Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T08:00:28.120Z Has data issue: false hasContentIssue false

XVIII.—The Geochemistry of the Charnockite Series of Madras, India

Published online by Cambridge University Press:  06 July 2012

R. A. Howie
Affiliation:
Department of Geology, University of Manchester.

Synopsis

Since the classical work of Sir Thomas Holland at the beginning of this century on the charnockite series in Peninsular India there have appeared numerous papers describing rocks from all over the world which have been claimed to belong to this series. The rocks from the type area around Madras have now been re-examined, with particular reference to their chemistry and chemical mineralogy, to provide further evidence for their mode of origin.

Following petrographic descriptions, fifteen new analyses of these rocks are presented together with trace element determinations, and these are shown to produce smooth curves on a variation diagram. For several rocks all the constituent minerals have been analysed, and it has thus been possible to discuss the mineralogical location of the various major and trace elements in these rocks. Trace element determinations are presented for the 43 minerals analysed together with those for a further 35 minerals not chemically analysed, and their variation within the mineral species is discussed.

The possible modes of origin of these rocks are considered, and from the evidence obtained they are held to represent a plutonic igneous rock series which has undergone recrystallization in the solid state on being subjected to plutonic metamorphism.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1955

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to Literature

Ahrens, L. H., 1952. “The use of ionization potentials. Part I. Ionic radii of the elements”, Geochim. et Cosmochim. Acta, 2, 155.CrossRefGoogle Scholar
Bowen, N. L., and Tuttle, O. F., 1950. “The system NaAlSi3O8–KAlSi3O8–H2O”, J. Geol, 58, 489.CrossRefGoogle Scholar
Buddington, A. F., 1952. “The chemical petrology of some metamorphosed Adirondack gabbroic, syenitic and quartz-synenitic rocks”, Amer. J. Sci. Bowen Vol., p. 37.Google Scholar
Chayes, F., 1952. “Notes on the staining of potash feldspar with sodium cobaltinitrite in thin section”, Amer. Min., 37, 337.Google Scholar
Coulson, A. L., 1932. “The Albite-Ala B twinning of plagioclase in certain acidic rocks from Sirohi State, Rajputana”, Rec. Geol. Surv. Ind., 65, 173.Google Scholar
Deer, W. A., 1938. “The composition and paragenesis of the hornblendes of the Glen Tilt complex, Perthshire”, Min. Mag., 25, 56.Google Scholar
Eskola, P., 1939. In Barth-Correns-Eskola, , Die Entstehung der Gesteine. Julius Springer, Berlin.Google Scholar
Eskola, P., 1952. “On the granulites of Lapland”, Amer. J. Sci. Bowen Vol., p. 133.Google Scholar
Gevers, T. W., and Dunne, J. C., 1942. “Charnockite rocks near Port Edward in Alfred County, Natal”, Trans. Geol. Soc. S. Africa, 45, 183.Google Scholar
Goldschmidt, V. M., 1954. Geochemistry. Oxford.Google Scholar
Gorai, M., 1951. “Petrological studies on plagioclase twins”, Amer. Min., 36, 884.Google Scholar
Graham, W. A. P., 1926. “Notes on hornblende”, Amer. Min., 11, 118.Google Scholar
Groves, A. W., 1935. “The charnockite series of Uganda, British East Africa”, Q.J.G.S., 91, 150.CrossRefGoogle Scholar
Harker, R. I., 1954. “The occurrence of orthoclase and microcline in the granitic gneisses of the Carn Chuinneag–Inchbae Complex, E. Ross-shire”, Geol. Mag., 91, 129.CrossRefGoogle Scholar
Harry, W. T., 1950. “Aluminium replacing silicon in some silicate lattices”, Min. Mag., 29, 142.Google Scholar
Henry, N. F. M., 1937. Ph.D. Thesis, University of Cambridge.Google Scholar
Hess, H. H., 1941. “Pyroxenes of common mafic magmas, pt. 2”, Amer. Min., 26, 573.Google Scholar
Holland, T. H., 1900. “The charnockite series, a group of archean hypersthenic rocks in Peninsular India”, Mem. Geol. Surv. Ind., 28, pt. 2.Google Scholar
Jayaraman, N., 1938. “The colour of the blue quartz of the charnockites of South India”, Curr. Sci. Bangalore, 6.Google Scholar
Judd, J. W., 1885. “On the Tertiary and older peridotites of Scotland”, Q.J.G.S., 41, 354.CrossRefGoogle Scholar
Keith, M. L., and Tuttle, O. F., 1952. “Significance of variation in the high-low inversion of quartz”, Amer. J. Sci. Bowen Vol. p. 203.Google Scholar
Kennedy, W. Q., 1935. “The influence of chemical factors on the crystallisation of hornblende in igneous rocks.”, Min. Mag., 24, 203.Google Scholar
Kuno, H., 1954. “Study of orthopyroxenes from volcanic rocks”, Amer. Min., 39, 30.Google Scholar
Landergren, S., 1948. “On the geochemistry of Swedish iron ores and associated rocks”, Sveriges Geol. Undersokn., Ser. C, 496.Google Scholar
Larsen, E. S. Jr., 1938. “Some new variation diagrams for groups of igneous rocks”, J. Geol., 46, 505.CrossRefGoogle Scholar
Larsen, E. S. Jr., and Draisin, W. M., 1948. “Composition of the minerals in the rocks of the Southern Californian batholith”, Int. Geol. Cong. Rep., 18, pt. ii, 496.Google Scholar
Lundegardh, P. H., 1946. “Rock composition and development in Central Roslagen, Sweden”, Arkiv Kemi. Min. Geol., 23A, 9.Google Scholar
Mackenzie, W. S., 1952. “Optical and X-ray studies of alkali feldspars”, Carnegie Int. Washington Year bk., 51, 49.Google Scholar
Mason, B., 1952. Principles of Geochemistry. John Wiley & Sons, New York.CrossRefGoogle Scholar
Miyashiro, A., 1953. “Calcium-poor garnet in relation to metamorphism”, Geochim. et Cosmochim. Acta, 4,-179.CrossRefGoogle Scholar
Muir, I. D., 1951. “The clinopyroxenes of the Skaergaard intrusion, Eastern Greenland”, Min. Mag., 39, 690.Google Scholar
Muthuswami, T. N., 1951. “Scapolite-calc-granulite, Pallavaram”, Madras Univ. J., 21, B2, 249.Google Scholar
Muthuswami, T. N., 1953. “Amphibolite-granulite facies charnockites”, Proc. Ind. Acad. Sci., 37, 730.CrossRefGoogle Scholar
Naidu, P. R. I., 1950. “The twin laws of the plagioclase felspars of charnockites”, Curr. Sci. Bangalore, 51.Google Scholar
Nockolds, S. R., 1947. “The relation between chemical composition and paragenesis in the biotite micas of igneous rocks”, Amer. J. Sci., 245, 401.CrossRefGoogle Scholar
Nockolds, S. R., and Mitchell, R. L., 1948. “The geochemistry of some Caledonian plutonic rocks: a study in the relationship between the major and trace elements of igneous rocks and their minerals”, Trans. Roy. Soc. Edin., 61, 533.CrossRefGoogle Scholar
Nockolds, S. R., and Mitchell, R. L., and Allen, R. S., 1953. “The geochemistry of some igneous rock series”, Geochim. et Cosmochim. Acta, 4, 105.CrossRefGoogle Scholar
Oldham, R. D., 1892. “Tri-monthly notes”, Rec. Geol. Surv. Ind., 25.Google Scholar
Phemister, J., and others, 1926. “The geology of Strath Oykell and Lower Loch Shin”, Mem. Geol. Surv. Scotland.Google Scholar
Pichamuthu, C. S., 1953. The Charnockite Problem. Mysore Geological Association.Google Scholar
Poldervaart, A., 1953. “Metamorpliism of basaltic rocks: a review”, Bull. Geol. Soc. Amer., 64, 259.CrossRefGoogle Scholar
Quensel, P., 1951. “The charnockite series of Varberg on the south-western coast of Sweden”, Arkiv Min. Geol., 1, 227.Google Scholar
Rajagopalan, C., 19461947. “Studies in chamockites from St Thomas' Mount, Madras, pts. I and II”, Proc. Ind. Acad. Sci., 24, 315, and 26, 237.CrossRefGoogle Scholar
Ramberg, H., 1949. “The facies classification of rocks”, J. Geol., 57, 18.CrossRefGoogle Scholar
Ramberg, H., 1952. “Chemical bonds and distribution of cations in silicates”, J. Geol., 60, 331.CrossRefGoogle Scholar
Rao, A. B., and Rao, M. S., 1953. “Some observations on the plagioclase twinning in charnockitic rocks”, Proc. Nat. Inst. Sci. Ind., 19, 501.Google Scholar
Sahama, Th. G., and Torgeson, D. R., 1949. “Some examples of the application of thermochemistry to petrology”, J. Geol., 57, 255.CrossRefGoogle Scholar
Shaw, D. M., 1953. “The camouflage principle and trace-element distribution in magmatic minerals”, J. Geol., 61, 142.CrossRefGoogle Scholar
Scheumann, K. H., 1954. “Bemerkungen zur Genese der Gesteins- und Mineralfazies der Granulite”, Zeitschrift “Geologie”, 3, 2, 99.Google Scholar
Sutton, J., and Watson, J., 1951. “The pre-Torridonian metamorphic history of the Loch Torridon and Scourie areas in the N.-W. Highlands, and its bearing on the chronological classification of the Lewisian”, Q.J.G.S., 106, 241.CrossRefGoogle Scholar
Tilley, C. E., 1921. “The granite-gneisses of southern Eyre Peninsula (South Australia) and their associated amphibolites”, Q.J.G.S., 77, 75.CrossRefGoogle Scholar
Tilley, C. E., 1936. “Enderbite, a new member of the charnockite series”, Geol. Mag., 73, 312.CrossRefGoogle Scholar
Tilley, C. E., 1937. “Rocks from Enderby Land, Antarctica”, B.A.N.Z. Antarctic Research Exp. Rep., Ser. A, 2, Pt. 1.Google Scholar
Turner, F. J., 1947. “Determination of plagioclase with the four-axis universal stage”. Amer. Min., 32, 389.Google Scholar
Turner, F. J., 1951. “Observations on twinning of plagioclase in metamorphic rocks”, Amer. Min., 36, 581.Google Scholar
Turner, F. J., and Verhoogen, J., 1951. Igneous and metamorphic petrology. McGraw-Hill Book Co.Google Scholar
Tuttle, O. F., 1952. “Origin of the contrasting mineralogy of extrusive and plutonic salic rocks”, J. Geol., 60, 107.CrossRefGoogle Scholar
Tuttle, O. F., and Bowen, N. L., 1950. “High temperature albite and contiguous feldspars”, J. Geol., 58, 581.CrossRefGoogle Scholar
Wager, L. R., and Mitchell, R. L., 1951. “The distribution of trace elements during strong fractionation of basic magma—a further study of the Skaergaard intrusion, East Greenland”, Geochim et Cosmochim. Acta, 1, 129.CrossRefGoogle Scholar
Washington, H. S., 1916. “The charnockite series of igneous rocks”, Amer. J. Sci., 41, 323.CrossRefGoogle Scholar
Wilson, A. F., 1952. “Metamorphism of granite rocks by olivine dolerite in Central Australia”, Geol. Mag., 89, 73.CrossRefGoogle Scholar
Winchell, A. N. 1924. “Studies in the amphibole group”, Amer. J. Sci., Ser. 5, 7, 287.CrossRefGoogle Scholar