Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T01:17:30.147Z Has data issue: false hasContentIssue false

Regional geothermobarometry in the granulite facies terrane of South India

Published online by Cambridge University Press:  03 November 2011

M. Raith
Affiliation:
Mineralogisch-Petrographisches Institut, Universitat Kiel, Olshausenstraβe 40–60, 2300 Kiel, Federal Republic of Germany.
P. Raase
Affiliation:
Mineralogisch-Petrographisches Institut, Universitat Kiel, Olshausenstraβe 40–60, 2300 Kiel, Federal Republic of Germany.
D. Ackermand
Affiliation:
Mineralogisch-Petrographisches Institut, Universitat Kiel, Olshausenstraβe 40–60, 2300 Kiel, Federal Republic of Germany.
R. K. Lal
Affiliation:
Department of Geology, Banaras Hindu University, Varanasi 221005, India.

Abstract

In the southern part of the Archaean craton of South India, an approximately 3.4–2.9 b.y. old migmatite–gneiss terrane (Peninsular gneiss complex) has been subjected to granulite facies metamorphism about 2.6 b.y. ago. During this event, the extensive charnockite-khondalite zone of southern India developed. A younger metamorphism (Proterozoic?) led to retrogression of the charnockites and khondalites, mainly under the conditions of the amphibolite facies.

The physical conditions of metamorphism have been evaluated by applying methods of geothermobarometry to the widespread charnockitic assemblages with garnet, orthopyroxene, clinopyroxene, plagioclase, and quartz. The interpretation of the P–T estimates includes a critical discussion of potential error sources, e.g. errors of the analytical data and the calibrations of the models, and takes into account the complex metamorphic history of the rocks and the kinetics of the mineral equilibria.

P-T estimates were obtained for seven subareas from the rim compositions of the coexisting minerals: Shevaroy Hills 680±55°C—7·4±1 kb; Kollaimalai area 680±40°C—8·6± 1 kb; Nilgiri Hills 680±90°C—6·6±0.8kb (upland massif) and 705±60°C—9·3±0.8 kb (northern margin); Bhavani Sagar area 650±50°C—7·2± 1 kb; Sargur-Mysore area 690±60°C—7·6 kb; Bangalore-Kunigal-Satnur area 760±50°C—6 kb. Except for the last subarea, the P-T model data reflect the conditions of a late annealing stage probably related to the retrogressive metamorphism. Conditions near the peak of granulite facies metamorphism (730–800°C—6·5–9·5 kb) are recorded by the core compositions of the minerals. Although a rather uniform cooling history of the main part of the charnockite-khondalite terrane is suggested from the temperature data, differential uplift of smaller blocks is indicated by the regional variation of the pressure data.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

6. References

Akella, J. 1976. Garnet pyroxene equilibria in the system CaSiO3–MgSiO3–Al2O3 and in natural mineral mixtures. AM MINERAL 61, 589–98.Google Scholar
Anantha Iyer, G. V. & Narayanan Kutty, T. R. 1975. Petrology of garnetiferous cordierite gneisses from the vicinity of Closepet granite. INDIAN J EARTH SCI 2, 125–41.Google Scholar
Beckinsale, R. D., Drury, S. A. & Holt, R. W. 1980. 3,360-Myr old gneisses from the South Indian Craton. NATURE 283, 469–70.Google Scholar
Bohlen, S. R. & Essene, E. J. 1979. A critical evaluation of two-pyroxene thermometry in Adirondack granulites. LITHOS 12, 335–45.Google Scholar
Bohlen, S. R. & Essene, E. J. 1980. Evaluation of coexisting garnet-biotite, garnet-clinopyroxene, and other Mg–Fe exchange thermometers in Adirondack granulites. BULL GEOL SOC AM 91, 685719.Google Scholar
Burri, C., Parker, R. L. & Wenk, E. 1967. Die optische Orientierung der Plagioklase—Unterlagen und Diagramme zur Plagioklas-bestimmung nach der Drehtisch-Methode. Basel und Stuttgart: Birkhauser.Google Scholar
Carswell, D. A. & Gibb, F. G. F. 1980. Geothermometry of garnet lherzolite nodules with special reference to those from the kimberlites of northern Lesotho. CONTRIB MINERAL PETROL 74, 404–16.Google Scholar
Carswell, D. A. & Griffin, W. L. 1981. Calculation of equilibration conditions for garnet granulite and garnet websterite nodules in African kimberlite pipes. TSCHERMAKS MINERAL PETROG MITT 28, 229–44.Google Scholar
Cawthorn, R. G. & Collerson, K. D. 1974. The recalculation of pyroxene end-member parameters and the estimation of ferrous and ferric iron content from electron microprobe analyses. AM MINERAL 59, 1203–8.Google Scholar
Dahl, P. S. 1980. The thermal-compositional dependence of Fe2+–Mg distributions between coexisting garnet and pyroxene: applications to geothermometry. AM MINERAL 65, 854–66.Google Scholar
Delaney, J. S., Smith, J. V., Dawson, J. B. & Nixon, P. H. 1979. Manganese thermometer for mantle peridotites. CONTRIB MINERAL PETROL 71, 157–69.Google Scholar
Dougan, T. W. 1974. Cordierite gneisses and associated lithologies of the Guri area, northwest Guayana shield, Venezuela. CONTRIB MINERAL PETROL 46, 169–88.Google Scholar
Drury, S. A. & Holt, R. W. 1980. The tectonic framework of the South Indian Craton: a reconnaissance involving LANDSAT imagery. TECTONOPHYSICS 65, T115.Google Scholar
Ellis, D. J. 1980. Osumilite-sapphirine-quartz granulites from En-derby Land, Antarctica: P–T conditions of metamorphism, implications for garnet-cordierite equilibria and the evolution of the deep crust. CONTRIB MINERAL PETROL 74, 201–10.Google Scholar
Ellis, D. J. & Green, D. H. 1979. An experimental study of the effect of Ca upon garnet-clinopyroxene Fe–Mg exchange equilibria. CONTRIB MINERAL PETROL 71, 1322.Google Scholar
England, P. C. 1979. Continental geotherms during the Archaean. NATURE 277, 556–8.Google Scholar
Evans, B. W. & Trommsdorff, V. 1978. Petrogenesis of garnet lherzolite, Cima di Gagnone, Lepontine Alps. EARTH PLANET SCI LETT 40, 333–48.Google Scholar
Fraser, D. G. (ed.) 1977. Thermodynamics in Geology (Proc. N.A.T.O. Advanced Study Institute, Oxford, 1976). Boston: Reidel.Google Scholar
Friend, C. R. L. 1981. Charnockite and granite formation and influx of CO2 at Kabbaldurga. NATURE 294, 550–2.Google Scholar
Ganguly, J. 1979. Garnet and clinopyroxene solid solutions, and geothermometry based on Fe-Mg distribution coefficient. GEOCHIM COSMOCHIM ACTA 43, 1021–9.Google Scholar
Halden, N. M., Bowes, D. R. & Dash, B. 1982. Structural evolution of migmatites in granulite facies terrane: Precambrian crystalline complex of Angul, Orissa, India. TRANS R SOC EDINBURGH EARTH SCI 73, 109–18.Google Scholar
Hamm, H.-M. & Vieten, K. 1971. Zur Berechnung der kristallchemischen Formel und des Fe3+-Gehaltes von Klino-pyroxenen aus Elektronenstrahl-Mikroanalysen. NEUES JAHRB MINERAL MONATSH 310–4.Google Scholar
Hariya, Y. & Kennedy, G. C. 1968. Equilibrium study of anorthite under high pressure and high temperature. AM J SCI 266, 193203.Google Scholar
Harris, N. B. W., Holt, R. W. & Drury, S. A. 1982. Geobarometry, geothermometry, and late Archean geotherms from the granulite facies terrain in South India. J GEOL 90, 509–27.Google Scholar
Harris, N. B. W. & Jayaram, S. 1982. Metamorphism of cordierite gneisses from the Bangalore region of the Indian Archean. LITHOS 15, 8998.Google Scholar
Holdaway, M. J. 1971. Stability of andalusite and the aluminium solicate phase diagram. AM J SCI 271, 97131.Google Scholar
Holland, T. H. 1900. The charnockite series, a group of Archaean hypersthenic rocks in peninsular India. MEM GEOL SURV INDIA 28, 192249.Google Scholar
Hörmann, P. K., Raith, M., Raase, P., Ackermand, D. & Seifert, F. 1980. The granulite complex of Finnish Lappland: petrology and metamorphic conditions in the Ivalojoki-Inarijarvi area. BULL GEOL SURV FINL 308.Google Scholar
Howie, R. A. 1955. The geochemistry of the charnockite series of Madras, India. TRANS R SOC EDINBURGH 62, 725–68.Google Scholar
Janardhan, A. S., Newton, R. C. & Smith, J. V. 1979. Ancient crustal metamorphism at low : charnockite formation at Kabbaldurga, south India. NATURE 278, 511–4.Google Scholar
Janardhan, A. S., Newton, R. C. & Hansen, E. C. 1982. The transformation of amphibolite facies gneiss to charnockite in southern Karnataka and northern Tamil Nadu, India. CONTRIB MINERAL PETROL 79, 130–49.Google Scholar
Kaila, K. L., Roy Chowdhury, K., Reddy, P. R., Krishna, V. G., Narain, Hari, Subbotin, S. I., Sollogub, V. B., Chekunov, A. V., Kharetchko, G. E., Lazarenko, M. A. & Ilehenko, T. V. 1979. Crustal structure along Kavali-Udipi profile in the Indian peninsular shield from deep seismic sounding. J GEOL SOC INDIA 20, 307–33.Google Scholar
Lee, S. M. & Holdaway, M. J. 1977. Significance of Fe-Mg cordierite stability relations on temperature, pressure, and water pressure in cordierite granulites. In Heacock, J. G. (ed.) The Earth's Crust, 7994. AM GEOPHYS U GEOPHYS MONOGR 20.Google Scholar
Lindsley, D. H. & Dixon, S. 1976. Diopside-enstatite equilibria at 850°C to 1400°C, 5 to 35 kb. AM J SCI 276, 1285–301.Google Scholar
Mahabaleswar, B. & Naganna, Ch. 1981. Geothermometry of Karnataka charnockites. BULL MINERAL 104, 848–55.Google Scholar
Martignole, J. 1979. Charnockite genesis and the Proterozoic crust. PRECAMBRIAN RES 9, 303–10.Google Scholar
McLelland, J. M. & Whitney, P. R. 1977. The origin of garnet in the anorthosite–charnockite suite of the Adirondacks. CONTRIB MINERAL PETROL 60, 161–81.Google Scholar
Mori, T. & Green, D. H. 1975. Pyroxenes in the system Mg2Si2O6–CaMgSi2O6 at high pressure. EARTH PLANET SCI LETT 26, 277–86.Google Scholar
Mori, T. & Green, D. H. 1978. Laboratory duplication of phase equilibria observed in natural garnet lherzolites. J. GEOL 86, 8397.Google Scholar
Morse, S. A. 1968. Revised dispersion method for low plagioclase. AM MINERAL 53, 105–15.Google Scholar
Nehru, C. E. & Wyllie, P. J. 1974. Electron-microprobe measurement of pyroxenes coexisting with H2O-undersaturated liquid in the join CaMgSi2O6–Mg2Si2O6–H2O at 30 kilobars with application to geothermometry. CONTRIB MINERAL PETROL 48, 221–8.Google Scholar
Neumann, E.-R. 1976. Two refinements for the calculation of structural formulae for pyroxenes and amphiboles. NOR GEOL TIDSSKR 56, 16.Google Scholar
Newton, R. C. 1983. Geobarometry of high-grade metamorphic rocks. AM J SCI 283–A, 128.Google Scholar
Newton, R. C., Navrotsky, A. & Wood, B. J. (eds) 1981. Thermodynamics of Minerals and Melts, 129–45. New York: Springer.Google Scholar
Newton, R. C. & Perkins, D. 1982. Thermodynamic calibration of geobarometers based on the assemblages garnet-plagioclase-orthopyroxene (clinopyroxene)-quartz. AM MINERAL 67, 203–23.Google Scholar
O'Neill, H. S. C. & Wood, B. J. 1979. An experimental study of Fe-Mg partitioning between garnet and olivine and its calibration as a geothermometer. CONTRIB MINERAL PETROL 70, 5970.Google Scholar
Papike, J. J., Cameron, K. L. & Baldwin, K. 1974. Amphiboles and pyroxenes: characterisation of other than quadrilateral components and estimates of ferric iron from microprobe data. GEOL SOC AM ABSTR PROGRAM 6, 1053–4.Google Scholar
Perchuk, L. L. 1968. Pyroxene-garnet equilibrium and the depth facies of eclogites. INT GEOL REV 10, 280318.Google Scholar
Perkins, D. & Newton, R. C. 1981. Charnockite geobarometers based on coexisting garnet-pyroxene-plagioclase-quartz. NATURE 292, 144–6.Google Scholar
Pichamuthu, C. S. 1953. The charnockite problem. SPEC PUBL MYSORE GEOL ASSOC BANGALORE.Google Scholar
Pichamuthu, C. S. 1961. Transformation of Peninsular gneiss into charnockite in Mysore state, India. J GEOL SOC INDIA 2, 46–9.Google Scholar
Powell, R. 1978. The thermodynamics of pyroxene geotherms. PHIL TRANS R SOC LONDON A 288, 457–69.Google Scholar
Råheim, A. & Green, D. H. 1974. Experimental determination of the temperature and pressure dependence of the Fe-Mg partition coefficient for coexisting garnet and clinopyroxene. CONTRIB MINERAL PETROL 48, 179203.Google Scholar
Raith, M., Raase, P., Ackermand, D. & Lai, R. K. 1982. The Archean Craton of Southern India: Metamorphic evolution and P–T conditions. GEOL RUNDSCH 71, 280–90.Google Scholar
Rama Rao, B. 1945. The charnockitic rocks of Mysore. MYSORE GEOL DEPT BULL 18.Google Scholar
Ramiengar, A. S., Ramakrishnan, M. & Viswanatha, M. N. 1978. Charnockite–gneiss-complex relationship in southern Karnataka. J GEOL SOC INDIA 19, 411–9.Google Scholar
Robie, R. A. & Waldbaum, D. R. 1968. Thermodynamic properties of minerals and related substances at 298·15°K (25·0°C) and one atmosphere (1·013 bars) pressure and at higher temperatures. BULL US GEOL SURV 1259.Google Scholar
Rollinson, H. R., Windley, B. F. & Ramakrishnan, M. 1981. Contrasting high and intermediate pressures of metamorphism in the Archaean schists of southern India. CONTRIB MINERAL PETROL 76, 420–9.Google Scholar
Savage, D. & Sills, J. D. 1980. High pressure metamorphism in the Scourian of NW Scotland: Evidence from garnet granulites. CONTRIB MINERAL PETROL 74, 153–63.Google Scholar
Saxena, S. K. 1973. Thermodynamics of rock-forming crystalline solutions. Berlin: Springer.Google Scholar
Saxena, S. K. 1976. Two pyroxene geothermometer: a model with an approximate solution. AM MINERAL 61, 643–52.Google Scholar
Saxena, S. K. 1979. Garnet-clinopyroxene geothermometer. CONTRIB MINERAL PETROL 70, 229–35.Google Scholar
Springer, G. 1967. Die Berechnung von Korrekturen für die quantitative Elektronenstrahl-Mikroanalyse. FORTSCHR MINERAL 45, 103–24.Google Scholar
Swami Nath, J., Ramakrishnan, M. & Viswanatha, M. N. 1976. Dharwar stratigraphic model and Karnataka craton evolution. REC GEOL SURV INDIA 107, 149–75.Google Scholar
Swami Nath, J. & Ramakrishnan, M. 1981. Early Precambrian supracrustals of Southern Karnataka. MEM GEOL SURV INDIA 112.Google Scholar
Sweatman, T. R. & Long, J. V. P. 1969. Quantitative electron-probe micro-analysis of rock-forming minerals. J PETROL 10, 332–79.Google Scholar
Thompson, A. B. 1976. Mineral reactions in pelitic rocks: II. Calculation of some P–T–X (Fe–Mg) phase relations. AM J SCI 276, 425–54.Google Scholar
Venkatasubramanian, V. S. 1974. Geochronology of Dharwar craton: a review. J GEOL SOC INDIA 15.Google Scholar
Weaver, B. L., Tarney, J., Windley, B. F., Sugavanam, E. B. & Venkata Rao, V. 1978. Madras granulites: Geochemistry and P-T conditions of crystallization. In Windley, B. F. and Naqvi, S. M. (eds) Archaean Geochemistry, 177204. Amsterdam: Elsevier.Google Scholar
Wells, P. R. A. 1977. Pyroxene thermometry in simple and complex systems. CONTRIB MINERAL PETROL 62, 129–39.Google Scholar
Wells, P. R. A. 1979. Chemical and thermal evolution of Archaean sialic crust, southern West Greenland. J PETROL 20, 187226.Google Scholar
Wood, B. J. 1974. Solubility of alumina in orthopyroxene coexisting with garnet. CONTRIB MINERAL PETROL 46, 115.Google Scholar
Wood, B. J. 1977. The activities of components in clinopyroxene and garnet solid solutions and their applications to rocks. PHILOS TRANS R SOC LONDON A, 286, 331–42.Google Scholar
Wood, B. J. & Banno, S. 1973. Garnet-orthopyroxene and orthopyroxene–clinopyroxene relationships in simple and complex systems. CONTRIB MINERAL PETROL 42, 109–24.Google Scholar
Wood, B. J. & Fraser, D. G. 1977. Elementary thermodynamics for geologists. Oxford University Press.Google Scholar