X.-F., Wei, J., Du, Y., Xu, L.-F., Wang, H.-B., Zhang, G.-L., Ye, W. & Zhu, L.-D. 2010. Regional distribution of the Quaternary Red Clay with aeolian dust characteristics in subtropical China and its paleoclimatic implications. Geoderma 159(3–4), 317–34.Google Scholar
Huang, C. Q., Zhao, W., Liu, F., Tan, W. F. & Koopal, L. K. 2011. Environmental significance of mineral weathering and pedogenesis of loess on the southernmost Loess Plateau, China. Geoderma 163(3–4), 219–26.Google Scholar
Huang, C. Q., Zhao, W., Li, F. Y., Tan, W. F. & Wang, M. K. 2012. Mineralogical and pedogenetic evidence for palaeoenvironmental variations during the Holocene on the Loess Plateau, China. Catena 96, 4956.Google Scholar
Imbrie, J., Hays, J. D., Martinson, D. G., Mcintyre, A., Mix, A. C., Morley, J. J., Pisias, N. G., Prell, W. L. & Shackleton, N. J. 1984. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record. In Berger, A. L., Imbrie, J., Hays, J., Kukla, G. & Saltzman, B. (eds) Milankovitch and Climate: Understanding the Response to Astronomical Forcing, 269. (Proceedings of the NATO Advanced Research Workshop, Palisades, New York, U.S.A., November 30–December 4, 1982.) Springer. 946 pp.Google Scholar
Jansen, E., Overpeck, J., Briffa, K. R., Duplessy, J. C., Joos, F., Masson-Delmotte, V., Olago, D., Otto-Bliesner, B., Peltier, W. R., Rahmstorf, S., Ramesh, R., Raynaud, D., Rind, D., Solomina, O., Villalba, R. & Zhang, D. 2007. Palaeoclimate. In Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. & Miller, H. L. (eds) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. limate Change 2007: The Physical Science Basis. Cambridge, UK and New York, USA: Cambridge University Press.Google Scholar
Jeong, G. Y., Hillier, S. & Kemp, R. A. 2008. Quantitative bulk and single-particle mineralogy of a thick Chinese loess–palaeosol section: implications for loess provenance and weathering. Quaternary Science Reviews 27(11–12), 1271–87.Google Scholar
Jeong, G. Y., Hillier, S. & Kemp, R. A. 2011. Changes in mineralogy of loess–palaeosol sections across the Chinese Loess Plateau. Quaternary Research 75(1), 245–55.Google Scholar
Kalm, V. E., Rutter, N. W. & Rokosh, C. D. 1996. Clay minerals and their paleoenvironmental interpretation in the Baoji loess section, Southern Loess Plateau, China. Catena 27(1), 4961.Google Scholar
Kukla, G. 1987. Loess stratigraphy in central China. Quaternary Science Reviews 6(3), 191219.Google Scholar
Kukla, G. & An, Z. S. 1989. Loess stratigraphy in central China. Palaeogeography, Palaeoclimatology, Palaeoecology 72, 203–25.Google Scholar
Li, G. J., Ji, J. F., Zhao, L., Mao, C. P. & Chen, J. 2008. Response of silicate weathering to monsoon changes on the Chinese Loess Plateau. Catena 72(3), 405–12.Google Scholar
Li, X. Y. 1997. Soil chemistry and experiment guidance. Beijing: China Agriculture Press.Google Scholar
Liaoning Geology Bureau, Hydrogeology Brigade. 1983. The Quaternary of Liaoning Province, 4662. Beijing: Geology Press.Google Scholar
Lisiecki, L. E. & Raymo, M. E. 2005. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20(1), 117.Google Scholar
Liu, T. S. 1985. Loess and the Environment, 31148. Beijing: China Ocean Press. 251 pp.Google Scholar
Liu, T. S. & Ding, Z. L. 1992. The stage coupling process of monsoon circulation and continental ice volume changes over the last 2.5 Ma. Quaternary Sciences 1, 1223.Google Scholar
Liu, T. S. & Ding, Z. L. 1998. Chinese loess and the paleomonsoon. Annual Review of Earth and Planetary Sciences 26(1), 111–45.Google Scholar
Lu, H. Y. & An, Z. S. 1998. Paleoclimatic significance of grain size of loess-palaeosol sequences of central China Science China, Series D: Earth Science 41, 626–31.Google Scholar
Maher, B. A. & Thompson, R. 1991. Mineral magnetic record of the Chinese loess and palaeosols. Geology 19(1), 36.Google Scholar
Martinson, D. G., Pisias, N. G., Hays, J. D., Imbrie, J., Moore, T. C. & Shackleton, N. J. 1987. Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy. Quaternary Research 27(1), 129.Google Scholar
Mehra, O. P. & Jackson, M. L. 1958. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. In Clays and Clay Minerals. Proceedings of 7th Conference on Clays and Clay Minerals, 317327. Elsevier Ltd. 370 pp.Google Scholar
Mintzer, I. M. 1992. Confronting Climate Change: Risks, Implications and Responses. Cambridge University Press. 400 pp.Google Scholar
Moore, D. M. & Reynolds, R. C. 1989. X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford: Oxford University Press. 332 pp.Google Scholar
Ojanuga, A. G. 1979. Clay mineralogy of soils in the Nigerian tropical savanna regions. Soil Science Society of America Journal 43(6), 1237–42.Google Scholar
Pai, C. W., Wang, M. K., Wang, W. M. & Houng, K. H. 1999. Smectites in iron-rich calcareous soil and black soils of Taiwan. Clays and Clay Minerals 47(4), 389–98.Google Scholar
Peng, H. 1988. A discussion on the formation of the red boulder clay in the Ranggiaoling of Loushan Mountain. Journal of Geographical Sciences 43, 363–66.Google Scholar
Pickering, W. F. 1986. Metal ion speciation—soils and sediments (a review). Ore Geology Reviews 1(1), 83146.Google Scholar
Pye, K. 1984. Loess. Progress in Physical Geography 8(2), 176217.Google Scholar
Pye, K. 1987. Aeolian dust and dust deposits. London: Academic Press. 256 pp.Google Scholar
Rai, D. & Lindsay, W. L. 1975. A thermodynamic model for predicting the formation, stability, and weathering of common soil minerals. Soil Science Society of America Journal 39(5), 991–96.Google Scholar
Righi, D., Velde, B. & Meunier, A. 1995. Clay stability in clay-dominated soil systems. Clay Minerals 30(1), 4554.Google Scholar
Rousseau, D. D. & Kukla, G. 2000. Abrupt retreat of summer monsoon at the S1/L1 boundary in China. Global and Planetary Change 26(1), 189–98.Google Scholar
Schaetzl, R. J. & Anderson, S. 2005. Soils: Genesis and geomorphology New York: Cambridge University Press.Google Scholar
Scott, A. D. & Smith, S. J. 1968. Mechanism for soil potassium release by drying. Soil Science Society of America Journal 32(3), 443–44.Google Scholar
Srodon, J. & Eberl, D. D. 1984. Illite. Reviews in Mineralogy and Geochemistry 13(1), 495544.Google Scholar
Sun, D. H., Lu, H. Y., Rea, D. & Sun, Y. B. 2000. Bi-mode grain-size distribution of Chinese Loess and its paleoclimate implication. Acta Sedimentologica Sinica 18, 327–35.Google Scholar
Sun, Y. B., Lu, H. Y. & An, Z. S. 2006. Grain size of loess, palaeosol and Red Clay deposits on the Chinese Loess Plateau: Significance for understanding pedogenic alteration and palaeomonsoon evolution. Palaeogeography, Palaeoclimatology, Palaeoecology 241(1), 129–38.Google Scholar
Sun, Z.-X., Owens, P. R., Han, C.-L., Chen, H., Wang, X.-L. & Wang, Q.-B. 2016. A quantitative reconstruction of a loess–palaeosol sequence focused on palaeosol genesis: An example from a section at Chaoyang, China. Geoderma 266, 2539.Google Scholar
Theisen, A. A. & Harward, M. E. 1962. A paste method for preparation of slides for clay mineral identification by X-ray diffraction. Soil Science Society of America Journal 26(1), 9091.Google Scholar
Thorez, J. 1976. Practical identification of clay minerals: a handbook for teachers and students in clay mineralogy. Dison: Lelotte. 90 pp.Google Scholar
Turpault, M. P., Righi, D. & Utérano, C. 2008. Clay minerals: Precise markers of the spatial and temporal variability of the biogeochemical soil environment. Geoderma 147(3–4), 108–15.Google Scholar
Van Der Merwe, C. R. & Weber, H. W. 1963. The clay minerals of South African soils developed from granite under different climatic conditions. South African Journal of Science 6, 411–54.Google Scholar
Vandenberghe, J., An, Z. S., Nugteren, G., Lu, H. Y. & Van Huissteden, K. 1997. New absolute time scale for the Quaternary climate in the Chinese loess region by grain-size analysis. Geology 25(1), 3538.Google Scholar
Velde, B. 2012. Introduction to clay minerals: chemistry, origins, uses and environmental significance, New York: Springer Science & Business Media.Google Scholar
Velde, B. & Meunier, A. 2008. The origin of clay minerals in soils and weathered rocks, Berlin, Heidelberg: Springer-Verlag.Google Scholar
Wang, S. 1988. Clay minerals and paleoclimate evolution in the Yangyuan Basin, Hebei Province. Marine Geology Quaternary Geology 8, 7790.Google Scholar
Wang, Y. & Zheng, S. H. 1989. Palaeosol nodules as Pleistocene paleoclimatic indicators, Luochuan, P. R. China. Palaeogeography, Palaeoclimatology, Palaeoecology 76(1), 3944.Google Scholar
White, A. F. & Blum, A. E. 1995. Effects of climate on chemical weathering in watersheds. Geochimica et Cosmochimica Acta 59(9), 1729–47.Google Scholar
Wild, M. 2012. Enlightening global dimming and brightening. Bulletin of the American Meteorological Society 93(1), 2737.Google Scholar
Williams, A. P. & Funk, C. 2011. A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa. Climate Dynamics 37(11–12), 2417–35.Google Scholar
Wilson, M. J. 1987. Soil smectites and related interstratified minerals: Recent developments. In Schultz, L. G., Van Holphen, H. & Mumpton, F. A. (eds) Proceedings of the International Clay Conference Denver 1985, 167–73. Bloomington, ID: Clay Minerals Society.Google Scholar
Wilson, M. J. 1999. The origin and formation of clay minerals in soils: past, present and future perspectives. Clay Minerals 34(1), 725.Google Scholar
Xiao, J. L., Zheng, H. B. & Zhao, H. 1992. Variation of winter monsoon intensity on the Loess Plateau, central China during the Last 130,000 years: Evidence from grain size distribution. Quaternary Sciences 31(1), 1319.Google Scholar
Yang, H. R. & Xu, Q. 1985. The evolution of Quaternary natural environment in eastern China, 104–25. Beijing: Geology Press.Google Scholar
Yemane, K., Kahr, G. & Kelts, K. 1996. Imprints of post-glacial climates and palaeogeography in the detrital clay mineral assemblages of an Upper Permian fluviolacustrine Gondwana deposit from northern Malawi. Palaeogeography, Palaeoclimatology, Palaeoecology 125(1), 2749.Google Scholar
Zhang, J. C. & Lin, Z. G. 1987. Climate in China. Beijing: Meteorology Press. 325 pp.Google Scholar
Zhang, N. X. & Yuan, B. Y. 1987. Study of clay minerals in Louchuan section and their paleoenvironment significance. In Liu, Tungsheng (ed.) Aspects of Loess Research, 348–61. Beijing: China Ocean Press.Google Scholar
Zhang, X. Y., An, Z. S., Chen, T., Zhang, G. Y., Arimoto, R. & Ray, B. J. 1994. Late Quaternary records of the atmospheric input of eolian dust to the center of the Chinese Loess Plateau. Quaternary Research 41(1), 3543.Google Scholar
Zhao, L. 2005. Variations of illite/chlorite ratio in Chinese loess sections during the last glacial and interglacial cycle: Implications for monsoon reconstruction. Geophysical Research Letters 32(20), 14.Google Scholar
Zheng, H. 1982. Paleoclimate events recorded in clay minerals in loess of China. In Liu, Tungsheng (ed.) Quaternary Geology and Environment of China, 5966. Beijing: China Ocean Press.Google Scholar
Zhou, L. P., Oldfield, F., Wintle, A. G., Robinson, S. G. & Wang, J. T. 1990. Partly pedogenic origin of magnetic variations in Chinese loess. Nature 346, 737–39.Google Scholar