Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T07:12:14.684Z Has data issue: false hasContentIssue false

Arsenate removal from aqueous solutions by Mg/Fe-LDH-modified biochar derived from apple tree residues

Published online by Cambridge University Press:  30 June 2022

Mohammad Ali SHIRIAZAR
Affiliation:
Soil Science Department, Faculty of Agriculture, University of Urmia, SERO Road, PO Box 165, 5756151818, Urmia, Iran.
Ebrahim SEPEHR*
Affiliation:
Soil Science Department, Faculty of Agriculture, University of Urmia, SERO Road, PO Box 165, 5756151818, Urmia, Iran.
Ramin MALEKI
Affiliation:
Research Department of Chromatography, Iranian Academic Center for Education, Culture and Research (ACECR), Urmia Branch, Beheshti Street, PO Box 168, 5715944919, Urmia, Iran.
Habib KHODAVERDILOO
Affiliation:
Soil Science Department, Faculty of Agriculture, University of Urmia, SERO Road, PO Box 165, 5756151818, Urmia, Iran.
Farrokh ASADZADEH
Affiliation:
Soil Science Department, Faculty of Agriculture, University of Urmia, SERO Road, PO Box 165, 5756151818, Urmia, Iran.
Behnam DOVLATI
Affiliation:
Soil Science Department, Faculty of Agriculture, University of Urmia, SERO Road, PO Box 165, 5756151818, Urmia, Iran.
Zed RENGEL
Affiliation:
Soil Science and Plant Nutrition, UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, PERTH WA 6009, Australia. Institute for Adriatic Crops and Karst Reclamation, Split, Croatia.
*
*Corresponding author. Email: [email protected]

Abstract

The development of non-toxic and inexpensive materials for arsenic removal is required due to water sources being polluted by arsenic in many countries around the world. The main aim of this study was to characterise the capacity and behaviour of Mg/Fe layered double hydroxides/biochar [Magnesium/Iron-Layered Double Hydroxide (Mg/Fe-LDH)] composite for arsenate adsorption from solution. Apple tree pruning residues were used to produce biochar at 500 °C under oxygen-limited atmosphere. Mg/Fe-LDH-biochar was synthesised using a spontaneous in situ co-precipitation method. Batch experiments were used for the assessment of the kinetics, isotherms, and the effects of initial solution pH (4, 6, 8, and 10), ionic strength (0.01, 0.1, and 0.2 mol L−1), and co-occurring anions (carbonate and phosphate) on the arsenate removal. Scanning electron microscope images showed Mg/Fe-LDH were loaded on the biochar porous structure, and X-ray diffraction analysis affirmed the presence of crystalline LDH minerals in Mg/Fe-LDH-biochar. Surface modification of biochar by Mg/Fe-LDH increased the maximum arsenate adsorption capacity (3.6 mg g−1) ten times compared to unmodified biochar (0.35 mg g−1). Arsenate removal capacity increased from 4.2 % to 54.2 % with modification of biochar by Mg/Fe-based LDH. Kinetic studies indicated that >90 % of Mg/Fe-LDH-biochar arsenate adsorption from a starting concentration of 10 mg L−1 occurred in the first 120 min. Pseudo-second order and Langmuir models described well the kinetics and isotherm of arsenate adsorption by biochar and Mg/Fe-LDH-biochar. Mg/Fe-LDH-biochar showed maximum arsenate removal capacity at pH 6. Increasing solution ionic strength and the presence of phosphate and carbonate anions suppressed arsenate removal by Mg/Fe-LDH-biochar. In summary, surface modification of biochar using Mg/Fe-LDH produced a potentially more cost-effective, locally available, reusable, and non-toxic arsenic adsorbent for decontamination of surface- and groundwater.

Type
Articles
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

6. References

Alchouron, J., Navarathna, C., Chludil, H. D., Dewage, N. B., Perez, F., Hassan, E. B., Pittman, C. U., Vega, A. S. & Mlsna, T. E. 2020. Assessing South American Guadua chacoensis bamboo biochar and Fe3O4 nanoparticle dispersed analogues for aqueous arsenic(V) remediation. Science of the Total Environment 706, 135943.CrossRefGoogle ScholarPubMed
Chaudhry, S. A., Khan, T. A. & Ali, I. 2017. Zirconium oxide-coated sand based batch and column adsorptive removal of arsenic from water: isotherm, kinetic and thermodynamic studies. Egyptian Journal of Petroleum 26, 553–63.10.1016/j.ejpe.2016.11.006CrossRefGoogle Scholar
Chaukura, N., Murimba, E. C. & Gwenzi, W. 2017. Sorptive removal of methylene blue from simulated wastewater using biochars derived from pulp and paper sludge. Environmental Technology and Innovation 8, 132–40.10.1016/j.eti.2017.06.004CrossRefGoogle Scholar
Cui, Q., Jiao, G., Zheng, J., Wang, T., Wu, G. & Li, G. 2019. Synthesis of a novel magnetic: Caragana korshinskii biochar/Mg-Al layered double hydroxide composite and its strong adsorption of phosphate in aqueous solutions. RSC Advances 9, 18641–51.10.1039/C9RA02052GCrossRefGoogle ScholarPubMed
Dias, A. C. & Fontes, M. P. F. 2020. Arsenic (V) removal from water using hydrotalcites as adsorbents: a critical review. Applied Clay Science 191, 105615.10.1016/j.clay.2020.105615CrossRefGoogle Scholar
Ding, Z., Xu, X., Phan, T., Hu, X. & Nie, G. 2018. High adsorption performance for As(III) and As(V) onto novel aluminum-enriched biochar derived from abandoned Tetra Paks. Chemosphere 208, 800–07.CrossRefGoogle ScholarPubMed
Elwakeel, K. Z. & Guibal, E. 2015. Arsenic(V) sorption using chitosan/Cu(OH)2 and chitosan/CuO composite sorbents. Carbohydrate Polymers 134, 190204.10.1016/j.carbpol.2015.07.012CrossRefGoogle ScholarPubMed
Foo, K. Y. & Hameed, B. H. 2010. Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal 156, 210.10.1016/j.cej.2009.09.013CrossRefGoogle Scholar
Gaskin, J. W., Steiner, C., Harris, K., Das, K. C. & Bibens, B. 2008. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the ASABE 51, 2061–69.CrossRefGoogle Scholar
Gasser, M. S., Mohsen, H. T. & Aly, H. F. 2008. Humic acid adsorption onto Mg/Fe layered double hydroxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects 331, 195201.10.1016/j.colsurfa.2008.08.002CrossRefGoogle Scholar
Giménez, J., Martínez, M., de Pablo, J., Rovira, M. & Duro, L. 2007. Arsenic sorption onto natural hematite, magnetite, and goethite. Journal of Hazardous Materials 141, 575–80.10.1016/j.jhazmat.2006.07.020CrossRefGoogle ScholarPubMed
Goh, K. H., Lim, T. T. & Dong, Z. 2008. Application of layered double hydroxides for removal of oxyanions: a review. Water Research 42, 1343–68.10.1016/j.watres.2007.10.043CrossRefGoogle ScholarPubMed
Guo, Y., Zhu, Z., Qiu, Y. & Zhao, J. 2012. Adsorption of arsenate on Cu/Mg/Fe/La layered double hydroxide from aqueous solutions. Journal of Hazardous Materials 239, 279–88.CrossRefGoogle ScholarPubMed
Halajnia, A., Oustan, S., Najafi, N., Khataee, A. R. & Lakzian, A. 2012. The adsorption characteristics of nitrate on Mg-Fe and Mg-Al layered double hydroxides in a simulated soil solution. Applied Clay Science 70, 2836.10.1016/j.clay.2012.09.007CrossRefGoogle Scholar
He, R., Peng, Z., Lyu, H., Huang, H., Nan, Q. & Tang, J. 2018. Synthesis and characterization of an iron-impregnated biochar for aqueous arsenic removal. Science of the Total Environment 612, 1177–86.CrossRefGoogle ScholarPubMed
Hu, X., Ding, Z., Zimmerman, A. R., Wang, S. & Gao, B. 2015. Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Research 68, 206–16.10.1016/j.watres.2014.10.009CrossRefGoogle ScholarPubMed
Hudcová, B., Vítková, M., Ouředníček, P. & Komárek, M. 2019. Stability and stabilizing efficiency of Mg-Fe layered double hydroxides and mixed oxides in aqueous solutions and soils with elevated As(V), Pb(II) and Zn(II) contents. Science of the Total Environment 648, 1511–19.CrossRefGoogle ScholarPubMed
Inyinbor, A. A., Adekola, F. A. & Olatunji, G. A. 2016. Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of rhodamine B dye onto Raphia hookerie fruit epicarp. Water Resources and Industry 15, 1427.10.1016/j.wri.2016.06.001CrossRefGoogle Scholar
Joseph, L., Jun, B.-M., Flora, J. R. V., Park, C. M. & Yoon, Y. 2019. Removal of heavy metals from water sources in the developing world using low-cost materials. Chemosphere 229, 142–59.10.1016/j.chemosphere.2019.04.198CrossRefGoogle ScholarPubMed
Karunanayake, A. G., Navarathna, C. M., Gunatilake, S. R., Crowley, M., Anderson, R., Mohan, D., Perez, F., Pittman, C. U. Jr. & Mlsna, T. 2019. Fe3O4 nanoparticles dispersed on Douglas fir biochar for phosphate sorption. ACS Applied Nano Materials 2, 3467–79.10.1021/acsanm.9b00430CrossRefGoogle Scholar
Kiso, Y., Jung, Y. J., Yamada, T., Nagai, M. & Min, K. S. 2005. Removal properties of arsenic compounds with synthetic hydrotalcite compounds. Water Science and Technology: Water Supply 5, 7581.Google Scholar
Li, H., Dong, X., da Silva, E. B., de Oliveira, L. M., Chen, Y. & Ma, L. Q. 2017. Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere 178, 466–78.10.1016/j.chemosphere.2017.03.072CrossRefGoogle ScholarPubMed
Lin, L., Qiu, W., Wang, D., Huang, Q., Song, Z. & Chau, H. W. 2017. Arsenic removal in aqueous solution by a novel Fe-Mn modified biochar composite: characterization and mechanism. Ecotoxicology and Environmental Safety 144, 514–21.10.1016/j.ecoenv.2017.06.063CrossRefGoogle ScholarPubMed
Liu, Y. T., Wang, M. K., Chen, T. Y., Chiang, P. N., Huang, P. M. & Lee, J. F. 2006. Arsenate sorption on lithium/aluminum layered double hydroxide intercalated by chloride and on gibbsite: sorption isotherms, envelopes, and spectroscopic studies. Environmental Science & Technology 40, 7784–89.10.1021/es061530jCrossRefGoogle ScholarPubMed
Manirethan, V., Raval, K. & Balakrishnan, R. M. 2020. Adsorptive removal of trivalent and pentavalent arsenic from aqueous solutions using iron and copper impregnated melanin extracted from the marine bacterium Pseudomonas stutzeri. Environmental Pollution 257, 113576.10.1016/j.envpol.2019.113576CrossRefGoogle ScholarPubMed
Meili, L., Lins, P. V., Zanta, C. L. P. S., Soletti, J. I., Ribeiro, L. M. O., Dornelas, C. B., Silva, T. L. & Vieira, M. G. A. 2019. MgAl-LDH/biochar composites for methylene blue removal by adsorption. Applied Clay Science 168, 1120.CrossRefGoogle Scholar
Nhat Ha, H. N., Kim Phuong, N. T., Boi An, T., Mai Tho, N. T., Ngoc Thang, T., Quang Minh, B. & Van Du, C. 2016. Arsenate removal by layered double hydroxides embedded into spherical polymer beads: batch and column studies. Journal of Environmental Science and Health – Part A Toxic/Hazardous Substances and Environmental Engineering 51, 403–13.Google ScholarPubMed
Niasar, H. S., Li, H., Kasanneni, T. V. R., Ray, M. B. & Xu, C. C. 2016. Surface amination of activated carbon and petroleum coke for the removal of naphthenic acids and treatment of oil sands process-affected water (OSPW). Chemical Engineering Journal 293, 189–99.10.1016/j.cej.2016.02.062CrossRefGoogle Scholar
Ookubo, A., Ooi, K. & Hayashi, H. 1993. Preparation and phosphate Ion-exchange properties of a hydrotalcite-like compound. Langmuir 9, 1418–22.10.1021/la00029a042CrossRefGoogle Scholar
Ren, Z., Zhang, G. & Paul Chen, J. 2011. Adsorptive removal of arsenic from water by an iron-zirconium binary oxide adsorbent. Journal of Colloid and Interface Science 358, 230–37.CrossRefGoogle ScholarPubMed
Sadeghi, F., Nasseri, S., Mosaferi, M., Nabizadeh, R., Yunesian, M. & Mesdaghinia, A. 2017. Statistical analysis of arsenic contamination in drinking water in a city of Iran and its modeling using GIS. Environmental Monitoring and Assessment 189, 230.10.1007/s10661-017-5912-8CrossRefGoogle Scholar
Sasai, R., Norimatsu, W. & Matsumoto, Y. 2012. Nitrate-ion-selective exchange ability of layered double hydroxide consisting of Mg II and Fe III. Journal of Hazardous Materials 215, 311–14.10.1016/j.jhazmat.2012.02.063CrossRefGoogle Scholar
Sears, G. W. 1956. Determination of specific surface area of colloidal silica by titration with sodium hydroxide. Analytical Chemistry 28, 1981–83.10.1021/ac60120a048CrossRefGoogle Scholar
Shabbir, Z., Shahid, M., Khalid, S., Khalid, S., Imran, M., Qureshi, M. I. & Niazi, N. K. 2020. Use of agricultural bio-wastes to remove arsenic from contaminated water. Environmental Geochemistry and Health, 110. doi: 10.1007/s10653-020-00782-1Google ScholarPubMed
Shakya, A. & Agarwal, T. 2019. Removal of Cr(VI) from water using pineapple peel derived biochars: adsorption potential and re-usability assessment. Journal of Molecular Liquids 293, 111497.10.1016/j.molliq.2019.111497CrossRefGoogle Scholar
Singh, B., Singh, B. P. & Cowie, A. L. 2010. Characterisation and evaluation of biochars for their application as a soil amendment. Soil Research 48, 516–25.10.1071/SR10058CrossRefGoogle Scholar
Singh, R., Singh, S., Parihar, P., Singh, V. P. & Prasad, S. M. 2015. Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicology and Environmental Safety 112, 247–70.CrossRefGoogle ScholarPubMed
Tan, K. L. & Hameed, B. H. 2017. Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers 74, 2548.10.1016/j.jtice.2017.01.024CrossRefGoogle Scholar
Türk, T. U. Ğ. B. A., Alp, İ. B. R. A. H. İ. M. & Deveci, H. A. C. I. 2009. Adsorption of As(V) from water using Mg–Fe-based hydrotalcite (FeHT). Journal of Hazardous Materials 171, 665–70.CrossRefGoogle Scholar
Vithanage, M., Herath, I., Joseph, S., Bundschuh, J., Bolan, N., Ok, Y. S., Kirkham, M. B. & Rinklebe, J. 2017. Interaction of arsenic with biochar in soil and water: a critical review. Carbon 113, 219–30.10.1016/j.carbon.2016.11.032CrossRefGoogle Scholar
Wang, S., Gao, B., Li, Y., Zimmerman, A. R. & Cao, X. 2016. Sorption of arsenic onto Ni/Fe layered double hydroxide (LDH)-biochar composites. RSC Advances 6, 17792–99.CrossRefGoogle Scholar
Wang, S., Gao, B., Zimmerman, A. R., Li, Y., Ma, L., Harris, W. G. & Migliaccio, K. W. 2015. Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresource Technology 175, 391–95.10.1016/j.biortech.2014.10.104CrossRefGoogle ScholarPubMed
WHO. 2017. Guidelines for drinking-water quality. 4th edn. Geneva, World Health Organisation, 314–18.Google Scholar
Xue, L., Gao, B., Wan, Y., Fang, J., Wang, S., Li, Y., Muñoz-Carpena, R. & Yang, L. 2016. High efficiency and selectivity of MgFe-LDH modified wheat-straw biochar in the removal of nitrate from aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers 63, 312–17.CrossRefGoogle Scholar
Yang, L., Dadwhal, M., Shahrivari, Z., Ostwal, M., Liu, P. K., Sahimi, M. & Tsotsis, T. T. 2006. Adsorption of arsenic on layered double hydroxides: effect of the particle size. Industrial & Engineering Chemistry Research 45, 4742–51.10.1021/ie051457qCrossRefGoogle Scholar
Yoder, J., Galinato, S., Granatstein, D. & Garcia-Pérez, M. 2011. Economic tradeoff between biochar and bio-oil production via pyrolysis. Biomass and Bioenergy 35, 1851–62.CrossRefGoogle Scholar
Zhang, M., Gao, B., Varnoosfaderani, S., Hebard, A., Yao, Y. & Inyang, M. 2013a. Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresource Technology 130, 457–62.10.1016/j.biortech.2012.11.132CrossRefGoogle Scholar
Zhang, M., Gao, B., Yao, Y. & Inyang, M. 2013b. Phosphate removal ability of biochar/MgAl-LDH ultra-fine composites prepared by liquid-phase deposition. Chemosphere 92, 1042–47.10.1016/j.chemosphere.2013.02.050CrossRefGoogle Scholar
Zubair, M., Daud, M., McKay, G., Shehzad, F. & Al-Harthi, M. A. 2017. Recent progress in layered double hydroxides (LDH)-containing hybrids as adsorbents for water remediation. Applied Clay Science 143, 279–92.10.1016/j.clay.2017.04.002CrossRefGoogle Scholar
Supplementary material: File

Shiriazar et al. supplementary material

Shiriazar et al. supplementary material

Download Shiriazar et al. supplementary material(File)
File 561.9 KB