Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-06T12:06:44.371Z Has data issue: false hasContentIssue false

XVI.—Cytological Studies of Melaniidæ (Mollusca) with Special Reference to Parthenogenesis and Polyploidy. I. Oögenesis of the Parthenogenetic Species of Melanoides (Prosobranchia-Gastropoda)

Published online by Cambridge University Press:  06 July 2012

Joseph Jacob
Affiliation:
Zoology Department, Annamalai University, Annamalai Nagar, South India.

Synopsis

A Study of the oögenesis and maturation in four species of melaniid snails, viz. Melanoides tuberculatus—diploid race 2n = 32, M. tuberculatus—polyploid race with 90-94 chromosomes, M. lineatus—polyploid with 71-73 chromosomes and M. scabra—polyploid with 76-78 chromosomes, showed these species to be thelytokous. These are instances of ameiotic parthenogenesis with two equational maturation divisions and are recorded for the first time in molluscs, the only other known instance in the animal kingdom being shown by the cockroach, Pycnoscelus surinamensis. The other parthenogenetic molluscs known so far, viz. Potamopyrgus jenkinsi and Campeloma rufum are also of the ameiotic type but have a single maturation division. No males were ever found in the diploid race of M. tuberculatus and in M. scabra. In the polyploid race of M. tuberculatus and in M. lineatus sporadic males occur, forming about 3 per cent of the population in the former and 0·01 per cent in the latter. Further evidence for ameiotic parthenogenesis is provided by the complete absence of sperms in the receptaculum seminis and brood pouch and also by the absence of sperm elements or any fusion of nuclei in the egg. The chromosome numbers in the different species have been determined from maturation metaphase and have been checked from first cleavage metaphase. Polyploidy is associated with parthenogenesis in three of these species.

Oögonial cell divisions are generally absent. Only three oögonial metaphase plates were seen in the diploid race of M. tuberculatus and one in M. lineatus although a very large number of preparations of the ovary were examined. The author holds the view that the maturation prophase is the continuation of the oögonial early metaphase stage without intervening metaphase, anaphase and telophase. The prochromosomes seen in proleptotene stage are already split and the succeeding stages are characterized by the absence of zygotene, pachytene or any pairing and chiasma formation. Each split chromosome behaves functionally like a bivalent throughout maturation prophase and separates into daughter chromosomes at the first division. The second division is equational as in normal maturation.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1958

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to Literature

Abbot, R. T., 1948. “Handbook of medically important molluscs of the Orient and west Pacific”, Bull. Mus. Comp. Zool. Harv., 100, 243.Google Scholar
Atwood, S., 1937. “The nature of the last premeiotic mitosis and its relation to meiosis in Gaillardia”, Cellule, 46, 391.Google Scholar
Boycott, A. E., 1920. “Parthenogenesis in Paludestrina jenkinsi”, J. Conch., 16, 54.Google Scholar
Darlington, C. D., 1931. “Meiosis”, Biol. Rev., 6, 221.CrossRefGoogle Scholar
Darlington, C. D., 1937. Recent Advances in Cytology. London.Google Scholar
Hinton, T., and Atwood, K. C., 1941. “Terminal adhesions of salivary gland chromosomes in Drosophila”, Proc. Nat. Acad. Sci. Wash., 27, 491.CrossRefGoogle ScholarPubMed
Hughes, A., 1952. The Mitotic Cycle. London.Google Scholar
Huskins, C. L., 1933. “Mitosis and meiosis”, Nature, Lond., 132, 62.CrossRefGoogle Scholar
Huskins, C. L., and Smith, S. G., 1934. “Chromosome division and pairing in Fritillaria meleagris : the mechanism of meiosis”, J. Genet., 28, 397.CrossRefGoogle Scholar
Huskins, C. L., and Smith, S. G., 1935. “Meiotic chromosome structure in Trillium erectum L.”, Ann. Bot., 49, 119.CrossRefGoogle Scholar
Jacob, J., 1954. “Allopolyploidy in the Melaniid snails”, Nature, Lond., 174, 1061.CrossRefGoogle Scholar
McClung, C. E., 1927. “Synapsis and related phenomena in Mecostethus and Leptysma (Orthoptera)”, J. Morph., 43, 181.CrossRefGoogle Scholar
Matsura, H., and Haga, T., 1940. “Chromosome studies on Trillium kamatschaticum Pall.”, Cytologia, Tokyo, 10, 386.Google Scholar
Matthey, R., 1945. “Cytologie de la Parthénogénèse chez Pycnoscelus surinamensis L. (Blattariæ-Blaberidæ-Parchlorinæ)”, Rev. Suisse Zool., 52, 1.Google Scholar
Mattox, N. T., 1937. “Oögenesis of Campeloma rufum, a parthenogenetic snail”, Zellforsch., 27, 455.CrossRefGoogle Scholar
Muller, H. J., 1941. “Induced mutations in Drosophila”, Cold Spr. Harb. Symp. Quant. Biol., 9, 151.CrossRefGoogle Scholar
Nebel, B. R., 1936. “Chromosome structure X. An X-ray experiment”, Genetics, 21, 605.CrossRefGoogle ScholarPubMed
Nebel, B. R., and Ruttle, R. L., 1936. “Chromosome structure XIII. Meiosis in Dissosteira Carolina”, Z. Zellforsch., 26.Google Scholar
Pehani, H., 1925. “Die Geschlechtszellen der Phasmiden. Zugleich ein Beitrag zur Fortpflanzungsbiologie der Phasmiden”, Z. Wiss. Zool, 125, 167.Google Scholar
Popoff, M., 1907. “Eibildung bei Paludina vivipara und chromidien bei Paludina und Helix”, Arch. Mikr. Anat., 70, 43.CrossRefGoogle Scholar
Quick, H. E., 1920. “Parthenogenesis in Paludestrius jenkinsi from brackish water”, J. Conch., 16, 97.Google Scholar
Ramamurthy, K., 1950. “The brood pouch in the viviparous Melaniidæ (Mollusca-Gastropoda)”, J. Zool. Soc. India, 2, 27.Google Scholar
Rhein, A., 1935. “Diploide parthenogenesis bei Hydrobia jenkinsi Smith (Prosobranchia)”, Naturwissenschaften, 23, 100.CrossRefGoogle Scholar
Robson, G. C., 1932. “Parthenogenesis in the mollusc Paludestrina jenkinsi”, Brit. J. Exp. Biol., 1, 65.CrossRefGoogle Scholar
Ruttle, M. L., and Nebel, B. R., 1937. “Chromosome structure XI. Hordeum vulgare L. and Secale cereale L.”, Cytologia, Tokyo, Fujii jubilee Vol., 553.Google Scholar
Sanderson, A. R., 1940. “Maturation in the parthenogenetic snail Potamopyrgus jenkinsi Smith”, Proc. Zool. Soc. Lond., A, 110, 11.CrossRefGoogle Scholar
Schrader, F., 1941. “Heteropycnosis and non-homologous association of chromosomes in Edessa irrorata (Hemiptera-Heteroptera)”, J. Morph., 69, 587.CrossRefGoogle Scholar
Seshaiya, R. V., 1936. “Notes on the comparative anatomy of some Indian Melaniidæ with special reference to Melania (Radina) crenulata (Deshayes)”, J. Annamalai Univ., 5, 167.Google Scholar
Suomalainen, E., 1950. “Parthenogenesis in animals”, Advanc. Genet., 3, 193.CrossRefGoogle ScholarPubMed
Van Cleave, H. J., and Altringer, D. A., 1937. “Studies on the life cycle of Campeloma rufum, a parthenogenetic snail”, Amer. Nat., 71, 167.CrossRefGoogle Scholar
White, M. J. D., 1945 and 1954. Animal Cytology and Evolution. C.U.P.Google Scholar