Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T01:30:40.707Z Has data issue: false hasContentIssue false

Trace element and isotopic exchange during acid-basic magma interaction processes

Published online by Cambridge University Press:  03 November 2011

G. Poli
Affiliation:
Giampiero Poli and Simone Tommasini, Department of Earth Sciences, University of Perugia, Piazza Università, 06100 Perugia, Italy.
S. Tommasini
Affiliation:
Giampiero Poli and Simone Tommasini, Department of Earth Sciences, University of Perugia, Piazza Università, 06100 Perugia, Italy.
A. N. Halliday
Affiliation:
Alex N. Halliday, Department of Geological Sciences, University of Michigan, 1006 C.C. Little Building, Ann Arbor, MI 48109-1063, U.S.A.

Abstract:

Interaction processes between acid and basic magmas are widespread in the Sardinia–Corsica Batholith. The resulting hybrid magmas are extremely variable and can be broadly divided into: (i) microgranular mafic enclaves with geochemical characteristics of both magmatic liquids and cumulates; (ii) basic gabbroic complexes with internal parts mainly formed by cumulates and with interaction zones developing only in the marginal parts; and (iii) basic septa with the form of discrete, lenticular-like bodies often mechanically fragmented in the host rock. Different styles of interaction, ranging from mixing to mingling, have been related to variations in several physicochemical parameterś, such as: (i) the initial contrast in chemical composition, temperature and viscosity; (ii) the relative mass fractions and the physical state of interacting magmas; and (iii) the static versus dynamic environment of interaction.

A model is presented for the origin and history of interaction processes between basic and acid magmas based on the geochemical characteristics of hybrid magmas. Physico-chemical processes responsible for the formation of hybrid magmas can be attributed to: (i) fractional crystallisation of basic magma and contamination by acid magma; (ii) loss of the liquid phase from the evolving basic magma by filter pressing processes; (iii) mechanical mixing between basic and acid magmas; and (iv) liquid state isotopic diffusion during the attainment of thermal equilibrium.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arzi, A. A. 1978. Critical phenomena in the rheology of partial melted rocks. TECTONOPHYSICS 44, 173–84.CrossRefGoogle Scholar
Baker, D. R. 1989. Tracer versus trace element diffusion: diffusional decoupling of Sr concentration from Sr isotope composition. GEOCHIM COSMOCHIM ACTA 53, 3015–23.CrossRefGoogle Scholar
Barbarin, B. 1988. Field evidence and mingling between the Piolard Diorite and the Saint-Julien-la-Vetre Monzogranite (Nord-Forez, Massif Central, France) CAN J EARTH SCI 25, 4959.CrossRefGoogle Scholar
Best, M. G. 1982. Igneous and Metamorphic Petrology. San Francisco: Freeman.Google Scholar
Blake, S.&Koyaguchi, T. 1991. Insights on the magma mixing model from volcanic rocks. In: Didier, J.&Barbarin, B. (eds) Enclaves and Granite Petrology, 403–13. Amsterdam: Elsevier.Google Scholar
Campbell, I. H.&Turner, J. S. 1985. Turbulent mixing between fluids with different viscosities. NATURE 313, 3942.CrossRefGoogle Scholar
Campbell, I. H.&Turner, J. S. 1986. The influence of viscosity on fountains in magma chamber. J PETROL 27, 130.CrossRefGoogle Scholar
Campbell, I. H.&Turner, J. S. 1989. Fountains in magma chambers. J PETROL 30, 885923.CrossRefGoogle Scholar
Carmignani, L., Barca, S., Carosi, R., Di Pisa, A., Gattiglio, M., Musumeci, G., Oggiano, G.&Pertusati, P. C. 1992. Schema dell'evoluzione del Basamento Sardo. In Carmignani, L. (ed) Struttura della catena ercinica in Sardegna. Informal Group of Structural Geology, Field-book, 1138. Siena: Department of Earth Sciences.Google Scholar
Crank, J. 1975. The Mathematics of Diffusion. Oxford: Clarendon.Google Scholar
DePaolo, D. J. 1981. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. EARTH PLANET SCI LETT 53, 189202.CrossRefGoogle Scholar
Didier, J.&Barbarin, B. 1991a. Enclaves and Granite Petrology. Amsterdam: Elsevier.Google Scholar
Didier, J.&Barbarin, B. 1991b. The different types of enclaves in granites-nomenclature. In Didier, J.&Barbarin, B. (eds) Enclaves and Granite Petrology 1923. Amsterdam: Elsevier.Google Scholar
Fernandez, A. N.&Barbarin, B. 1991. Relative rheology of coeval mafic and felsic magmas: nature of resulting interaction processes and shape and mineral fabrics of mafic microgranular enclaves. In: Didier, J.&Barbarin, B., (eds) Enclaves and Granite Petrology, 263–75. Amsterdam: Elsevier.Google Scholar
Frost, T. P.&Lindsay, J. R. 1988. Magmix: a basic program to calculate viscosities of interacting magmas of differing composition, temperature, and water content. COMPUT GEOSCI 14, 213–28.CrossRefGoogle Scholar
Frost, T. P.&Mahood, G. A. 1987. Field, chemical and physical constraints on mafic felsic magma interaction in the Lamark Granodiorite, Sierra Nevada, California. GEOL SOC AM BULL 99, 272–91.2.0.CO;2>CrossRefGoogle Scholar
Furlong, K. P., Hanson, R. B.&Bowers, J. R. 1991. Modelling thermal regimes. In Kerrick, D. M. (ed.)Contact Metamorphism. REV MINERAL 26, 437505.Google Scholar
Halliday, A. N., Stephens, W. E.&Harmon, R. S. 1980. Rb/Sr and O isotopic relationships in three zoned Caledonianan granitic plutons, Southern Uplands, Scotland: evidence for varied sources and hybridization of magmas. J GEOL SOC LONDON 137, 329–48.CrossRefGoogle Scholar
Haskin, L. A., Frey, F. A., Schmitt, R. A.&Smith, R. H. 1966. Meteoric, solar and terrestrial abundances of the rare earths. PHYS CHEM EARTH 7, 167321.CrossRefGoogle Scholar
Hibbard, M. J. 1991. Textural anatomy of twelve magma-mixed granitoid systems. In Didier, J.&Barbarin, B. (eds) Enclaves and Granite Petrology, 431–44. Amsterdam: Elsevier.Google Scholar
Hibbard, M. J. 1995. Petrography to Petrogenesis. Englewood Cliffs: Prentice-Hall.Google Scholar
Hofmann, A. W. 1980. Diffusion in natural silicate melts: a critical review. In Hargraves, L. (ed.) Physics of Magmatic Processes, 385417. Princeton: Princeton University Press.CrossRefGoogle Scholar
Holden, P., Halliday, A. N.&Stephens, W. E. 1987. Microdiorite enclaves: Nd and Sr isotopes evidences for a mantle input to granitoid production. NATURE 330, 53–6.CrossRefGoogle Scholar
Holden, P., Halliday, A. N., Stephens, W. E.&Henney, P. J. 1991. Chemical and isotopic evidence for major mass transfer between mafic enclaves and felsic magma. CHEM GEOL 92, 135–52.CrossRefGoogle Scholar
Huppert, H. E.&Sparks, R. S. J. 1985. Cooling and contamination of mafic and ultramafic magmas during ascent through continental crust. EARTH PLANET SCI LETT 74, 371–86.CrossRefGoogle Scholar
Huppert, H. E.&Sparks R, S. J. 1988. The generation of granitic magmas by intrusion of basalt into continental crust. J PETROL 29, 599624.CrossRefGoogle Scholar
Johnston, A. D.&Wyllie, P. J. 1988. Interaction of granitic and basic magmas: experimental observations on contamination processes at 10 kbar with H2O. CONTRIB MINERAL PETROL 98, 352–62.CrossRefGoogle Scholar
Lesher, C. E. 1990. Decoupling of chemical and isotopic exchange during magma mixing. NATURE 344, 235–7.CrossRefGoogle Scholar
Lesher, C. E. 1994. Kinetics of Sr and Nd exchange in silicate liquids: theory, experiments, and applications to uphill diffusion, isotopic equilibration, and irreversible mixing of magmas. J GEOPHYS RES 99, (B5), 9585–604.CrossRefGoogle Scholar
Philpotts, A. R. 1990. Principles of Igneous and Metamorphic Petrology. Englewood Cliffs. Prentice-Hall.Google Scholar
Pin, C., Binon, M., Belin, J. M., Barbarin, B.&Clemens, J. D. 1990. Origin of microgranular enclaves in granitoids: equivocal Sr-Nd isotopic evidence from Hercynian rocks in the Massif Central (France). J GEOPHYS RES 95, 17 821–8.Google Scholar
Poli, G.&Tommasini, S. 1991a. Model for the origin and significance of microgranular enclaves in calcalkaline granitoids. J PETROL 32, 657–66.CrossRefGoogle Scholar
Poli, G.&Tommasini, S. 1991b. A geochemical approach to the evolution of granitic plutons: a case study, the acid intrusions of Punta Falcone (northern Sardinia, Italy). CHEM GEOL 92, 87105.CrossRefGoogle Scholar
Poli, G., Ghezzo, C.&Conticelli, S. 1989. Geochemistry of granitic rocks from the Hercynian Sardinia–Corsica Batholith: implication for magma genesis. LITHOS 23, 247–66.CrossRefGoogle Scholar
Reid, J. B., Evans, O. C.&Fates, D. G. 1983. Magma mixing in granitic rocks of the central Sierra Nevada, California. EARTH PLANET SCI LETT 66, 243–61.CrossRefGoogle Scholar
Rossi, P.&Cocherie, A. 1991. Genesis of a Variscan batholith: field, petrological and mineralogical evidence from the Corsica–Sardinia batholith. TECTONOPHYSICS 195, 319–46.CrossRefGoogle Scholar
Stephens, W. E., Holden, P.&Henney, P. J. 1991. Microdioritic enclaves within the Scottish Caledonian granitoids and their significance for crustal magmatism. In Didier, J.&Barbarin, B. (eds) Enclaves and Granite Petrology, 125–34. Amsterdam: Elsevier.Google Scholar
Tommasini, S. 1993. Petrologia del Magmatismo Calcalcalino del Batolite Sardo-Corso: processi genetici ed evolutivi del magmi in aree di collisione continentale e implicazioni geodinamiche. Ph.D. Thesis, University of Perugia.Google Scholar
Tommasini, S.&Poli, G. 1992. Petrology of the late-Carboniferous Punta Falcone gabbroic complex, northern Sardinia, Italy. CONTRIB MINERAL PETROL 110, 1632.CrossRefGoogle Scholar
Tommasini, S., Poli, G.&Halliday, A. N. 1995. The role of sediment subduction and crustal growth in Hercynian plutonism: isotopic and trace element evidence from the Sardinia–Corsica Batholith. J PETROL 36, 1305–32.CrossRefGoogle Scholar