Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T18:51:55.482Z Has data issue: false hasContentIssue false

State-of-the-art in studies of glacial isostatic adjustment for the British Isles: a literature review

Published online by Cambridge University Press:  17 October 2016

Julia Stockamp
Affiliation:
School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ, UK. Email: [email protected]; [email protected]; [email protected]; [email protected] COMET, School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK. Email: [email protected]
Paul Bishop
Affiliation:
School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ, UK. Email: [email protected]; [email protected]; [email protected]; [email protected]
Zhenhong Li
Affiliation:
COMET, School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK. Email: [email protected]
Elizabeth J Petrie
Affiliation:
School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ, UK. Email: [email protected]; [email protected]; [email protected]; [email protected]
Jim Hansom
Affiliation:
School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ, UK. Email: [email protected]; [email protected]; [email protected]; [email protected]
Alistair Rennie
Affiliation:
Scottish Natural Heritage, Leachkin Road, Inverness IV3 8NW, UK. Email: [email protected]

Abstract

Understanding the effects of glacial isostatic adjustment (GIA) of the British Isles is essential for the assessment of past and future sea-level trends. GIA has been extensively examined in the literature, employing different research methods and observational data types. Geological evidence from palaeo-shorelines and undisturbed sedimentary deposits has been used to reconstruct long-term relative sea-level change since the Last Glacial Maximum. This information derived from sea-level index points has been employed to inform empirical isobase models of the uplift in Scotland using trend surface and Gaussian trend surface analysis, as well as to calibrate more theory-driven GIA models that rely on Earth mantle rheology and ice sheet history. Furthermore, current short-term rates of GIA-induced crustal motion during the past few decades have been measured using different geodetic techniques, mainly continuous GPS (CGPS) and absolute gravimetry (AG). AG-measurements are generally employed to increase the accuracy of the CGPS estimates. Synthetic aperture radar interferometry (InSAR) looks promising as a relatively new technique to measure crustal uplift in the northern parts of Great Britain, where the GIA-induced vertical land deformation has its highest rate. This literature review provides an in-depth comparison and discussion of the development of these different research approaches.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

6. References

Adamska, L. M. 2012. Use of Persistent Scatterer Interferometry for the enhancement of vertical land movement measurement at tide gauges around the British coast. PhD Thesis, University of Nottingham, UK.Google Scholar
Altamimi, Z., Collilieux, X., Legrand, J., Garayt, B. & Boucher, C. 2007. ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. Journal of Geophysical Research: Solid Earth (1978–2012) 112.Google Scholar
Altamimi, Z., Collilieux, X. & Métivier, L. 2011. ITRF2008: an improved solution of the international terrestrial reference frame. Journal of Geodesy 85, 457–73.Google Scholar
Aobpaet, A., Cuenca, M. C., Hooper, A. & Trisirisatayawong, I. 2013. InSAR time-series analysis of land subsidence in Bangkok, Thailand. International Journal of Remote Sensing 34, 2969–82.Google Scholar
Argus, D. F. 1996. Postglacial rebound from VLBI geodesy: On establishing vertical reference. Geophysical Research Letters 23, 973–76.Google Scholar
Argus, D. F., Peltier, W. R. & Watkins, M. M. 1999. Glacial isostatic adjustment observed using very long baseline interferometry and satellite laser ranging geodesy. Journal of Geophysical Research-Solid Earth 104, 29077–93.Google Scholar
Argus, D. F., Heflin, M. B., Peltzer, G., Crampé, F. & Webb, F. H. 2005. Interseismic strain accumulation and anthropogenic motion in metropolitan Los Angeles. Journal of Geophysical Research: Solid Earth (1978–2012) 110.Google Scholar
Arıkan, M., Hooper, A. & Hanssen, R. 2010. Radar time series analysis over west anatolia. In Lacoste-Francis, H. (ed.) Fringe 2009 Proceedings. European Space Agency (Special Publication) ESA SP-677. Noordwijk, The Netherlands: ESA/ESTEC.Google Scholar
Ashkenazi, V., Bingley, R. M., Whitmore, G. M. & Baker, T. F. 1993. Monitoring changes in mean-sea-level to millimeters using GPS. Geophysical Research Letters 20, 1951–54.Google Scholar
Bähr, H. & Hanssen, R. F. 2010. Network adjustment of orbit errors in SAR interferometry. In Lacoste-Francis, H. (ed.) Fringe 2009 Proceedings. European Space Agency (Special Publication) ESA SP-677. Noordwijk, The Netherlands: ESA/ESTEC.Google Scholar
Bähr, H. & Hanssen, R. F. 2012. Reliable estimation of orbit errors in spaceborne SAR interferometry. Journal of Geodesy 86, 1147–64.Google Scholar
Ballantyne, C. K. 1997. Periglacial trimlines in the Scottish Highlands. Quaternary International 38, 119–36.Google Scholar
Ballantyne, C. K., McCarroll, D., Nesje, A., Dahl, S. O. & Stone, J. O. 1998. The last ice sheet in northwest Scotland: reconstruction and implications. Quaternary Science Reviews 17, 1149–84.Google Scholar
Bassett, S. E., Milne, G. A., Mitrovica, J. X. & Clark, P. U. 2005. Ice sheet and solid earth influences on far-field sea-level histories. Science 309, 925–28.Google Scholar
Béjar-Pizarro, M., Socquet, A., Armijo, R., Carrizo, D., Genrich, J. & Simons, M. 2013. Andean structural control on interseismic coupling in the North Chile subduction zone. Nature Geoscience 6, 462–67.Google Scholar
Bekaert, D. P., Hooper, A. J. & Wright, T. J. 2015. A spatially variable power law tropospheric correction technique for InSAR data. Journal of Geophysical Research: Solid Earth 120, 1345–56.Google Scholar
Berardino, P., Fornaro, G., Lanari, R. & Sansosti, E. 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing 40, 2375–83.Google Scholar
BIGF (British Isles continuous GNSS Facility) 2014. The creation of a map of current vertical land movements in the UK, based on absolute gravity and CGPS. Electronic Article <http://www.bigf.ac.uk/files/papers/Bingley_SOFI_NEF0121791_Report.pdf> [Date accessed: 13.07.2015].+[Date+accessed:+13.07.2015].>Google Scholar
BIGF (British Isles continuous GNSS Facility) 2015. Data derived based on archived raw data from continuous GNSS stations in the British Isles for the period March 1997–June 2014. Created by Hansen, D. N. and Bingley, R. M., Natural Environment Research Council (NERC) British Isles continuous GNSS Facility (BIGF), University of Nottingham, UK. [Data set accessed 2015-03-04 at http://www.bigf.ac.uk.]Google Scholar
Biggs, J., Wright, T., Lu, Z. & Parsons, B. 2007. Multi-interferogram method for measuring interseismic deformation: Denali Fault, Alaska. Geophysical Journal International 170, 1165–79.Google Scholar
Bingley, R. M., Dodson, A., Penna, N., Teferle, F. N. & Baker, T. 2001. Monitoring the vertical land movement component of changes in mean sea level using GPS: results from tide gauges in the UK. Journal of Geospatial Engineering 3, 920.Google Scholar
Bingley, R. M., Teferle, F. N., Orliac, E. J., Dodson, A. H., Williams, S. D. P., Blackman, D. L., Baker, T. F., Riedmann, M., Haynes, M., Aldiss, D. T., Burke, H. C., Chacksfield, B. C. & Tragheim, D. G. 2007. Absolute fixing of tide gauge benchmarks and land levels: Measuring changes in land and sea levels around the coast of Great Britain and along the Thames Estuary and River Thames using GPS, Absolute Gravimetry, Persistent Scatterer Interferometry and tide gauges. R&D Technical Report FD2319/TR. Joint Defra/EA Flood and Coastal Erosion Risk Management R&D Programme. 241 pp.Google Scholar
Blewitt, G. 2003. Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. Journal of Geophysical Research: Solid Earth (1978–2012) 108, NO. B2, 2103.Google Scholar
Blewitt, G., Altamimi, Z., Davis, J., Gross, R., Kuo, C.-Y., Lemoine, F. G., Moore, A. W., Neilan, R. E., Plag, H.-P. & Rothacher, M. 2010. Geodetic observations and global reference frame contributions to understanding sea-level rise and variability. In Church, J. A., Woodworth, P. L., Aarup, T. & Wilson, W. S. (eds) Understanding Sea-Level Rise and Variability, 256–84. London: Wiley-Blackwell.Google Scholar
Blewitt, G. & Lavallée, D. 2002. Effect of annual signals on geodetic velocity. Journal of Geophysical Research: Solid Earth (1978–2012) 107, ETG 9-1-ETG 9-11.Google Scholar
Bradley, S. L., Milne, G. A., Zong, Y. & Horton, B. 2008. Modelling sea-level data from China and Malay-Thai Peninsula to infer Holocene eustatic sea-level change. AGU Fall Meeting 2008 Abstracts GC33A-0763.Google Scholar
Bradley, S. L., Milne, G. A., Teferle, F. N., Bingley, R. M. & Orliac, E. J. 2009. Glacial isostatic adjustment of the British Isles: new constraints from GPS measurements of crustal motion. Geophysical Journal International 178, 1422.Google Scholar
Bradley, S. L., Milne, G. A., Shennan, I. & Edwards, R. J. 2011. An improved glacial isostatic adjustment model for the British Isles. Journal of Quaternary Science 26, 541–52.Google Scholar
Brooks, A. J., Bradley, S. L., Edwards, R. J., Milne, G. A., Horton, B. & Shennan, I. 2008. Postglacial relative sea-level observations from Ireland and their role in glacial rebound modelling. Journal of Quaternary Science 23, 175–92.Google Scholar
Brooks, B. A., Merrifield, M. A., Foster, J., Werner, C. L., Gomez, F., Bevis, M. & Gill, S. 2007. Space geodetic determination of spatial variability in relative sea level change, Los Angeles basin. Geophysical Research Letters 34(1).Google Scholar
Carbognin, L., Teatini, P. & Tosi, L. 2004. Eustacy and land subsidence in the Venice Lagoon at the beginning of the new millennium. Journal of Marine Systems 51, 345–53.Google Scholar
Carter, W. E. 1994. Report of the Surrey workshop of the IAPSO tide gauge bench mark fixing committee, held at the Institute of Oceanographic Sciences, UK. NOAA Technical Report NOSOES0006.Google Scholar
Carter, W. E., Aubrey, D. G., Baker, T., Boucher, C., LeProvost, C., Pugh, D. T., Peltier, W. R., Zumberge, M. A., Rapp, R. H. & Schultz, R. E. 1989. Geodetic fixing of tide gauge bench marks. Woods Hole Oceanographic Institution Technical Report WHOI-89-31 (CRC-89-5). 51 pp.Google Scholar
Castillo, M., Bishop, P. & Jansen, J. D. 2013. Knickpoint retreat and transient bedrock channel morphology triggered by base-level fall in small bedrock river catchments: the case of the Isle of Jura, Scotland. Geomorphology 180–181, 19.Google Scholar
Chen, Q., Liu, G., Ding, X., Hu, J.-C., Yuan, L., Zhong, P. & Omura, M. 2010. Tight integration of GPS observations and persistent scatterer InSAR for detecting vertical ground motion in Hong Kong. International Journal of Applied Earth Observation and Geoinformation 12, 477–86.Google Scholar
Cigna, F., Bateson, L., Jordan, C. & Dashwood, C. 2012. Feasibility of InSAR technologies for nationwide monitoring of geohazards in Great Britain. In ‘Changing how we view the World’ (Proceedings of the Remote Sensing and Photogrammetry Society Conference 2012). The Remote Sensing and Photogrammetry Society and Blackwell Publishing Ltd.Google Scholar
Cigna, F., Bateson, L., Jordan, C. & Dashwood, C. 2013. Nationwide monitoring of geohazards in Great Britain with InSAR: Feasibility mapping based on ERS-1/2 and ENVISAT imagery. IEEE International Geoscience and Remote Sensing Symposium IGARSS 2013, 672–75.Google Scholar
Cigna, F., Bateson, L., Jordan, C. & Dashwood, C. 2014a. Simulating SAR geometric distortions and predicting Persistent Scatterer densities for ERS-1/2 and ENVISAT C-band SAR and InSAR applications: Nationwide feasibility assessment to monitor the landmass of Great Britain with SAR imagery. Remote Sensing of Environment 152, 441–66.Google Scholar
Cigna, F., Rawlins, B. G., Jordan, C., Sowter, A. & Evans, C. 2014b. Intermittent Small Baseline Subset (ISBAS) InSAR of rural and vegetated terrain: a new method to monitor land motion applied to peatlands in Wales, UK. Geophysical Research Abstracts 16, EGU2014-3844-1. (EGU General Assembly 2014).Google Scholar
Clark, J. A., Farrell, W. E. & Peltier, W. R. 1978. Global changes in postglacial sea level: a numerical calculation. Quaternary Research 9, 265–87.Google Scholar
Collilieux, X. & Altamimi, Z. 2013. External Evaluation of the Origin and Scale of the International Terrestrial Reference Frame. In Sideris, M. G. (ed) Reference Frames for Applications in Geosciences, 2731. Berlin & Heidelberg: Springer-Verlag.Google Scholar
Costantini, M., Falco, S., Malvarosa, F. & Minati, F. 2008. A new method for identification and analysis of persistent scatterers in series of SAR images. IEEE International Geoscience and Remote Sensing Symposium IGARSS 2008, II-449–52.Google Scholar
Crosetto, M., Crippa, B., Biescas, E., Monserrat, O. & Agudo, M. 2005. State of the art of land deformation monitoring using differential SAR interferometry. In Heipke, C., Jacobsen, K. & Gerke, M. (eds) High Resolution Earth Imaging for Geospatial Information: ISPRS Hannover Workshop 2005, 1720.Google Scholar
Cullingford, R. A., Smith, D. E. & Firth, C. R. 1991. The altitude and age of the Main Postglacial Shoreline in eastern Scotland. Quaternary International 9, 3952.Google Scholar
Davenport, C. A., Ringrose, P. S., Becker, A., Hancock, P. & Fenton, C. 1989. Geological investigations of late and post glacial earthquake activity in Scotland. In Gregersen, S., Basham, P. W. (eds) Earthquakes at North Atlantic Passive Margins: Neotectonics and Postglacial Rebound, 175–94. Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
Davenport, C. A. & Ringrose, P. S. 1985. Fault activity and palaeoseismicity during Quaternary time in Scotland – preliminary studies. Earthquake Engineering in Britain, 143–55. London, UK: Thomas Telford Ltd.Google Scholar
Dawson, A. G. 1979. Raised shorelines of Jura, Scarba and NE Islay. PhD Thesis, University of Edinburgh, UK.Google Scholar
Dawson, A. G. 1980. The low rock platform in western Scotland. Proceedings of the Geologists' Association 91, 339–44.Google Scholar
Dawson, A. G. 1984. Quaternary sea-level changes in western Scotland. Quaternary Science Reviews 3, 345–68.Google Scholar
Dawson, A. G., Bondevik, S. & Teller, J. T. 2011. Relative timing of the Storegga submarine slide, methane release, and climate change during the 8.2 ka cold event. The Holocene 21, 1167–71.Google Scholar
Dong, D., Yunck, T. & Heflin, M. 2003. Origin of the international terrestrial reference frame. Journal of Geophysical Research: Solid Earth (1978–2012) 108.Google Scholar
Dong, D., Fang, P., Bock, Y., Webb, F., Prawirodirdjo, L., Kedar, S. & Jamason, P. 2006. Spatiotemporal filtering using principal component analysis and Karhunen-Loeve expansion approaches for regional GPS network analysis. Journal of Geophysical Research: Solid Earth (1978–2012) 111.Google Scholar
Fairbridge, R. W. 1961. Eustatic changes in sea level. Physics and Chemistry of the Earth 4, 99185.Google Scholar
Fan, H., Deng, K., Ju, C., Zhu, C. & Xue, J. 2011. Land subsidence monitoring by D-InSAR technique. Mining Science and Technology (China) 21, 869–72.Google Scholar
Farrell, W. E. & Clark, J. A. 1976. On Postglacial Sea Level. Geophysical Journal of the Royal Astronomical Society 46, 647–67.Google Scholar
Feng, W. 2014. Modelling co- and post-seismic displacements revealed by InSAR and their implications for fault behaviour. PhD Thesis, School of Geographical and Earth Sciences, University of Glasgow, UK.Google Scholar
Feng, W., Li, Z., Hoey, T., Zhang, Y., Wang, R., Samsonov, S., Li, Y. & Xu, Z. 2014. Patterns and mechanisms of coseismic and postseismic slips of the 2011 M W 7.1 Van (Turkey) earthquake revealed by multi-platform synthetic aperture radar interferometry. Tectonophysics 632, 188–98.Google Scholar
Ferretti, A., Prati, C. & Rocca, F. 2000. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing 38, 2202–12.Google Scholar
Ferretti, A., Prati, C. & Rocca, F. 2001. Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing 39, 820.Google Scholar
Firth, C. R. 1984. Raised shorelines and ice limits in the inner Moray Firth and Loch Ness areas, Scotland. PhD Thesis, Coventry (Lanchester) Polytechnic, UK. 475 pp.Google Scholar
Firth, C. R. 1986. Isostatic depression during the Loch Lomond Stadial: preliminary evidence from the Great Glen, northern Scotland. Quaternary Newsletter 48, 19.Google Scholar
Firth, C. R. 1992. Loch Ness Shorelines: evidence for isostatic depression during the Loch Lomond (Younger Dryas) Stadial. In Fenton, C. (ed) Neotectonics in Scotland: A Field Guide, 7275. Glasgow: University of Glasgow.Google Scholar
Firth, C. R., Smith, D. E. & Cullingford, R. A. 1993. Late Devensian and Holocene glacio-isostatic uplift patterns in Scotland. Quaternary Proceedings 14.Google Scholar
Firth, C. R., Smith, D. E., Hansom, J. D. & Pearson, S. G. 1995. Holocene spit development on a regressive shoreline, Dornoch Firth, Scotland. Marine Geology 124, 203–14.Google Scholar
Firth, C. R. & Haggart, B. A. 1989. Loch Lomond stadial and Flandrian shorelines in the inner Moray Firth area, Scotland. Journal of Quaternary Science 4, 3750.Google Scholar
Firth, C. R. & Stewart, I. S. 2000. Postglacial tectonics of the Scottish glacio-isostatic uplift centre. Quaternary Science Reviews 19, 1469–93.Google Scholar
Fleming, K., Johnston, P., Zwartz, D., Yokoyama, Y., Lambeck, K. & Chappell, J. 1998. Refining the eustatic sea-level curve since the Last Glacial Maximum using far- and intermediate-field sites. Earth and Planetary Science Letters 163, 327–42.Google Scholar
Forsberg, R., Sideris, M. G. & Shum, C. K. 2005. The gravity field and GGOS. Journal of Geodynamics 40, 387–93.Google Scholar
Fournier, T., Pritchard, M. E. & Finnegan, N. 2011. Accounting for atmospheric delays in InSAR data in a search for long-wavelength deformation in South America. IEEE Transactions on Geoscience and Remote Sensing 49, 3856–67.Google Scholar
Fretwell, P., Peterson, I. R. & Smith, D. E. 2004. The use of Gaussian trend surfaces for modelling glacio-isostatic crustal rebound. Scottish Journal of Geology 40, 175–79.Google Scholar
Fretwell, P. T., Smith, D. E. & Harrison, S. 2008. The Last Glacial Maximum British-Irish Ice Sheet: a reconstruction using Digital Terrain Mapping. Journal of Quaternary Science 23, 241–48.Google Scholar
Gourmelen, N., Amelung, F. & Lanari, R. 2010. Interferometric synthetic aperture radar–GPS integration: Interseismic strain accumulation across the Hunter Mountain fault in the eastern California shear zone. Journal of Geophysical Research: Solid Earth (1978–2012) 115.Google Scholar
Gray, J. M. 1974. The Main Rock Platform of the Firth of Lorn, western Scotland. Transactions of the Institute of British Geographers 61, 8199.Google Scholar
Gray, J. M. 1978. Low level shore platforms in the south-west Scottish Highlands. Transactions of the Institute of British Geographers 3, 151–64.Google Scholar
Greaves, M., Bingley, R. M., Baker, D. F., Hansen, D. N., Sherwood, R. & Clarke, P. 2013. National Report of Great Britain 2013. EUREF Symposium, Budapest, Hungary, June 2013.Google Scholar
Greaves, M., Bingley, R. M., Baker, D. F., Hansen, D. N. & Clarke, P. 2015. National Report of Great Britain 2015. EUREF Symposium, Leipzig, Germany, 2015.Google Scholar
Hammond, W. C., Blewitt, G., Li, Z., Plag, H.-P. & Kreemer, C. 2012. Contemporary uplift of the Sierra Nevada, western United States, from GPS and InSAR measurements. Geology 40, 667–70.Google Scholar
Hansen, D. N., Teferle, F. N., Bingley, R. M. & Williams, S. D. P. 2012. New estimates of present-day crustal/land motions in the British Isles based on the BIGF network. In Kenyon, S., Pacino, M. C., Marti, U. (eds) Geodesy for Planet Earth, 665–71. Springer Science & Business Media. 1046 pp.Google Scholar
Hanssen, R. F. 2001. Radar interferometry: data interpretation and error analysis, Volume 2. Springer Science & Business Media. 328 pp.Google Scholar
Hill, E. M., Davis, J. L., Tamisiea, M. E. & Lidberg, M. 2010. Combination of geodetic observations and models for glacial isostatic adjustment fields in Fennoscandia. Journal of Geophysical Research: Solid Earth (1978–2012) 115.Google Scholar
Hoffmann, J., Zebker, H. A., Galloway, D. L. & Amelung, F. 2001. Seasonal subsidence and rebound in Las Vegas Valley, Nevada, observed by synthetic aperture radar interferometry. Water Resources Research 37, 1551–66.Google Scholar
Hooper, A., Zebker, H., Segall, P. & Kampes, B. 2004. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters 31, 15.Google Scholar
Hooper, A., Bekaert, D., Spaans, K. & Arıkan, M. 2012. Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 514, 113.Google Scholar
James, T. S. & Lambert, A. 1993. A comparison of VLBI data with the Ice-3G Glacial Rebound Model. Geophysical Research Letters 20(9), 871–74.Google Scholar
Jardine, W. G. 1980. Holocene raised coastal sediments and former shorelines in Dumfriesshire and eastern Galloway. Transactions of the Dumfries Natural History and Antiquarian Society, series 3, 55, 159.Google Scholar
Johansson, J. M., Davis, J. L., Scherneck, H. G., Milne, G. A., Vermeer, M., Mitrovica, J. X., Bennett, R. A., Jonsson, B., Elgered, G., Elosegui, P., Koivula, H., Poutanen, M., Ronnang, B. O. & Shapiro, I. I. 2002. Continuous GPS measurements of postglacial adjustment in Fennoscandia – 1. Geodetic results. Journal of Geophysical Research-Solid Earth 107(B8), ETG 3-1–ETG 3-27.Google Scholar
Jordan, J. T., Smith, D. E., Dawson, S. & Dawson, A. G. 2010. Holocene relative sea-level changes in Harris, Outer Hebrides, Scotland, UK. Journal of Quaternary Science 25, 115–34.Google Scholar
Kaneko, Y., Fialko, Y., Sandwell, D. T., Tong, X. & Furuya, M. 2013. Interseismic deformation and creep along the central section of the North Anatolian fault (Turkey): InSAR observations and implications for rate-and-state friction properties. Journal of Geophysical Research: Solid Earth 118, 316–31.Google Scholar
Kemp, D. D. 1976. Buried raised beaches on the northern side of the Forth valley, central Scotland. Scottish Geographical Magazine 92, 120–28.Google Scholar
Kuchar, J., Milne, G., Hubbard, A., Patton, H., Bradley, S., Shennan, I. & Edwards, R. 2012. Evaluation of a numerical model of the British–Irish ice sheet using relative sea-level data: implications for the interpretation of trimline observations. Journal of Quaternary Science 27, 597605.Google Scholar
Lambeck, K. 1991. Glacial rebound and sea-level change in the British Isles. Terra Nova 3, 379–89.Google Scholar
Lambeck, K. 1993a. Glacial rebound of the British Isles—I. Preliminary model results. Geophysical Journal International 115, 941–59.Google Scholar
Lambeck, K. 1993b. Glacial rebound of the British Isles—II. A high-resolution, high-precision model. Geophysical Journal International 115, 960–90.Google Scholar
Lambeck, K. 1995. Late Devensian and Holocene shorelines of the British Isles and North Sea from models of glacio-hydro-isostatic rebound. Journal of the Geological Society-London 152, 437–48.Google Scholar
Lambeck, K., Johnston, P., Smither, C. & Nakada, M. 1996. Glacial rebound of the British Isles-III. Constraints on mantle viscosity. Geophysical Journal International 125, 340–54.Google Scholar
Lambeck, K., Smither, C. & Johnston, P. 1998. Sea-level change, glacial rebound and mantle viscosity for northern Europe. Geophysical Journal International 134, 102–44.Google Scholar
Lambeck, K. & Johnston, P. 1998. The Viscosity of the Mantle: Evidence from Analyses of Glacial-Rebound Phenomena. In Jackson, I. (ed) The Earth's Mantle: Composition, Structure, and Evolution, 461502. Cambridge, UK: Cambridge University Press. 594 pp.Google Scholar
Lambert, A., Courtier, N., Sasagawa, G. S., Klopping, F., Winester, D., James, T. S. & Liard, J. O. 2001. New constraints on Laurentide postglacial rebound from absolute gravity measurements. Geophysical Research Letters 28, 2109–12.Google Scholar
Lambert, A., Courtier, N. & James, T. S. 2006. Long-term monitoring by absolute gravimetry: Tides to postglacial rebound. Journal of Geodynamics 41, 307–17.Google Scholar
Lanari, R., Mora, O., Manunta, M., Mallorquí, J. J., Berardino, P. & Sansosti, E. 2004. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing 42, 1377–86.Google Scholar
Lanari, R., Casu, F., Manzo, M., Zeni, G., Berardino, P., Manunta, M. & Pepe, A. 2007. An overview of the small baseline subset algorithm: A DInSAR technique for surface deformation analysis. Pure and Applied Geophysics 164, 637–61.Google Scholar
Larson, K. M. & van Dam, T. 2000. Measuring postglacial rebound with GPS and absolute gravity. Geophysical Research Letters 27, 3925–28.Google Scholar
Leighton, J. M., Sowter, A., Tragheim, D. G., Bingley, R. M. & Teferle, F. N. 2013. Land motion in the urban area of Nottingham observed by ENVISAT-1. International Journal of Remote Sensing 34, 9821003.Google Scholar
Li, Z., Muller, J. P., Cross, P. & Fielding, E. J. 2005. Interferometric synthetic aperture radar (InSAR) atmospheric correction: GPS, Moderate Resolution Imaging Spectroradiometer (MODIS), and InSAR integration. Journal of Geophysical Research: Solid Earth (1978–2012) 110, LO6816.Google Scholar
Li, Z., Fielding, E. J., Cross, P. & Muller, J. P. 2006. Interferometric synthetic aperture radar atmospheric correction: medium resolution imaging spectrometer and advanced synthetic aperture radar integration. Geophysical Research Letters 33, LO6816.Google Scholar
Li, Z., Fielding, E. J. & Cross, P. 2009. Integration of InSAR time-series analysis and water-vapor correction for mapping postseismic motion after the 2003 Bam (Iran) earthquake. IEEE Transactions on Geoscience and Remote Sensing 47, 3220–30.Google Scholar
Li, Z., Pasquali, P., Cantone, A., Singleton, A., Funning, G. & Forrest, D. 2012. MERIS atmospheric water vapor correction model for wide swath interferometric synthetic aperture radar. IEEE Geoscience and Remote Sensing Letters 9, 257–61.Google Scholar
Lidberg, M., Johansson, J. M., Scherneck, H. G. & Davis, J. L. 2007. An improved and extended GPS-derived 3D velocity field of the glacial isostatic adjustment (GIA) in Fennoscandia. Journal of Geodesy 81, 213–30.Google Scholar
Liu, D., Shao, Y., Liu, Z., Riedel, B., Sowter, A., Niemeier, W. & Bian, Z. 2014. Evaluation of InSAR and TomoSAR for monitoring deformations caused by mining in a mountainous area with high resolution satellite-based SAR. Remote Sensing 6, 1476–95.Google Scholar
Lundgren, P., Hetland, E. A., Liu, Z. & Fielding, E. J. 2009. Southern San Andreas-San Jacinto fault system slip rates estimated from earthquake cycle models constrained by GPS and interferometric synthetic aperture radar observations. Journal of Geophysical Research: Solid Earth (1978–2012) 114(B2), B02403. doi:10.1029/2008JB005996.Google Scholar
MacMillan, D. S. 2004. Rate difference between VLBI and GPS reference frame scales. AGU Fall Meeting 2004 Abstracts, #G21B-05.Google Scholar
MacMillan, D. S. & Boy, J.-P. 2004. Mass loading effects on crustal displacements measured by VLBI. In Vandenberg, N. R. & Baver, K. D. (eds) International VLBI Service for Geodesy and Astrometry 2004 General Meeting Proceedings. Nasa Conference Publication NASA/CP-2004-212255, 476–80. 558 pp.Google Scholar
Manzo, M., Fialko, Y., Casu, F., Pepe, A. & Lanari, R. 2012. A quantitative assessment of DInSAR measurements of interseismic deformation: the Southern San Andreas Fault case study. Pure and Applied Geophysics 169, 1463–82.Google Scholar
Marinkovic, P., Ketelaar, G., van Leijen, F. & Hanssen, R. 2008. InSAR quality control: Analysis of five years of corner reflector time series. In Lacoste, H. (ed.) Proceedings Fringe 2007 Workshop, Frascati, Italy. European Space Agency Special Publication ESA SP-649, 26-30. Paris, France: European Space Agency.Google Scholar
Massonnet, D. & Feigl, K. L. 1998. Radar interferometry and its application to changes in the Earth's surface. Reviews of Geophysics 36, 441500.Google Scholar
Mccarroll, D. & Ballantyne, C. K. 2000. The last ice sheet in Snowdonia. Journal of Quaternary Science 15, 765–78.Google Scholar
Mcintyre, K. L. & Howe, J. A. 2010. Scottish west coast fjords since the last glaciation: a review. Geological Society, London, Special Publications 344, 305–29.Google Scholar
Milne, G. A., Davis, J. L., Mitrovica, J. X., Scherneck, H. G., Johansson, J. M., Vermeer, M. & Koivula, H. 2001. Space-geodetic constraints on glacial isostatic adjustment in Fennoscandia. Science 291, 2381–85.Google Scholar
Milne, G. A., Mitrovica, J. X., Scherneck, H. G., Davis, J. L., Johansson, J. M., Koivula, H. & Vermeer, M. 2004. Continuous GPS measurements of postglacial adjustment in Fennoscandia: 2. Modeling results. Journal of Geophysical Research-Solid Earth 109(B2), B02412. doi: 10.1029/2003JB002619Google Scholar
Milne, G. A., Shennan, I., Youngs, B. A. R., Waugh, A. I., Teferle, F. N., Bingley, R. M., Bassett, S. E., Cuthbert-Brown, C. & Bradley, S. L. 2006. Modelling the glacial isostatic adjustment of the UK region. Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences 364, 931–48.Google Scholar
Milne, G. A. & Mitrovica, J. X. 2008. Searching for eustasy in deglacial sea-level histories. Quaternary Science Reviews 27, 22922302.Google Scholar
Mitrovica, J. X., Davis, J. L. & Shapiro, I. I. 1993. Constraining proposed combinations of ice history and Earth rheology using VLBI determined baseline length rates in North America. Geophysical Research Letters 20, 2387–90.Google Scholar
Mitrovica, J. X. & Milne, G. A. 2003. On post-glacial sea level: I. General theory. Geophysical Journal International 154, 253–67.Google Scholar
Mitrovica, J. X. & Peltier, W. R. 1989. Pleistocene deglaciation and the global gravity field. Journal of Geophysical Research: Solid Earth (1978–2012) 94, 13651–71.Google Scholar
Niebauer, T. M., Sasagawa, G. S., Faller, J. E., Hilt, R. & Klopping, F. 1995. A new generation of absolute gravimeters. Metrologia 32, 159.Google Scholar
Ordnance Survey 2015. A guide to coordinate systems in Great Britain. An introduction to mapping coordinate systems and the use of GPS datasets with Ordnance Survey mapping. Version 2.4. Electronic Article <http://www.ordnancesurvey.co.uk/docs/support/guide-coordinate-systems-great-britain.pdf> [Date accessed 04.12.2015].+[Date+accessed+04.12.2015].>Google Scholar
Osmanoğlu, B., Dixon, T. H., Wdowinski, S., Cabral-Cano, E. & Jiang, Y. 2011. Mexico City subsidence observed with persistent scatterer InSAR. International Journal of Applied Earth Observation and Geoinformation 13, 112.Google Scholar
Peltier, W. R. 1974. The impulse response of a Maxwell Earth. Reviews of Geophysics and Space Physics 12, 649–69.Google Scholar
Peltier, W. R. 1994. Ice age paleotopography. Science 265, 195201.Google Scholar
Peltier, W. R. 1995. VLBI baseline variations from the Ice-4G Model of postglacial rebound. Geophysical Research Letters 22, 465–68.Google Scholar
Peltier, W. R. 1996a. Global sea level rise and glacial isostatic adjustment: an analysis of data from the east coast of North America. Geophysical Research Letters 23, 717–20.Google Scholar
Peltier, W. R. 1996b. Mantle viscosity and ice-age ice sheet topography. Science 273, 1359–64.Google Scholar
Peltier, W. R. 1998a. Postglacial variations in the level of the sea: Implications for climate dynamics and solid-earth geophysics. Reviews of Geophysics 36, 603–89.Google Scholar
Peltier, W. R. 1998b. The inverse problem for mantle viscosity. Inverse Problems 14, 441.Google Scholar
Peltier, W. R. 2002. On eustatic sea level history: Last Glacial Maximum to Holocene. Quaternary Science Reviews 21, 377–96.Google Scholar
Peltier, W. R. 2004. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annual Review of Earth and Planetary Sciences 32, 111–49.Google Scholar
Peltier, W. R., Shennan, I., Drummond, R. & Horton, B. 2002. On the postglacial isostatic adjustment of the British Isles and the shallow viscoelastic structure of the Earth. Geophysical Journal International 148, 443–75.Google Scholar
Peltier, W. R. & Andrews, J. T. 1976. Glacial-isostatic adjustment – I. The forward problem. Geophysical Journal International 46, 605–46.Google Scholar
Peltier, W. R. & Jiang, X. 1996. Glacial isostatic adjustment and Earth rotation: Refined constraints on the viscosity of the deepest mantle. Journal of Geophysical Research: Solid Earth (1978–2012) 101, 3269–90.Google Scholar
Plag, H. P., Axe, P., Knudsen, P., Richter, B. & Verstraeten, J. 2000. European sea level observing system (EOSS). Status and future developments, COST Action, 40.Google Scholar
Prawirodirdjo, L. & Bock, Y. 2004. Instantaneous global plate motion model from 12 years of continuous GPS observations. Journal of Geophysical Research: Solid Earth (1978–2012) 109(B8), B08405. doi: 10.1029/2003JB002944.Google Scholar
Pritchard, M. E., Ji, C. & Simons, M. 2006. Distribution of slip from 11 Mw>6 earthquakes in the northern Chile subduction zone. Journal of Geophysical Research: Solid Earth (1978–2012) 111(B10), B10302. doi: 10.1029/2005JB0040136+earthquakes+in+the+northern+Chile+subduction+zone.+Journal+of+Geophysical+Research:+Solid+Earth+(1978–2012)+111(B10),+B10302.+doi:+10.1029/2005JB004013>Google Scholar
Remy, D., Chen, Y., Froger, J. L., Bonvalot, S., Cordoba, M. & Fustos, J. 2015. Revised interpretation of recent InSAR signals observed at Llaima volcano (Chile). Geophysical Research Letters 42, 3870–79.Google Scholar
Rennie, A. F. & Hansom, J. D. 2011. Sea level trend reversal: Land uplift outpaced by sea level rise on Scotland's coast. Geomorphology 125, 193202.Google Scholar
Ringrose, P. S. 1987. Fault activity and palaeoseismicity during Quaternary time in Scotland. PhD Thesis, University of Strathclyde, UK.Google Scholar
Ringrose, P. S. 1989. Palaeoseismic (?) liquefaction event in late Quaternary lake sediments at Glen Roy, Scotland. Terra Nova 1, 5762.Google Scholar
Ringrose, P. S., Hancock, P. L., Fenton, C. & Davenport, C. A. 1991. Quaternary tectonic activity in Scotland. In Foster, A., Culshaw, M. G., Cripps, J. C., Little, J. A., Moon, C. F. (eds) Quaternary Engineering Geology. Engineering Geology Special Publication 7, 679–86. London, UK: The Geological Society. 726 pp.Google Scholar
Rosen, P. A., Hensley, S., Zebker, H. A., Webb, F. H. & Fielding, E. J. 1996. Surface deformation and coherence measurements of Kilauea Volcano, Hawaii, from SIR-C radar interferometry. Journal of Geophysical Research: Planets 101(E10), 23109–25. doi: 10.1029/96JE01459Google Scholar
Samsonov, S. & d'Oreye, N. 2012. Multidimensional time-series analysis of ground deformation from multiple InSAR data sets applied to Virunga Volcanic Province. Geophysical Journal International 191, 10951108.Google Scholar
Sanli, D. U. & Blewitt, G. 2001. Geocentric sea level trend using GPS and >100-year tide gauge record on a postglacial rebound nodal line. Journal of Geophysical Research: Solid Earth (1978–2012) 106, 713–19.100-year+tide+gauge+record+on+a+postglacial+rebound+nodal+line.+Journal+of+Geophysical+Research:+Solid+Earth+(1978–2012)+106,+713–19.>Google Scholar
Sasgen, I., Martinec, Z. & Bamber, J. 2010. Combined GRACE and InSAR estimate of West Antarctic ice mass loss. Journal of Geophysical Research: Earth Surface (2003–2012) 115(F4), F04010. doi: 10.1029/2009JF001525.Google Scholar
Selby, K. A. & Smith, D. E. 2007. Late Devensian and Holocene relative sea-level changes on the Isle of Skye, Scotland, UK. Journal of Quaternary Science 22, 119–39.Google Scholar
Shakun, J. D. & Carlson, A. E. 2010. A global perspective on Last Glacial Maximum to Holocene climate change. Quaternary Science Reviews 29, 1801–16.Google Scholar
Shennan, I. 1982. Interpretation of Flandrian sea-level data from the Fenland, England. Proceedings of the Geologists' Association 93, 5363.Google Scholar
Shennan, I. 1984. Flandrian and Late Devensian sea-level changes and crustal movements in England and Wales. In Smith, D. E. & Dawson, A. G. (eds) Shorelines and Isostasy. Institute of British Geographers Special Publication 16, 255–83. London: Academic Press. x+387 pp.Google Scholar
Shennan, I. 1986a. Flandrian sea-level changes in the Fenland. I: The geographical setting and evidence of relative sea-level changes. Journal of Quaternary Science 1, 119–53.Google Scholar
Shennan, I. 1986b. Flandrian sea-level changes in the Fenland. II: Tendencies of sea-level movement, altitudinal changes, and local and regional factors. Journal of Quaternary Science 1, 155–79.Google Scholar
Shennan, I. 1987. Global analysis and correlation of sea-level data. In Devoy, R. J. N. (ed.) Sea Surface Studies, 198230. Dordrecht, The Netherlands: Springer.Google Scholar
Shennan, I. 1989. Holocene crustal movements and sea-level changes in Great Britain. Journal of Quaternary Science 4, 7789.Google Scholar
Shennan, I. 1992. Late Quaternary sea-level changes and crustal movements in eastern England and eastern Scotland: an assessment of models of coastal evolution. Quaternary International 15, 161–73.Google Scholar
Shennan, I. 1999. Global meltwater discharge and the deglacial sea-level record from northwest Scotland. Journal of Quaternary Science 14, 715–19.Google Scholar
Shennan, I. 2015. Handbook of sea-level research: framing research questions. In Shennan, I., Long, A. J. & Horton, B. P. (eds) Handbook of Sea-Level Research, 325. Chichester, UK: John Wiley & Sons, Ltd. 600 pp.Google Scholar
Shennan, I., Tooley, M. J., Davis, M. J. & Haggart, B. A. 1983. Analysis and interpretation of Holocene sea-level data. Nature 302, 404–06.Google Scholar
Shennan, I., Innes, J. B., Long, A. J. & Zong, Y. 1993. Late Devensian and Holocene relative sea-level changes at Rumach, near Arisaig, northwest Scotland. Norsk Geologisk Tidsskrift 73, 161–74.Google Scholar
Shennan, I., Innes, J. B., Long, A. J. & Zong, Y. 1994. Late Devensian and Holocene relative sealevel changes at Loch nan Eala, near Arisaig, northwest Scotland. Journal of Quaternary Science 9, 261–83.Google Scholar
Shennan, I., Innes, J. B., Long, A. J. & Zong, Y. 1995a. Late Devensian and Holocene relative sea-level changes in northwestern Scotland: new data to test existing models. Quaternary International 26, 97123.Google Scholar
Shennan, I., Innes, J. B., Long, A. J. & Zong, Y. 1995b. Holocene relative sea-level changes and coastal vegetation history at Kentra Moss, Argyll, northwest Scotland. Marine Geology 124, 4359.Google Scholar
Shennan, I., Lambeck, K., Horton, B., Innes, J. B., Lloyd, J., McArthur, J., Purcell, T. & Rutherford, M. 2000. Late Devensian and Holocene records of relative sea-level changes in northwest Scotland and their implications for glacio-hydro-isostatic modelling. Quaternary Science Reviews 19, 1103–35.Google Scholar
Shennan, I., Peltier, W. R., Drummond, R. & Horton, B. 2002. Global to local scale parameters determining relative sea-level changes and the post-glacial isostatic adjustment of Great Britain. Quaternary Science Reviews 21, 397408.Google Scholar
Shennan, I., Hamilton, S., Hillier, C. & Woodroffe, S. 2005. A 16000-year record of near-field relative sea-level changes, northwest Scotland, United Kingdom. Quaternary International 133, 95106.Google Scholar
Shennan, I., Bradley, S. L., Milne, G., Brooks, A., Bassett, S. & Hamilton, S. 2006a. Relative sea-level changes, glacial isostatic modelling and ice-sheet reconstructions from the British Isles since the Last Glacial Maximum. Journal of Quaternary Science 21, 585–99.Google Scholar
Shennan, I., Hamilton, S., Hillier, C., Hunter, A., Woodall, R., Bradley, S. L., Milne, G., Brooks, A. & Bassett, S. 2006b. Relative sea-level observations in western Scotland since the Last Glacial Maximum for testing models of glacial isostatic land movements and ice-sheet reconstructions. Journal of Quaternary Science 21, 601–13.Google Scholar
Shennan, I., Milne, G. & Bradley, S. L. 2009. Late Holocene relative land- and sea-level changes: Providing information for stakeholders. GSA Today 19, 53–53.Google Scholar
Shennan, I., Milne, G. & Bradley, S. L. 2012. Late Holocene vertical land motion and relative sea-level changes: lessons from the British Isles. Journal of Quaternary Science 27, 6470.Google Scholar
Shennan, I. & Horton, B. 2002. Holocene land- and sea-level changes in Great Britain. Journal of Quaternary Science 17, 511–26.Google Scholar
Singleton, A., Li, Z., Hoey, T. & Muller, J.-P. 2014. Evaluating sub-pixel offset techniques as an alternative to D-InSAR for monitoring episodic landslide movements in vegetated terrain. Remote Sensing of Environment 147, 133–44.Google Scholar
Sissons, J. B. 1962. A re-interpretation of the literature on late-glacial shorelines in Scotland with particular reference to the Forth area. Transactions of the Edinburgh Geological Society 19, 8399.Google Scholar
Sissons, J. B. 1963. Scottish raised shoreline heights with particular reference to the Forth valley. Geografiska Annaler 45, 180–85.Google Scholar
Sissons, J. B. 1966. Relative sea level changes between 10300 and 8300 BP in part of the Carse of Stirling. Transactions of the Institute of British Geographers 39, 1929.Google Scholar
Sissons, J. B. 1969. Drift stratigraphy and buried morphological features in the Grangemouth-Falkirk-Airth area, central Scotland. Transactions of the Institute of British Geographers 48, 1950.Google Scholar
Sissons, J. B. 1972. Dislocation and non-uniform uplift of raised shorelines in the western part of the Forth valley. Transactions of the Institute of British Geographers 55, 145–59.Google Scholar
Sissons, J. B. 1983. Shorelines and isostasy in Scotland. In Smith, D. E. & Dawson, A. G. (eds) Shorelines and Isostasy. Institute of British Geographers Special Publication 16, 209–25. London: Academic Press. x+387 pp.Google Scholar
Sissons, J. B. 2016. The lateglacial lakes of Glens Roy, Spean and vicinity (Lochaber district, Scottish Highlands). Proceedings of the Geologists’ Association.Google Scholar
Sissons, J. B., Smith, D. E. & Cullingford, R. A. 1966. Late-glacial and post-glacial shorelines in South-East Scotland. Transactions of the Institute of British Geographers 39, 918.Google Scholar
Sissons, J. B. & Cornish, R. 1982. Differential Glacio-Isostatic Uplift of Crustal Blocks at Glen Roy, Scotland. Quaternary Research 18, 268–88.Google Scholar
Smith, D. E. 1968. Post-glacial displaced shorelines on the northern bank of the River Forth, in Scotland. Zeitschrift für Geomorphologie NF12(4), 388408.Google Scholar
Smith, D. E. 2005. Evidence for secular sea surface level changes in the Holocene raised shorelines of Scotland, UK. Journal of Coastal Research 42, 2642.Google Scholar
Smith, D. E., Sissons, J. B. & Cullingford, R. A. 1969. Isobases for the Main Perth raised shoreline in South East Scotland as determined by trend-surface analysis. Institute of British Geographers Transactions 46, 4552.Google Scholar
Smith, D. E., Thompson, K. S. R. & Kemp, D. E. 1978. The Late Devensian and Flandrian History of the Teith valley. Boreas 7, 97107.Google Scholar
Smith, D. E., Morrison, J., Jones, R. L. & Cullingford, R. A. 1980. Dating the main postglacial shoreline in the Montrose area, Scotland. In Cullingford, R. A., Davidson, D. A. & Lewin, J. (eds) Timescales in Geomorphology, 225–45. Chichester: Wiley. 360 pp.Google Scholar
Smith, D. E., Firth, C. R., Turbayne, S. C. & Brooks, C. L. 1992. Holocene relative sea-level changes and shoreline displacement in the Dornoch Firth area, Scotland. Proceedings of the Geologists' Association 103, 237–57.Google Scholar
Smith, D. E., Firth, C. R., Brooks, C. L., Robinson, M. & Collins, P. E. F. 1999. Relative sea-level rise during the Main Postglacial Transgression in NE Scotland, UK. Transactions of the Royal Society of Edinburgh: Earth Sciences 90, 127.Google Scholar
Smith, D. E., Cullingford, R. A. & Firth, C. R. 2000. Patterns of isostatic land uplift during the Holocene: evidence from mainland Scotland. Holocene 10, 489501.Google Scholar
Smith, D. E., Firth, C. R. & Cullingford, R. A. 2002. Relative sea-level trends during the early-middle Holocene along the eastern coast of mainland Scotland, UK. Boreas 31, 185202.Google Scholar
Smith, D. E., Haggart, B. A., Cullingford, R. A., Tipping, R. M., Wells, J. M., Mighall, T. M. & Dawson, S. 2003a. Holocene relative sea-level change in the lower Nith valley and estuary. Scottish Journal of Geology 39, 97120.Google Scholar
Smith, D. E., Wells, J. M., Mighall, T. M., Cullingford, R. A., Holloway, L. K., Dawson, S. & Brooks, C. L. 2003b. Holocene relative sea levels and coastal changes in the lower Cree valley and estuary, SW Scotland, UK. Transactions of the Royal Society of Edinburgh: Earth Sciences 93, 301–31.Google Scholar
Smith, D. E., Shi, S., Cullingford, R. A., Dawson, A. G., Dawson, S., Firth, C. R., Foster, I. D. L., Fretwell, P. T., Haggart, B. A. & Holloway, L. K. 2004. The holocene storegga slide tsunami in the United Kingdom. Quaternary Science Reviews 23, 2291–321.Google Scholar
Smith, D. E., Fretwell, P. T., Cullingford, R. A. & Firth, C. R. 2006. Towards improved empirical isobase models of Holocene land uplift for mainland Scotland, UK. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364, 949–72.Google Scholar
Smith, D. E., Cullingford, R. A., Mighall, T. M., Jordan, J. T. & Fretwell, P. T. 2007. Holocene relative sea level changes in a glacio-isostatic area: New data from south-west Scotland, United Kingdom. Marine Geology 242, 526.Google Scholar
Smith, D. E., Stewart, I. S., Harrison, S. & Firth, C. R. 2009. Late Quaternary neotectonics and mass movement in South East Raasay, Inner Hebrides, Scotland. Proceedings of the Geologists’ Association 120, 145–54.Google Scholar
Smith, D. E., Davies, M. H., Brooks, C. L., Mighall, T. M., Dawson, S., Rea, B. R., Jordan, J. T. & Holloway, L. K. 2010. Holocene relative sea levels and related prehistoric activity in the Forth lowland, Scotland, United Kingdom. Quaternary Science Reviews 29, 2382–410.Google Scholar
Smith, D. E., Hunt, N., Firth, C. R., Jordan, J. T., Fretwell, P. T., Harman, M., Murdy, J., Orford, J. D. & Burnside, N. G. 2012. Patterns of Holocene relative sea level change in the North of Britain and Ireland. Quaternary Science Reviews 54, 5876.Google Scholar
Soudarin, L., Crétaux, J. F. & Cazenave, A. 1999. Vertical crustal motions from the DORIS Space-Geodesy System. Geophysical Research Letters 26, 1207–10.Google Scholar
Sowter, A., Bateson, L., Strange, P., Ambrose, K. & Syafiudin, M. F. 2013. DInSAR estimation of land motion using intermittent coherence with application to the South Derbyshire and Leicestershire coalfields. Remote Sensing Letters 4, 979–87.Google Scholar
Steffen, H. & Wu, P. 2011. Glacial isostatic adjustment in Fennoscandia—a review of data and modeling. Journal of Geodynamics 52, 169204.Google Scholar
Stewart, I. S., Firth, C. R., Rust, D. J., Collins, P. E. F. & Firth, J. A. 2001. Recent fault movement and palaeoseismicity in western Scotland: A reappraisal of the Kinloch Hourn fault, Kintail. Journal of Seismology 5, 307–28.Google Scholar
Stockamp, J., Li, Z., Bishop, P., Hansom, J., Rennie, A., Petrie, E., Tanaka, A., Bingley, R. & Hansen, D. 2015. Investigating Glacial Isostatic Adjustment in Scotland with InSAR and GPS Observations. In Ouwehand, L. (ed.) Proceedings of FRINGE’15: Advances in the Science and Applications of SAR Interferometry and Sentinel-1 InSAR Workshop, Frascati, Italy. European Space Agency Special Publication ESA SP-731.Google Scholar
Tamisiea, M. E., Mitrovica, J. X. & Davis, J. L. 2007. GRACE gravity data constrain ancient ice geometries and continental dynamics over Laurentia. Science 316, 881–83.Google Scholar
Teferle, F. N., Bingley, R. M., Dodson, A. H. & Baker, T. F. 2002. Application of the dual-CGPS concept to monitoring vertical land movements at tide gauges. Physics and Chemistry of the Earth 27, 1401–06.Google Scholar
Teferle, F. N., Bingley, R. M., Williams, S. D. P., Baker, T. F. & Dodson, A. H. 2006. Using continuous GPS and absolute gravity to separate vertical land movements and changes in sea-level at tide-gauges in the UK. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364, 917–30.Google Scholar
Teferle, F. N., Bingley, R. M., Waugh, A. I., Dodson, A. H., Williams, S. D. P. & Baker, T. F. 2007. Sea level in the British Isles: combining absolute gravimetry and continuous GPS to infer vertical land movements at tide gauges. In Tregoning, P., Rizos, C. (eds) Dynamic Planet: Monitoring and Understanding a Dynamic Planet with Geodetic and Oceanographic Tools, 2330. New York: Springer.Google Scholar
Teferle, F. N., Williams, S. D. P., Kierulf, H. P., Bingley, R. M. & Plag, H. P. 2008. A continuous GPS coordinate time series analysis strategy for high-accuracy vertical land movements. Physics and Chemistry of the Earth 33, 205–16.Google Scholar
Teferle, F. N., Bingley, R. M., Orliac, E. J., Williams, S. D. P., Woodworth, P. L., McLaughlin, D., Baker, T. F., Shennan, I., Milne, G. A. & Bradley, S. L. 2009. Crustal motions in Great Britain: evidence from continuous GPS, absolute gravity and Holocene sea level data. Geophysical Journal International 178, 2346.Google Scholar
Tong, X., Sandwell, D. T. & Smith-Konter, B. 2013. High-resolution interseismic velocity data along the San Andreas fault from GPS and InSAR. Journal of Geophysical Research: Solid Earth 118, 369–89.Google Scholar
Tooley, M. J. 1974a. Sea-level changes during the last 9000 years in north-west England. Geographical Journal 140, 1842.Google Scholar
Tooley, M. J. 1974b. The UNESCO-IGCP Project on Holocene sea-level changes. The International Journal of Nautical Archaeology and Underwater Exploration 7, 7187.Google Scholar
Tooley, M. J. 1978. Interpretation of Holocene sea-level changes. Geologiska Föreningens i Stockholm Förhandlingar 100, 203–12.Google Scholar
Tooley, M. J. 1982a. Introduction (to Report of UK Working Group on sea-level movements). Proceedings of the Geologists’ Association 93, 36.Google Scholar
Tooley, M. J. 1982b. Sea-level changes in northern England. Proceedings of the Geologists' Association 93, 4351.Google Scholar
Tosi, L., Carbognin, L., Teatini, P., Strozzi, T. & Wegmüller, U. 2002. Evidence of the present relative land stability of Venice, Italy, from land, sea, and space observations. Geophysical Research Letters 29, 3-13-4.Google Scholar
Tushingham, A. M. & Peltier, W. R. 1991. ICE-3G – A new global model of late Pleistocene deglaciation based upon geophysical predictions of post-glacial relative sea level change. Journal of Geophysical Research 96, 4497–523.Google Scholar
Van de Plassche, O. 1982. Sea Level Research – a manual for the collection and evaluation of data. A contribution to IGCP projects 61 and 200. Norwich, UK: Geo Books.Google Scholar
Wang, H. & Wright, T. J. 2012. Satellite geodetic imaging reveals internal deformation of western Tibet. Geophysical Research Letters 39(7), L07303. doi: 10.1029/2012GL051222Google Scholar
Wang, T., Perissin, D., Liao, M. & Rocca, F. 2008. Deformation monitoring by long term D-InSAR analysis in Three Gorges area, China. IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2008, IV-5IV-8.Google Scholar
Wdowinski, S., Bock, Y., Zhang, J., Fang, P. & Genrich, J. 1997. Southern California permanent GPS geodetic array: spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake. Journal of Geophysical Research-Part B-Solid Earth-Printed Edition 102, 18057–70.Google Scholar
Wei, M., Sandwell, D. & Smith-Konter, B. 2010. Optimal combination of InSAR and GPS for measuring interseismic crustal deformation. Advances in Space Research 46, 236–49.Google Scholar
Williams, S. D. P., Baker, T. F. & Jeffries, G. 2001. Absolute gravity measurements at UK tide gauges. Geophysical Research Letters 28, 2317–20.Google Scholar
Woodroffe, S. A. & Barlow, N. L. M. 2015. Reference water level and tidal datum. In Shennan, I., Long, A. J. & Horton, B. P. (eds) Handbook of Sea-Level Research, 171–80. Chichester, UK: John Wiley & Sons, Ltd. 600 pp.Google Scholar
Woodworth, P. L., Tsimplis, M. N., Flather, R. A. & Shennan, I. 1999. A review of the trends observed in British Isles mean sea level data measured by tide gauges. Geophysical Journal International 136, 651–70.Google Scholar
Woodworth, P. L., Teferle, F. N., Bingley, R. M., Shennan, I. & Williams, S. D. P. 2009. Trends in UK mean sea level revisited. Geophysical Journal International 176, 1930.Google Scholar
Wöppelmann, G., Zerbini, S. & Marcos, M. 2006. Tide gauges and Geodesy: a secular synergy illustrated by three present-day case studies. Comptes Rendus Geoscience 338, 980–91.Google Scholar
Wright, T. J., Parsons, B. & Fielding, E. 2001. Measurement of interseismic strain accumulation across the North Anatolian Fault by satellite radar interferometry. Geophysical Research Letters 28, 2117–20.Google Scholar
Wright, T. J., Lu, Z. & Wicks, C. 2003. Source model for the Mw 6.7, 23 October 2002, Nenana Mountain Earthquake (Alaska) from InSAR. Geophysical Research Letters 30(18), e1974. doi:10.1029/2003GL018014Google Scholar
Wright, T. J., Parsons, B., England, P. C. & Fielding, E. J. 2004a. InSAR observations of low slip rates on the major faults of western Tibet. Science 305, 236–39.Google Scholar
Wright, T. J., Parsons, B. E. & Lu, Z. 2004b. Toward mapping surface deformation in three dimensions using InSAR. Geophysical Research Letters 31(1), L01607. doi: 10.1029/2003GL018827Google Scholar
Zhang, L., Ding, X., Lu, Z., Jung, H.-S., Hu, J. & Feng, G. 2014. A novel multitemporal InSAR model for joint estimation of deformation rates and orbital errors. IEEE Transactions on Geoscience and Remote Sensing 52, 3529–40.Google Scholar