Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-10T23:36:36.696Z Has data issue: false hasContentIssue false

Relationships between silicic plutonism and volcanism: geochemical evidence

Published online by Cambridge University Press:  03 November 2011

R. Macdonald
Affiliation:
Institute of Environmental and Biological Sciences, University of Lancaster, Lancaster LA1 4YQ, U.K.
R. L. Smith
Affiliation:
U.S. Geological Survey, 2943-C Fulton Avenue, Sacramento, California 95821, U.S.A.

Abstract

Field associations (voluminous ash flow deposits, rhyolitic stocks and dykes, ring complexes), evidence of repeated influxes of mafic magma, and thermal constraints indicate that many high-level silicic plutons (magma chambers) acted as open systems for considerable parts of their history. The long thermal lifetime, as well as other evidence from the volcanic record, suggests that some such systems reached a quasi-steady state in which magma input was balanced by magma output for times longer than those required for crystallisation. Reconstruction of the evolution of large, long-lived caldera-forming systems, such as that of the Jemez Mountains, New Mexico, indicates that many chambers have lost a highly fractionated silicic cap, in some cases cyclically. Crystallised plutons may contain no obvious record of this evolutionary phase.

Geochemical data from silicic ash flow deposits can be used to reconstruct the volcanic stage of pluton development. Many silicic systems, especially of alkaline affinity, apparently pass from a stage in which melt evolution is dominated by crystal-liquid processes to one in which other processes may also contribute to differentiation. Apparently, the transition is most readily achieved in volatile-rich, alkaline silicic systems emplaced in complex, ancient sialic crust of the cratons. Once established, the preservation of highly fractionated caps on magma chambers requires a balance between thermal input and cooling-induced crystallisation. If heat enters the system too quickly, the cap may get stirred into the dominant magma volume by convection. If heat input is too slow, the magma body will crystallise inward from the margins, and the plutonic-consolidation stage will begin.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bacon, C. R. 1985. Implications of silicic vent patterns for the presence of large crustal magma chambers. J GEOPHYS RES 90, 11243–52.CrossRefGoogle Scholar
Bacon, C. R. 1986. Magmatic inclusions in silicic and intermediate volcanic rocks. J GEOPHYS RES 91, 6091–112.CrossRefGoogle Scholar
Barnes, C. G., Allen, C. M. & Saleeby, J. B. 1986. Open- and closed-system characteristics of a tilted plutonic system, Klamath Mountains, California. J GEOPHYS RES 91, 6073–90.CrossRefGoogle Scholar
Bateman, P. C. & Chappell, B. W. 1979. Crystallization, fractionation, and solidification of the Tuolumne Intrusive Series, Yosemite National Park, California. BULL GEOL SOC AM 90, 465–82.2.0.CO;2>CrossRefGoogle Scholar
Bateman, P. C. & Nokleberg, W. J. 1978. Solidification of the Mount Givens granodiorite, Sierra Nevada, California. J GEOL 86, 563–79.CrossRefGoogle Scholar
Bowden, P. & Turner, D. C. 1974. Peralkaline and associated ring-complexes in the Nigeria-Niger Province. In Sørensen, H. (ed.) The alkaline rocks, 330–51. London: Wiley.Google Scholar
Brown, G. C., Cassidy, J., Tindle, A. G. & Hughes, D. J. 1979. The Loch Doon granite: an example of granite petrogenesis in the British Caledonides. J GEOL SOC LONDON 136, 745–53.CrossRefGoogle Scholar
Bussell, M. A. 1985. The centred complex of the Rio Huara: a study of magma mixing and differentiation in high-level magma chambers. In Pitcher, W. S., Atherton, M. P., Cobbing, E. J. & Beckinsale, R. D. (eds) Magmatism at a plate edge, 128–55. Glasgow: Blackie.CrossRefGoogle Scholar
Cameron, K. L. 1984. Bishop Tuff revisited: new rare earth element data consistent with crystal fractionation. SCIENCE 224, 1338–40.CrossRefGoogle ScholarPubMed
Cameron, K. L. & Cameron, M. 1986. Whole-rock/groundmass differentiation trends of rare earth elements in high-silica rhyolites. GEOCHIM COSMOCHIM ACTA 50, 759–69.CrossRefGoogle Scholar
Cater, F. W. 1982. Intrusive rocks of the Holden and Lucerne quadrangles, Washington: the relation of depth zones, composition, textures, and emplacement of plutons. US GEOL SURV PROF PAP 1220.Google Scholar
Chappell, B. W., White, A. J. R. & Wyborn, D. 1987. The importance of residual source material (restite) in granite petrogenesis. J PETROL 28, 1111–38.CrossRefGoogle Scholar
Christiansen, E. H., Burt, D. M., Sheridan, M. F. & Wilson, R. T. 1983. The petrogenesis of topaz rhyolites from the western United States. CONTRIB MINERAL PETROL 83, 1630.CrossRefGoogle Scholar
Christiansen, R. L. 1979. Cooling units and composite sheets in relation to caldera structure. GEOL SOC AM SPEC PAP 180, 2942.Google Scholar
Collins, W. J., Beams, S. D., White, A. J. R. & Chappell, B. W. 1982. Nature and origin of A-type granites with particular reference to south-eastern Australia. CONTRIB MINERAL PETROL 80, 189200.CrossRefGoogle Scholar
Conrad, W. K. 1984. The mineralogy and petrology of compositionally zoned ash flow tuffs, and related silicic volcanic rocks, from the McDermitt caldera complex, Nevada-Oregon. J GEOPHYS RES 89, 8639–64.CrossRefGoogle Scholar
Crisp, J. A. 1984. Rates of magma emplacement and volcanic output. J VOLCANOL GEOTHERM RES 20, 117211.CrossRefGoogle Scholar
Davies, G. R. & Macdonald, R. 1987. Crustal influences in the petrogenesis of the Naivasha basalt-comendite complex: combined trace element and Sr-Nd-Pb isotope constraints. J PETROL 28, 1009–31.CrossRefGoogle Scholar
Doell, R. R., Dalrymple, G. B., Smith, R. L. & Bailey, R. A. 1968. Paleomagnetism, potassium-argon ages, and geology of rhyolites and associated rocks of the Valles caldera, New Mexico. MEM GEOL SOC AM 116, 211–48.Google Scholar
Ewart, A., Taylor, S. R. & Capp, A. C. 1968. Trace and minor element geochemistry of the rhyolitic volcanic rocks, central North Island, New Zealand. Total Rock and residual liquid data. CONTRIB MINERAL PETROL 18, 76104.CrossRefGoogle Scholar
Ferriz, H. & Mahood, G. A. 1987. Strong compositional zonation in a silicic magmatic system: Los Humeros, Mexican Neovolcanic Belt. J PETROL 28, 171209.CrossRefGoogle Scholar
Groves, D. I. 1972. The geochemical evolution of tin-bearing granites in the Blue Tier Batholith, Tasmania. ECON GEOL 67, 445–57.CrossRefGoogle Scholar
Groves, D. I. 1978. Vertical geochemical zonation within tin-bearing granite sheets, Blue Tier Batholith, NE Tasmania. In Štemprok, M., Burnol, L. & Tischendorf, G. (eds) Metallization associated with acid magmatism, 205–21. Prague: Geological Survey.Google Scholar
Hahn-Weinheimer, P. & Ackermann, H. 1967. Geochemical investigation of differentiated granite plutons of the Southern Black Forest-II. GEOCHIM COSMOCHIM ACTA 31, 2197–218.CrossRefGoogle Scholar
Hahn-Weinheimer, P. & Johanning, H. 1968. Geochemical investigation on differentiated granite plutons in the Black Forest. In Ahrens, L. H. (ed.) Origin and distribution of the elements, 777–93. Oxford: Pergamon Press.CrossRefGoogle Scholar
Hildreth, W. 1979. The Bishop Tuff: Evidence for the origin of compositional zonation in silicic magma chambers. GEOL SOC AM SPEC PAP 180, 4375.Google Scholar
Hildreth, W. 1981. Gradients in silicic magma chambers: implications for lithospheric magmatism. J GEOPHYS RES 86, 10153–92.CrossRefGoogle Scholar
Hildreth, W., Christiansen, R. L. & O'Neil, J. R. 1984. Catastrophic isotopic modification of rhyolite magma at times of caldera subsidence, Yellowstone Plateau volcanic field. J GEOPHYS RES 89, 8339–69.CrossRefGoogle Scholar
Hill, R. I., Silver, L. T., Chappell, B. W. & Taylor, H. P. Jr. 1985. Solidification and recharge of SiO2-rich plutonic magma chambers. NATURE 313, 643–6.CrossRefGoogle Scholar
Karner, F. R. 1968. Compositional variation in the Tunk Lake granite pluton, southeastern Maine. BULL GEOL SOC AM 79, 193221.CrossRefGoogle Scholar
Klepper, M. R. & Smedes, H. W. 1959. Elkhorn Mountains volcanic field, western Montana. BULL GEOL SOC AM 70, 1631.Google Scholar
Leat, P. T., Macdonald, R. & Smith, R. L. 1984. Geochemical evolution of the Menengai caldera volcano, Kenya. J GEOPHYS RES 89, 8571–92.CrossRefGoogle Scholar
Lesher, C. E. 1986. Effects of silicate liquid composition on mineral-liquid element partitioning from Soret diffusion studies. J GEOPHYS RES 91, 6123–41.CrossRefGoogle Scholar
Lesher, C. E., Walker, D., Candela, P. & Hays, J. F. 1982. Soret fractionation of natural silicate melts of intermediate to silicic composition. GEOL SOC AM ABSTR PROGRAM 14, 545.Google Scholar
Lipman, P. W. 1984. The roots of ash flow calderas in western North America: windows into the tops of granitic batholiths. J GEOPHYS RES 89, 8801–41.CrossRefGoogle Scholar
Ludington, S. 1981. The Redskin Granite: evidence for thermogravitational diffusion in a Precambrian granite batholith. J GEOPHYS RES 86, 10423–30.CrossRefGoogle Scholar
Macdonald, R., Bailey, D. K. & Sutherland, D. S. 1970. Oversaturated peralkaline glassy trachytes from Kenya. J PETROL 11, 507–17.CrossRefGoogle Scholar
Macdonald, R., Davies, G. R., Bliss, C. M., Leat, P. T., Bailey, D. K. & Smith, R. L. 1987. Geochemistry of high-silica peralkaline rhyolites, Naivasha, Kenya Rift Valley. J PETROL 28, 9791008.CrossRefGoogle Scholar
Macdonald, R., Smith, R. L. & Thomas, J. E., in press. Chemistry of the subalkalic silicic obsidians. US GEOL SURV PROF PAP.Google Scholar
Mahood, G. A. 1981. Chemical evolution of a Pleistocene rhyolitic center: Sierra La Primavera, Jalisco, Mexico. CONTRIB MINERAL PETROL 77, 129–49.CrossRefGoogle Scholar
Marshall, L. A. & Sparks, R. S. J. 1984. Origin of some mixed-magma and net veined ring intrusions. J GEOL SOC LONDON 141, 171–82.CrossRefGoogle Scholar
McCarthy, T. S. & Groves, D. I. 1979. The Blue Tier Batholith, northeastern Tasmania. CONTRIB MINERAL PETROL 71, 193209.CrossRefGoogle Scholar
Michael, P. J. 1983. Chemical differentiation of the Bishop Tuff and other high-silica magmas through crystallization processes. GEOLOGY 11, 31–4.2.0.CO;2>CrossRefGoogle Scholar
Miller, C. F. & Mittlefehldt, D. W. 1984. Extreme fractionation in felsic magma chambers: a product of liquid-state diffusion or fractional crystallization? EARTH PLANET SCI LETT 68, 151–8.CrossRefGoogle Scholar
Oxburgh, E. R. & McRae, T. 1984. Physical constraints on magma contamination in the continental crust: an example, the Adamello complex. PHILOS TRANS R SOC LONDON A310, 457–72.Google Scholar
Pearce, J. A., Harris, N. B. W. & Tindle, A. G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J PETROL 25, 956–83.CrossRefGoogle Scholar
Pitcher, W. S. 1979. The nature, ascent and emplacement of granitic magmas. J GEOL SOC LONDON 136, 627–62.CrossRefGoogle Scholar
Reid, J. B. Jr., Evans, O. C. & Fates, D. G. 1983. Magma mixing in granitic rocks of the central Sierra Nevada, California. EARTH PLANET SCI LETT 66, 243–61.CrossRefGoogle Scholar
Rytuba, J. J. & McKee, E. H. 1984. Peralkaline ash flow tuffs and calderas of the McDermitt volcanic field, southeast Oregon and north central Nevada. J GEOPHYS RES 89A 8616–28.CrossRefGoogle Scholar
Scambos, T. A., Loiselle, M. C. & Wones, D. R., 1986. The Center Pond pluton: the restite of the story (phase separation and melt evolution in granitoid genesis). AM J SCI 286, 241–80.CrossRefGoogle Scholar
Shaw, H. R. 1985. Links between magma-tectonic rate balances, plutonism, and volcanism. J GEOPHYS RES 90, 11275–88.CrossRefGoogle Scholar
Smith, R. L. 1979. Ashflow magmatism. GEOL SOC AM SPEC PAP 180, 527.Google Scholar
Smith, R. L. 1980. The Valles caldera, Jemez Mountains, New Mexico. EOS 61, 1150.Google Scholar
Smith, R. L. & Bailey, R. A. 1966. The Bandelier Tuff: A study of ash-flow eruption cycles from zoned magma chambers. BULL VOLCANOL 29, 83104.CrossRefGoogle Scholar
Smith, R. L. & Macdonald, R. 1979. Rhyolitic volcanism and its relationship to granitic plutonism. GEOL SOC AM ABSTR PROGRAM 11, 50.Google Scholar
Smith, R. L. & Shaw, H. R. 1973. Volcanic rocks as geologic guides to geothermal exploration and evaluation. EOS 54, 1213.Google Scholar
Smith, R. L. & Shaw, H. R. 1975. Igneous-related geothermal systems. Assessment of geothermal resources of the United States– 1975. US GEOL SURV CIRC 726, 5883.Google Scholar
Smith, R. L. & Shaw, H. R. 1979. Igneous-related geothermal systems. Assessment of geothermal resources of the United States – 1978. US GEOL SURV CIRC 790, 1217.Google Scholar
Sparks, R. S. J. & Marshall, L. A. 1986. Thermal and mechanical constraints on mixing between mafic and silicic magmas. J VOLCANOL GEOTHERM RES 29, 99124.CrossRefGoogle Scholar
Stephens, W. E. & Halliday, A. N. 1984. Geochemical contrasts between late Caledonian granitoid plutons of northern, central and southern Scotland. TRANS R SOC EDINBURGH: EARTH SCI 75, 259–73.CrossRefGoogle Scholar
Tindle, A. G. & Pearce, J. A. 1981. Petrogenetic modelling of in situ fractional crystallization in the zoned Loch Doon pluton. CONTRIB MINERAL PETROL 78, 196207.CrossRefGoogle Scholar
Tischendorf, G., Hösel, G., Lange, H. & Bolduan, H. 1971. The geochemical and structural control of the tin mineralization in the Erzgebirge. SOC MINING GEOL JAPAN SPEC ISSUE 3, 1519.Google Scholar
Tuach, J., Davenport, P. H., Dickson, W. L. & Strong, D. F. 1986. Geochemical trends in the Ackley Granite, southeast Newfoundland: their relevance to magmatic-metallogenic processes in high-silica granitoid systems. CAN J EARTH SCI 23, 747–65.CrossRefGoogle Scholar
Walker, D., Lesher, G. E. & Hays, J. F. 1981. Soret separation of lunar liquids. PROC LUNAR PLANET SCI CONF. 12th, 991–9.Google Scholar
White, A. J. R. & Chappell, B. W. 1977. Ultrametamorphism and granitoid genesis. TECTONOPHYSICS 43, 722.CrossRefGoogle Scholar
Wyborn, D. & Chappell, B. W. 1986. The petrogenetic significance of chemically related plutonic and volcanic rock units. GEOL MAG 123, 619–28.CrossRefGoogle Scholar