Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T14:57:50.413Z Has data issue: false hasContentIssue false

Petrography and geochemistry of feldspathic and mafic sediments of the northeastern Pacific margin

Published online by Cambridge University Press:  03 November 2011

Peter C. van de Kamp
Affiliation:
Cornelis Corporation, 1237 Coombs Street, Napa, California 94559, U.S.A.
Bernard Elgey Leake
Affiliation:
Department of Geology, University of Glasgow, Glasgow G12 8QQ, Scotland.

Abstract

This study attempts to ascertain whether the differing provenance sources and plate tectonic settings of deposition of clastic sediments and rocks can be identified by chemical means, thus opening the increased use of these rocks and their metamorphosed derivatives in plate tectonic modelling. Mineralogically immature feldspathic and mafic sands, muds, sandstones and shales from Mesozoic, Cenozoic and Holocene clastic deposits in California, Oregon, Alaska and Colorado have been both modally and chemically analysed providing a valuable data base (217 samples; 216 samples chemically analysed, many for 28 elements).

There is significant upward chemical variation in the Great Valley sequence of California which mimics previously described petrographic variation and in turn reflects provenance changes with igneous episodes and erosional stripping of the Sierra Nevada in late Mesozoic time. Differing sandstone petrofacies result in varying chemical signatures and while the provenances of monomict sediments are easiest to identify, polymict sources involving granitoid or ophiolitic material can often be identified by potassium feldspar or Cr contents. The distinction of K which is derived from detrital potassium feldspar from K derived from detrital illite, micas or other sheet minerals, is best made by a Niggli al–alk plot against k. Mafic sandstones derived from mafic volcanic or plutonic rocks preserve essentially mafic igneous chemistry and could be possible parent sources of some amphibolites which grade into metasediments. The lithified erosion products of the Sierra Nevada calc-alkaline igneous rocks have higher Niggli al–alk and higher average Niggli si at any given mg value than the fresh igneous rocks enabling meta-arkoses to be distinguished from meta-igneous rocks.

Applying previously published chemical criteria gives the actual plate tectonic setting of deposition of most of the sandstones studied. This suggests that the chemical composition of sandstones can yield much more information about the provenance and plate tectonic setting than hitherto recognised.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baldwin, E. M. 1975. Revision of the stratigraphy of southwestern Oregon: Paleogene symposium. In Weaver, D. W., Hornaday, G. R. & Tipton, A. (eds) Annual meeting Pacific sections AAPG, SEPM & SEG, Long Beach, California 1975, 4964.Google Scholar
Baldwin, E. M. 1981. Geology of Oregon, 3rd edn. Dubuque, Iowa: Kendall-Hunt.Google Scholar
Baldwin, E. M. & Perttu, R. 1980. Paleogene stratigraphy and structure along the Klamath Borderland, Oregon. In Oles, K. F., Johnson, J. G., Niem, A. R. & Niem, W. A. (eds) Geologic field trips in W. Oregon and SW Washington, 917. BULL OREGON DEPT GEOL MIN IND 101.Google Scholar
Beveridge, A. J. 1960. Heavy minerals in Lower Tertiary formations in the Santa Cruz Mountains, California. J SEDIMENT PETROL 30, 513–37.Google Scholar
Bhatia, M. R. 1983. Plate tectonics and geochemical composition of sandstones. J GEOL 91, 611–28.Google Scholar
Bhatia, M. R. 1985. Plate tectonics and geochemical composition of sandstones: a reply. J GEOL 93, 85–7.Google Scholar
Bolt, G. H. & Bruggenwert, M. G. M. 1978. Soil chemistry, A. Basic elements 2nd edn. Amsterdam: Elsevier.Google Scholar
Burk, C. A. 1965. Geology of the Alaska Peninsula—island arc and continental margin. MEM GEOL SOC AM 99.Google Scholar
Carter, B. 1982. Geology and structural setting of the San Gabriel anorthosite-syenite body and adjacent rocks of the western San Gabriel Mountains, Los Angeles County, California. In Cooper, J. D. (compiler) Geological excursion in the Transverse Ranges, southern California, Guidebook, 156. GEOL SOC AM CORDILLERAN SECT 78TH ANNU MEET.Google Scholar
Chan, M. A. 1982. Comparison of sedimentology and diagenesis of Eocene rocks, SW Oregon. Unpublished Ph.D. thesis, Wisconsin University.Google Scholar
Chayes, F. 1971. Ratio correlation. Chicago: University of Chicago Press.Google Scholar
Clark, J. C. 1981. Stratigraphy, paleontology and geology of the central Santa Cruz Mountains, California Coast Ranges. U S GEOL SURV PROF PAP 1168.Google Scholar
Clark, M. S. & Bond, G. C. 1978. Clay mineralogy of the Upper Jurassic to Cretaceous section of the Great Valley sequence exposed at Putah Creek. In Kramer, J. C. (ed.) Geologic guide to the northern California Coast Ranges—Sacramento to Bodega Bay, 115–29. ANNU FIELD TRIP GUIDEB GEOL SOC SACRAMENTO.Google Scholar
Cummings, J. C., Touring, R. M. & Brabb, E. E. 1982. Geology of the northern Santa Cruz, Mountains, California. CALIFORNIA DIV MINES GEOL BULL 181, 179220.Google Scholar
Dickinson, W. R. 1970. Interpreting detrital modes of graywacke and arkose. J SEDIMENT PETROL 40, 695707.Google Scholar
Dickinson, W. R., Ingersoll, R. V., Cowan, D. S., Helmold, K. P. & Suczek, C. A. 1982. Provenance of Franciscan graywackes in coastal California. BULL GEOL SOC AM 93, 95107.Google Scholar
Dickinson, W. R. & Rich, E. I. 1972. Petrologic intervals and petrofacies in the Great Valley sequence, Sacramento Valley, California. BULL GEOL SOC AM 83, 3007–24.Google Scholar
Dott, R. H. 1966. Eocene deltaic sedimentation at Coos Bay, Oregon. J GEOL 74, 373420.Google Scholar
Folk, R. L. 1978. Petrology of sedimentary rocks. Austin, Texas: Hemphill.Google Scholar
Galloway, W. E. 1974. Deposition and diagenetic alteration of sandstone in Northeast Pacific arc-related basins: implications for graywacke genesis. BULL GEOL SOC AM 85, 179–90.Google Scholar
Haehl, H. L. & Arnold, R. 1904: The Miocene diabase of the Santa Cruz Mountains in San Mateo County, California. AMPHILOS SOC PROC 43, 1553.Google Scholar
Harvey, P. K., Taylor, D. M., Hendry, R. D. & Bancroft, F. 1973. An accurate fusion method for the analysis of rocks and chemically related materials by X-ray fluorescence spectrometry, X-RAY SPECTROM 2, 3344.CrossRefGoogle Scholar
Heier, K. & Billings, G. K. 1970. Potassium abundance in common sediments and sedimentary rocks types. In Wedepohl, K. H. (ed.) Handbook of Geochemistry, chapter 19–K. New York: Springer-Verlag.Google Scholar
Heller, P. L. 1985. Isotopic provenance of sandstones from the Eocene Tyee Formation, Oregon Coast Range. BULL GEOL SOC AM 96, 770–80.Google Scholar
Higgs, D. V. 1954. Anorthosite and related rocks of the Western San Gabriel Mountains, southern California. UNIV CALIFORNIA PUBL GEOL SCI 30, 171222.Google Scholar
Hiscott, R. N. 1984. Ophiolitic source rocks for Taconic-age flysch: trace element evidence. BULL GEOL SOC AM 95, 1261–7.2.0.CO;2>CrossRefGoogle Scholar
Hoover, L. 1963. Geology of the Anlauf and Drain quadrangles, Douglas and Lane Counties, Oregon. BULL U S GEOL SURV 1122D.Google Scholar
Ingersoll, R. V. 1983. Petrofacies and provenance of Late Mesozoic Forearc basin, northern and central California. BULL AM ASSOC PET GEOL 67, 1125–42.Google Scholar
Ingersoll, R. V., Rich, E. I. & Dickinson, W. R. 1977. Great Valley Sequence, Sacramento Valley: Field trip guidebook for Cordilleran Section. GEOL SOC AM CORDILLERAN SECT 73RD ANNU MEET.Google Scholar
Larsen, E. S. 1948. Batholith and associated rocks of Corona, Elsinore, and San Luis Rey Quadrangles, southern California. MEM GEOL SOC AM 29.Google Scholar
Leake, B. E., Hendry, G. L., Kemp, A., Plant, A. G., Harvey, P. K., Wilson, J. R., Coats, J. S., Aucott, J. W., Lunel, T. & Howarth, R. J. 1969. The chemical analysis of rock powders by automatic X-ray fluorescence. CHEM GEOL 5, 786.Google Scholar
Lockwood, J. P. 1971. Sedimentary and Gravity-Slide Emplacement of Serpentine. BULL GEOL SOC AM 82, 919–36.CrossRefGoogle Scholar
Loring, D. H. 1978. Geochemistry of zinc, copper and lead in the sediments of the estuary and Gulf of St Lawrence. CAN J EARTH SCI 15, 757–72.Google Scholar
Loring, D. H. 1982. Geochemical factors controlling the accumulation and dispersal of heavy metals in the Bay of Fundy sediments. CAN J EARTH SCI 19, 930–44.CrossRefGoogle Scholar
Lovell, J. P. B. 1969. Tyee Formation: undeformed turbidites and their lateral equivalents—mineralogy and paleogeography. BULL GEOL SOC AM 80, 922.Google Scholar
Lyle, W. M., Morehouse, J. A., Palmer, I. F. & Bolm, J. G. 1979. Tertiary formations and associated Mesozoic rocks in the Alaska Peninsula area, Alaska and their petroleum-reservoir and source-rock potential. ALASKA DIV GEOL GEOPHYS SURV BULL 62.Google Scholar
Mansfield, C. F. 1979. Upper Mesozoic subsea fan deposits in the southern Diablo Range, California: record of the Sierra Nevada magmatic arc. BULL GEOL SOC AM 90, 1025–46.Google Scholar
Merriam, R. & Bandy, O. L. 1965. Source of Cenozoic sediment in the Colorado delta region. J SEDIMENT PETROL 35, 911–6.Google Scholar
Moench, R. H. 1964. Geology of Precambrian rocks, Idaho Springs District, Colorado. U S GEOL SURV BULL 1982A.Google Scholar
Nilsen, T. H. & Simoni, T. R. 1973. Deep-sea fan paleocurrent patterns of the Eocene Butano Sandstone, Santa Cruz Mountains, California. J RES U S GEOL SURV 439–52.Google Scholar
Ojakangas, R. W. 1968. Cretaceous sedimentation, Sacramento Valley, California. BULL GEOL SOC AM 79, 9731008.Google Scholar
Peterman, Z. E., Coleman, R. G. & Bunker, C. M. 1981. Provenance of Eocene graywackes of the Flournoy Formation near Agness, Oregon—a geochemical approach. GEOLOGY 9, 81–6.2.0.CO;2>CrossRefGoogle Scholar
Peterman, Z. E., Hedge, C. E.Coleman, R. G. & Snavely, P. D. 1967. Ratios in some eugeosynclinal sedimentary rocks and their bearing on the origin of granitic magma in orogenic belts. EARTH PLANET SCI LETT 2, 433–9.Google Scholar
Pettijohn, F. J. 1963. Chemical composition of sandstones—excluding carbonate and volcanic sands. U S GEOL SURV PROF PAP 440S.Google Scholar
Pettijohn, F. J., Potter, P. E. & Siever, R. 1972. Sand and Sandstone. New York: Springer-Verlag.Google Scholar
Ricci, C. A. & Sabatini, G. 1976. An example of sedimentary differentiation in volcano-sedimentary series: the high chromium meta-greywackes of Central Sardinia (Italy). NEUES JAHRB MINERAL ABH 7, 307–19.Google Scholar
Rivalenti, G. & Sighinolfi, G. P. 1969. Geochemical study of graywackes as a possible starting material of para-amphibolites. CONTRIB MINERAL PETROL 23, 173–88.Google Scholar
Robinson, D. & Leake, B. E. 1975. Sedimentary and igneous trends on AFM diagrams. GEOL MAG 112, 305–7.CrossRefGoogle Scholar
Rogers, J. J. W. 1966. Geochemical significance of the source rocks of some graywackes from western Oregon and Washington. TEXAS J SCI 39, 520.Google Scholar
Roser, B. P. & Korsch, R. J. 1985. Plate tectonics and geochemical composition of sandstones: a discussion. J GEOL 93, 81–4.Google Scholar
Senior, A. & Leake, B. E. 1978. Regional metasomatism and the geochemistry of the Dalradian metasediments of Connemara, Western Ireland. J PETROL 19, 585625.Google Scholar
Shaw, D. M. 1956. Geochemistry of pelitic rocks. Part 3. Major elements and general geochemistry. BULL GEOL SOC AM 67, 919–34.Google Scholar
Sheridan, D. M., Maxwell, C. H. & Albee, A. L. 1967. Geology and uranium deposits of the Ralston Buttes District, Jefferson County, Colorado. US GEOL SURV PROF PAP 520.Google Scholar
Shiraki, K. 1978. Chromium. In Wedepohl, K. H. (ed.) Handbook of Geochemistry, 24K-1-7. New York: Springer-Verlag.Google Scholar
Sims, P. K. 1967. Petrology and structure of Precambrian rocks, Central City Quadrangle, Colorado. U S GEOL SURV PROF PAP. 554E.Google Scholar
Sims, P. K. & Gable, D. J. 1964. Geology of Precambrian rocks, Central City District, Colorado. U S GEOL SURV PROF PAP 474C.Google Scholar
Snavely, P. D. 1976. Geologic map of the Waldport and Tidewater Quadrangles, Lincoln, Lane, and Benton Counties, Oregon. U S GEOL SURV MAP 1866.Google Scholar
Snavely, P. D. & MacLeod, N. S. 1974. Yachats Basalt—an Upper Eocene differentiated volcanic sequence in the Oregon Coast Range. J RES U S GEOL SURV 2, 395403.Google Scholar
Snavely, P. D., MacLeod, N. S. & Wagner, H. C. 1968. Tholeiitic and alkalic basalts of the Eocene Siletz River Volcanics, Oregon Coast Range. AM J SCI 266, 454–81.Google Scholar
Snavely, P. D., MacLeod, N. S. & Wagner, H. C. 1973. Miocene tholeiitic basalts of coastal Oregon and Washington and their relations to coeval basalts of the Columbia Plateau. BULL GEOL SOC AM 84, 387424.Google Scholar
Snavely, P. D., MacLeod, N. S., Wagner, H. C. & Rau, W. W. 1976. Geologic map of the Cape Foulweather and Euchre Mountain Quadrangles, Lincoln County, Oregon. U S GEOL SURV MAP 1868.Google Scholar
Snavely, P. D.Wagner, H. C. & MacLeod, N. W. 1964. Rhythmic-bedded eugeosynclinal deposits of the Tyee Formation, Oregon Coast Range. In Merriam, D. F. (ed.) Symposium on cyclic sedimentation, 461–80. KANSAS GEOL SURV BULL 1969.Google Scholar
Springer, R. K. 1971. Geology of the Pine Hill intrusive complex, El Dorado County, California. Unpublished Ph.D. thesis, University of California, Davis.Google Scholar
Springer, R. K. 1980. Geology of the Pine Hill intrusive complex, a layered gabbroic body in the western Sierra Nevada foothills, California. BULL GEOL SOC AM 91, 381–5.Google Scholar
Stalder, P. J. 1979. Organic and inorganic metamorphism in the Taveyannaz Sandstone of the Swiss Alps and equivalent sandstones in France and Italy, J SEDIMENT PETROL 49, 463–82.Google Scholar
Suchecki, R. K. 1980. Sedimentary history and diagenesis of volcanogenic rocks, Upper Jurassic and Lower Cretaceous Great Valley Sequence, northern California. Unpublished Ph.D. thesis, University of Texas, Austin.Google Scholar
Suchecki, R. K. & Land, L. S. 1983. Isotopic geochemistry of burial-metamorphosed volcanogenic sediments. Great Valley Sequence, northern California. GEOCHIM COSMOCHIM ACTA 47, 1487–99.CrossRefGoogle Scholar
Suttner, L. J. 1974. Sedimentary petrographic provinces: an evaluation. SOC ECON PALEONTOL MINERAL SPEC PUBL 21, 7584.Google Scholar
Tweto, O. 1980. Precambrian geology of Colorado. In Kent, H. C. & Porter, K. W. (eds) Colorado Geology, 3746. Denver: Rocky Mtn Association of Geologists.Google Scholar
van, Andel T. H. 1964. Recent marine sediments of the Gulf of California. In van, Andel T. H. & Shor, G. G. (eds) Marine Geology of the Gulf of California, 216310. AM ASSOC PET GEOL MEM 3, 216310.Google Scholar
van, de Kamp P. C. 1971. A Precambrian conglomerate with an amphibolite matrix near Kaladar, Ontario. J GEOL SOC LONDON 127, 563–77.Google Scholar
van, de Kamp P. C. 1973. Holocene continental sedimentation in the Salton Basin, California: a reconnaissance. BULL GEOL SOC AM 84, 827–48.Google Scholar
van, de Kamp P. C., Leake, B. E. & Senior, A. 1976. The petrography and geochemistry of some Californian arkoses with application to identifying gneisses of metasedimentary origin. J GEOL 84, 195212.Google Scholar
Warren, W. C., Norbisrath, H. & Grivetti, R. M. 1945. Geology of northwestern Oregon, west of Willamette River and north of latitude 45° 15. U S GEOL SURV, OIL GAS INVENT (PRELIM) MAP 42.Google Scholar
Zimmerle, W. 1968. Serpentine graywackes from the North Coast basin, Colombia, and their geotectonic significance: NEUES JAHRB MINERAL ABH 109, 156–82.Google Scholar