Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T00:05:27.994Z Has data issue: false hasContentIssue false

Structure and petrogenesis of a mixed-magma ring dyke in the Peruvian Coastal Batholith: eruptions from a zoned magma chamber

Published online by Cambridge University Press:  03 November 2011

M. Andrew Bussell
Affiliation:
Department of Geology, City of London Polytechnic, Walburgh House, Bigland Street, London El 2NG, U.K.

Abstract

Ring complex granites of the Peruvian Batholith are tabular bodies with flat roofs emplaced by cauldron subsidence. Marginal precursory ring dykes extend upwards above roof level and a typical intrusion is “H”-shaped in cross-section. Advance of magma by repeated subsidence would give a ladder-shaped profile for such intrusions above the brittle-ductile transition. Close relationships exist between intrusion geometry, emplacement process and petrogenetic evolution. Initially a granodioritic magma chamber lay beneath the present erosion level, trapping a rising mass of dioritic magma. Expansion of granodioritic liquid resulted in the injection of microgranite and tuffisite cone sheets accompanied by roof uplift within a ring fault. Next, during subsidence within the ring fault, liquids from deeper levels in the underlying chamber rose by stoping along the outer margin of the fault to form a ring dyke. Prior to intrusion, this liquid was vertically zoned from rhyodacite downwards to diorite and these liquids became partially mixed during emplacement. Finally, granodioritic magma rose to the present level by subsidence of a roof slab bounded by the ring fault. The precursory ring structures preserve evidence of significant but transient events in the underlying chamber. Liquid differentiation may be significant in the evolution of many large plutons.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldrich, M. J. 1986. Tectonics of the Jemez Lineament in the Jemez Mountains and Rio Grande Rift. J GEOPHYS RES 91, B2, 1753–62.CrossRefGoogle Scholar
Arth, J. G. 1976. Behaviour of trace elements during magmatic processes—a summary of theoretical models and their applications. J RES US GEOL SURV 4, 41–7.Google Scholar
Atherton, M. P. & Sanderson, L. M. 1985. The chemical variation and evolution of the super units of the segmented Coastal Batholith. In Pitcher, W. S., Atherton, M. P., Cobbing, E. J. & Beckinsale, R. D. (eds) Magmatism at a plate edge: the Peruvian Andes, 208–27. Glasgow: Blackie.CrossRefGoogle Scholar
Banks, R. 1979. The use of linear programming in the analysis of petrological mixing problems. CONTRIB MINERAL PETROL 70, 237–44.CrossRefGoogle Scholar
Bateman, P. C. & Chappell, B. W. 1979. Crystallization, fractionation and solidification of the Tuolumne Intrusive Series, Yosemite National Park, California. BULL GEOL SOC AM 90, 465–82.2.0.CO;2>CrossRefGoogle Scholar
Bishop, A. C. 1963. Dark margins at igneous contacts: a critical study with special reference to those in Jersey, Channel Islands. PROC GEOL ASSOC 74, 289300.CrossRefGoogle Scholar
Blake, D. H., Elwell, R. W. D., Gibson, I. L., Skelhorn, R. R. & Walker, G. P. L. 1965. Some relationships resulting from the intimate association of acid and basic magmas. Q J GEOL SOC LONDON 21, 3149.CrossRefGoogle Scholar
Bunsen, R. 1851. Ueber die prozesse der vulkanischen gesteinsbil dungen islands. ANN DER PHYSIK (LEIPZIG) 2ND SERIES, ed. Poggendorff, J. C., 83, 197272.CrossRefGoogle Scholar
Bussell, M. A. 1983. Crystallization history of granophyric intrusives from the Peruvian Coastal Batholith. LITHOS 16, 169–84.CrossRefGoogle Scholar
Bussell, M. A. 1985. The centred complex of the Rio Huaura: a study of magma mixing and differentiation in high-level chambers. In Pitcher, W. S., Atherton, M. P., Cobbing, E. J. & Beckinsale, R. D. (eds) Magmatism at a plate edge: the Peruvian Andes, 128–55. Glasgow: Blackie.CrossRefGoogle Scholar
Bussell, M. A., Pitcher, W. S. & Wilson, P. A. 1976. Ring complexes of the Peruvian Coastal Batholith: a long standing sub-volcanic regime. CAN J EARTH SCI 13, 1020–30.CrossRefGoogle Scholar
Bussell, M. A. & McCourt, W. J. 1977. The Iglesia Irca Intrusion and the role of gas brecciation in the emplacement of the Coastal Batholith of Peru. GEOL MAG 114, 375–87.CrossRefGoogle Scholar
Bussell, M. A. & Wilson, C. D. V. 1985. A gravity traverse across the Coastal Batholith of Peru. J GEOL SOC LONDON 142, 633–41.CrossRefGoogle Scholar
Cobbing, E. J., Pitcher, W. S. & Taylor, W. P. 1977. Segments and super-units in the Coastal Batholith of Peru. J GEOL 85, 625–31.CrossRefGoogle Scholar
Clough, C. T., Maufe, H. B. & Bailey, E. B. 1909. The cauldron subsidence of Glencoe and the associated igneous phenomena. Q J GEOL SOC LONDON 65, 611–78.CrossRefGoogle Scholar
Didier, J. 1973. Granites and their enclaves: the bearing of enclaves on the origin of granites. Amsterdam: Elsevier.Google Scholar
Dostal, J., Dupuy, C., Carron, J. P., Le Guen, de Kerneizon M. & Maury, R. C. 1983. Partition coefficients of trace elements: application to volcanic rocks of St Vincent, West Indies. GEOCHIM COSMOCHIM ACTA 47, 525–33.CrossRefGoogle Scholar
Eichelberger, J. C. & Gooley, R. 1977. Evolution of silicic magma chambers and their relationship to silicic volcanism. In Heacock, J. G. (ed.) The Earth's Crust, Geophysical Monograph Series 20, 5777. Washington DC: American Geophysical Union.Google Scholar
Gerlach, D. C. & Grove, T. L. 1982. Petrology of Medecine Lake Highland volcanics: characterisation of endmembers of magmatic mixing. CONTRIB MINERAL PETROL 80, 147–59.CrossRefGoogle Scholar
Harris, N. B. W. & Marriner, G. F. 1980. Geochemistry and petrogenesis of a peralkaline granite complex from the Midian Mountains, Saudi Arabia. LITHOS 13, 325–37.CrossRefGoogle Scholar
Henderson, P. 1982. Inorganic Geochemistry. Oxford: Pergamon.Google Scholar
Henry, C. D. & Price, J. G. 1984. Variations in caldera development in the Tertiary volcanic field of the Trans-Pecos, Texas. J GEOPHYS RES 89, B10, 8765–86.CrossRefGoogle Scholar
Hildreth, E. W. 1981. Gradients in silicic magma chambers: implications for lithospheric magmatism. J GEOPHYS RES 86, 10153–92.CrossRefGoogle Scholar
Hine, R., Williams, I. S., Chappell, B. W. & White, A. J. R. 1978. Contrasts between I- and S-type granitoids of the Kosciusko Batholith. J GEOL SOC AUST 25, 219–34.CrossRefGoogle Scholar
Huppert, H. E., Sparks, R. S. J. & Turner, J. S. 1984. Some effects of viscosity on the dynamics of replenished magma chambers. J GEOPHYS RES 89, B8, 6857–77.CrossRefGoogle Scholar
Irving, A. J. 1978. A review of experimental studies of crystal/liquid trace element partitioning. GEOCHIM COSMOCHIM ACTA 42, 743–70.CrossRefGoogle Scholar
Jacobson, R. R. E., MacLeod, W. N. & Black, R. 1958. Ring complexes in the younger granite province of northern Nigeria. MEM GEOL SOC LONDON 1.Google Scholar
Knox, G. J. 1971. The structure and emplacement of the Rio Fortaleza centred acid ring complex, Ancash, Peru. J GEOL SOC LONDON 130, 295308.CrossRefGoogle Scholar
Lipman, P. W. 1963. Gibson Peak Pluton: a discordant composite intrusion in the south-eastern Trinity Alps, northern California. BULL GEOL SOC AM 74, 1259–80.CrossRefGoogle Scholar
Marshall, L. A. & Sparks, R. S. J. 1984. Origins of some mixed magma and net-veined ring intrusions. J GEOL SOC LONDON 141, 171–82.CrossRefGoogle Scholar
Mason, G. H. 1982. The mineralogy and textural history of the Coastal Batholith of Peru. Unpublished PhD Thesis, Liverpool University.Google Scholar
McBirney, A. R. 1980. Mixing and unmixing of magma. J VOLCANOL GEOTHERM RES 7, 357–71.CrossRefGoogle Scholar
McCarthy, T. S. & Hasty, R. A. 1976. Trace element distribution patterns and their relation to the crystallization of granitic melts. GEOCHIM COSMOCHIM ACTA 40, 1351–58.CrossRefGoogle Scholar
Mukasa, S. B. & Tilton, G. R. 1985. Zircon U-Pb ages of super-units in the Coastal Batholith of Peru. In Pitcher, W. S., Atherton, M. P., Cobbing, E. J. & Beckinsale, R. D. (eds) Magmatism at a plate edge: the Peruvian Andes, 203–7. Glasgow: Blackie.CrossRefGoogle Scholar
Myers, J. S. 1980. Geologia de los cuadrangulos de Huarmey y Huayllapampa. BOL SERV GEOL MIN DIR GEN MIN PERU 33.Google Scholar
Nakamura, N. 1974. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. GEOCHIM COSMOCHIM ACTA 38, 757–75.CrossRefGoogle Scholar
Paul, D. K., Potts, P. J., Gibson, I. L. & Hains, P. G. 1975. Rare earth abundances in Indian kimberlite. EARTH PLANET SCI LETT 25, 151–58.CrossRefGoogle Scholar
Passchier, C. W. & Simpson, C. 1986. Porphyroclast systems as kinematic indicators. J STRUCT GEOL 8, 831–43.CrossRefGoogle Scholar
Pearce, J. A. & Norry, M. J. 1979. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. CONTRIB MINERAL PETROL 69, 3347.CrossRefGoogle Scholar
Phillips, W. J. 1974. The dynamic emplacement of cone sheets. TECTONOPHYSICS 24, 6984.CrossRefGoogle Scholar
Pitcher, W. S. 1985. A multiple and composite batholith. In Pitcher, W. S., Atherton, M. P., Cobbing, E. J. and Beckinsale, R. D. (eds) Magmatism at a plate edge: the Peruvian Andes, 93101. Glasgow: Blackie.CrossRefGoogle Scholar
Price, W. J. 1979. Spectrochemical analysis by atomic absorption. London: Heyden.Google Scholar
Reid, J. B. Jr., Evans, O. C. & Fates, D. G. 1983. Magma mixing in granitic rocks of the central Sierra Nevada, California. EARTH PLANET SCI LETT 66, 243–61.CrossRefGoogle Scholar
Reid, J. B. & Hamilton, M. A. 1987. Origin of Sierra Nevada Granite: evidence from small scale composite dykes. CONTRIB MINERAL PETROL 96, 441–54.CrossRefGoogle Scholar
Roddick, J. A. 1983. Geophysical review and composition of the Coastal Plutonic Complex south of latitude 55 N. In Roddick, J. A. (ed.) Circum Pacific plutonic terrains. MEM GEOL SOC AM 159, 195212.Google Scholar
Roddick, J. A. & Armstrong, J. E. 1959. Relict dykes in the coast mountains near Vancouver, B. C. J GEOL 67, 603–13.CrossRefGoogle Scholar
Rytuba, J. & McKee, E. H. 1984. Peralkaline ash flow tuffs and calderas of the McDermitt Volcanic Field, southeast Oregon and north central Nevada. J GEOPHYS RES 89, BIO, 8616–28.CrossRefGoogle Scholar
Smith, R. L., Bailey, R. A. & Ross, C. S. 1961. Structural evolution of the Valles Caldera, New Mexico and its bearing on the emplacement of ring dikes. PROF PAP US GEOL SURV 424–D, 145–49.Google Scholar
Smith, R. L. & Bailey, R. A. 1966. The Bandelier Tuff: a study of ash-flow eruption cycles from zoned magma chambers. BULL VOLCANOL 29, 83104.CrossRefGoogle Scholar
Steven, T. A. & Lipman, P. W. 1976. Calderas of the San Juan Volcanic Field, southwestern Colorado. PROF PAP US GEOL SURV 958, 135.Google Scholar
Swanson, E. R. & McDowell, F. W. 1984. Calderas of the Sierra Madre Occidental Volcanic Field, western Mexico. J GEOPHYS RES 89, BIO, 8787–99.CrossRefGoogle Scholar
Taylor, W. P. 1985. Three-dimensional variation within granite plutons: a model for the crystallization of the Canas and Puscao plutons. In Pitcher, W. S., Atherton, M. P., Cobbing, E. J. and Beckinsale, R. D. (eds) Magmatism at a plate edge: the Peruvian Andes, 228–34. Glasgow: Blackie.CrossRefGoogle Scholar
Topley, G. C., Brown, M. & Power, G. M. 1982. Interpretation of field relationships of diorites and associated rocks with particular reference to northwest Guernsey, Channel Islands. GEOL J 17, 323–43.CrossRefGoogle Scholar
Turner, J. S. & Campbell, I. H. 1986. Convection and mixing in magma chambers. EARTH SCI REV 23, 255352.CrossRefGoogle Scholar
Vernon, R. H. 1984. Microgranitoid enclaves in granites-globules of hybrid magma quenched in a plutonic environment. NATURE 309, 438–39.CrossRefGoogle Scholar
Vernon, R. H. 1987. A microstructural indication of shear sense in volcanic rocks and its relationship to porphyroblast rotation in metamorphic rocks. J GEOL 95, 127–33.CrossRefGoogle Scholar
Vogel, T. A., Younker, L. W., Wilbrand, J. T. & Kampmueller, L. 1984. Magma mixing: the Marsco suite, Isle of Skye, Scotland. CONTRIB MINERAL PETROL 87, 231–41.CrossRefGoogle Scholar
Wager, L. R., Vincent, E. A., Brown, G. M. & Bell, J. D. 1965. Marscoite and related rocks of the Western Red Hills complex, Isle of Skye. PHILOS TRANS R SOC LONDON A257, 273307.Google Scholar
Wager, L. R. & Bailey, E. B. 1953. Basic magma chilled against acid magma. NATURE LONDON 172, 6872.CrossRefGoogle Scholar
Walker, G. P. L. & Skelhorn, R. R. 1966. Some associations of acid and basic igneous rocks. EARTH SCI REV 2, 9109.CrossRefGoogle Scholar
Walsh, J. N., Buckley, F. & Barker, J. 1981. The simultaneous determination of the rare earth elements in rocks using inductively coupled plasma source spectrometry. CHEM GEOL 33, 141–53.CrossRefGoogle Scholar
White, A. J. R. & Chappell, B. W. 1977. Ultrametamorphism and granitoid genesis. TECTONOPHYSICS 43, 722.CrossRefGoogle Scholar
Yoshida, T. 1984. Tertiary Ishizuchi Cauldron, southwestern Japan Arc: formation by ring fracture subsidence. J GEOPHYS RES 89, B10, 8502–10.CrossRefGoogle Scholar