Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-09T13:21:18.013Z Has data issue: false hasContentIssue false

Nitrogen mineralisation dynamics of meat bone meal and cattle manure as affected by the application of softwood chip biochar in soil

Published online by Cambridge University Press:  27 March 2013

Priit Tammeorg
Affiliation:
Department of Agricultural Sciences, P.O. Box 27 (Latokartanonkaari 5, Plant Production Sciences), FIN-00014University of Helsinki, Finland. Email: [email protected]
Tero Brandstaka
Affiliation:
Department of Agricultural Sciences, P.O. Box 27 (Latokartanonkaari 5, Plant Production Sciences), FIN-00014University of Helsinki, Finland. Email: [email protected]
Asko Simojoki
Affiliation:
Department of Food and Environmental Sciences, P.O. Box 27 (Latokartanonkaari 11, Environmental Soil Science), FIN-00014University of Helsinki, Finland
Juha Helenius
Affiliation:
Department of Agricultural Sciences, P.O. Box 27 (Latokartanonkaari 5, Plant Production Sciences), FIN-00014University of Helsinki, Finland. Email: [email protected]

Abstract

We studied the impact of added biochar on the N mineralisation dynamics of two organic fertilisers by incubating loamy sand soil for 133 days in controlled conditions. Biochar made from softwood chips was added to soil at 0, 4·6, 9·1 and 13·6 g kg–1 soil dry matter (DM) either alone, or in combination with meat bone meal (MBM) and composted cattle manure (CCM) fertilisers. Soil mineral N concentration was determined on days 0, 14, 28, 56, 84 and 133. Net N mineralisation in the MBM treatment was much larger than in the CCM or the unfertilised treatments. Constant soil moisture during the incubation provided suitable aerobic soil conditions for nitrification: after day 14, soil mineral N was dominated by nitrate in all treatments. Biochar additions decreased the mineral N concentrations in all treatments, probably because of immobilisation by microbes. In unfertilised soil, the immobilisation by biochar increased steadily with application rate and time, but in the MBM and CCM treatments, it started to decrease or level off after two months, possibly due to the turnover of microbial biomass. The main biochar-induced impacts on soil N mineralisation dynamics could be modelled by using standard and confined exponential models.

Type
Biochar
Copyright
Copyright © The Royal Society of Edinburgh 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

6. References

Ahmedna, M., Johns, M. M., Clarke, S. J., Marshall, W. E. & Rao, R. M. 1997. Potential of agricultural by-product-based activated carbons for use in raw sugar decolorization. Journal of the Science of Food and Agriculture 75, 117–24.Google Scholar
Asai, H., Samson, B. K., Stephan, H. M., Songyikhangsuthor, K., Homma, K., Kiyono, Y., Inoue, Y., Shiraiwa, T. & Horie, T. 2009. Biochar amendment techniques for upland rice production in northern Laos 1. soil physical properties, leaf SPAD and grain yield. Field Crops Research 111, 81–84.CrossRefGoogle Scholar
Ball, P. N., MacKenzie, M. D., DeLuca, T. H. & Holben, W. E. 2010. Wildfire and charcoal enhance nitrification and ammonium-oxidizing bacterial abundance in dry montane forest soils. Journal of Environmental Quality 39, 1243–53.Google Scholar
Brady, N. C. & Weil, R. R. 2002. Factors controlling rates of Decomposition and Mineralisation. In Brady, N. C. & Weil, R. R. (eds) The nature and properties of soils, 505–11. New Jersey: Prentice Hall.Google Scholar
Brewer, C. E., Schmidt-Rohr, K., Satrio, J. A. & Brown, R. C. 2009. Characterization of biochar from fast pyrolysis and gasification systems. Environmental Progress & Sustainable Energy 28, 386–96.Google Scholar
Brockhoff, S. R., Christians, N. E., Killorn, R. J., Horton, R. & Davis, D. D. 2010. Physical and mineral-nutrition properties of sand-based turfgrass root zones amended with biochar. Agronomy Journal 102, 1627–31.CrossRefGoogle Scholar
Brown, R. A., Kercher, A. K., Nguyen, T. H., Nagle, D. C. & Ball, W. P. 2006. Production and characterization of synthetic wood chars for use as surrogates for natural sorbents. Organic Geochemistry 37, 321–33.Google Scholar
Bruun, E. W., Hauggaard-Nielsen, H., Ibrahim, N., Egsgaard, H., Ambus, P., Jensen, P. A. & Dam-Johansen, K. 2011. Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil. Biomass and Bioenergy 35, 1182–89.Google Scholar
Bruun, E. W., Ambus, P., Egsgaard, H. & Hauggaard-Nielsen, H. 2012. Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biology & Biochemistry 46, 7379.Google Scholar
Burnham, K. P. & Anderson, D. R. 2010. Information and likelihood theory: A basis for model selection and inference. In Burnham, K. P. & Anderson, D. R. (eds) Model Selection And Multimodel Inference: A Practical Information- Theoretic Approach, 4996. New York: Springer-Verlag.Google Scholar
Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A. & Joseph, S. 2008. Using poultry litter biochars as soil amendments. Australian Journal of Soil Research 46, 437–44.Google Scholar
Chen, L., Kivelä, J., Helenius, J. & Kangas, A. 2011. Meat bone meal as fertiliser for barley and oat. Agricultural and Food Science 20(3), 235–44.Google Scholar
Cheng, C., Lehmann, J., Thies, J. E. & Burton, S. D. 2008. Stability of black carbon in soils across a climatic gradient. Journal of Geophysical Research 113, G02027. doi:10.1029/2007JG000642.Google Scholar
Clough, T. J., Bertram, J. E., Ray, J. L., Condron, L. M., O'Callaghan, M., Sherlock, R. R. & Wells, N. S. 2010. Unweathered wood biochar impact on nitrous oxide emissions from a bovine-urine amended pasture soil. Soil Science Society of America Journal 74, 852–60.Google Scholar
Clough, T. J. & Condron, L. M. 2010. Biochar and the nitrogen cycle: Introduction. Journal of Environmental Quality 39, 1218–23.CrossRefGoogle ScholarPubMed
DeLuca, T. H., MacKenzie, M. D., Gundale, M. J. & Holben, W. E. 2006. Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Science Society of America Journal 70, 448–53.CrossRefGoogle Scholar
Elonen, P. 1971. Particle size analysis of soil. Acta Agralia Fennica 122, 1122.Google Scholar
Esala, M. 1991. Split application of nitrogen: effects on the protein in spring wheat and fate of 15N-labelled nitrogen in the soil-plant system. Annales Agriculturae Fenniae 30, 219309.Google Scholar
FAO. 1998. World Reference Base for Soil Resources. World Soil Resources Report 84. Rome: FAO.Google Scholar
Fuertes, A. B., Arbestain, M. C., Sevilla, M.Macia-Agullo, J. A., Fiol, S., Lopez, R., Smernik, R. J., Aitkenhead, W. P., Arce, F. & Macias, F. 2010. Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover. Australian Journal of Soil Research 48, 618–26.Google Scholar
Gaskin, J. W., Speir, R. A., Harris, K., Das, K. C., Lee, R. D., Morris, L. A. & Fisher, D. S. 2010. Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agronomy Journal 102, 623–33.Google Scholar
Hamer, U., Marschner, B., Brodowski, S. & Amelung, W. 2004. Interactive priming of black carbon and glucose mineralisation. Organic Geochemistry 35, 823–30.Google Scholar
Jeng, A. S., Haraldsen, T. K., Vagstad, N. & Gronlund, A. 2004. Meat and bone meal as nitrogen fertiliser to cereals in Norway. Agricultural and Food Science 13, 268–75.CrossRefGoogle Scholar
Jeng, A. S., Haraldsen, T. K., Gronlund, A. & Pedersen, P. A. 2006. Meat and bone meal as nitrogen and phosphorus fertiliser to cereals and rye grass. Nutrient Cycling in Agroecosystems 76, 183–91.CrossRefGoogle Scholar
Jeng, A. S. & Vagstadt, N. 2009. Potential nitrogen and phosphorus leaching from soils fertilised with meat and bone meal. Acta Agriculturae Scandinavica Section, B-Soil and Plant Science 59, 238–45.Google Scholar
Keiluweit, M., Nico, P. S., Johnson, M. & Kleber, M. 2010. Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar). Environmental Science and Technology 44, 1247–53.Google Scholar
Kolb, S., Fermanich, K. & Dornbush, M. 2009. Effect of charcoal quantity on microbial biomass and activity in temperate soils. Soil Science Society of America Journal 73, 1173–81.Google Scholar
Koutcheiko, S., Monreal, C. M., Kodama, H., McCracken, T. & Kotlyar, L. 2007. Preparation and characterization of activated carbon derived from the thermo-chemical conversion of chicken manure. Bioresource Technology 98, 2459–64.Google Scholar
Kuzyakov, Y., Subbotina, I., Chen, H., Bogomolova, I. & Xu, X. 2009. Black carbon decomposition and incorporation into soil microbial biomass estimated by C-14 labeling. Soil Biology & Biochemistry 41, 210–19.Google Scholar
Lehmann, J., Da Silva, J. P. Jr, Steiner, C., Nehls, T., Zech, W. & Glaser, B. 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertiliser, manure and charcoal amendments. Plant and Soil 249, 343–57.Google Scholar
Lehmann, J., Skjemstad, J., Sohi, S., Carter, J., Barson, M., Falloon, P., Coleman, K., Woodbury, P. & Krull, E. 2008. Australian climate-carbon cycle feedback reduced by soil black carbon. Nature Geoscience 1, 832–35.Google Scholar
Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'Neill, B., Skjemstad, J. O., Thies, J., Luizao, F. J., Petersen, J. & Neves, E. G. 2006. Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal 70, 1719–30.CrossRefGoogle Scholar
Lu, L. M., Sahajwalla, V., Harris, D. 2000. Characteristics of chars prepared from various pulverized coals at different temperatures using drop-tube furnace. Energy Fuels 14, 869–76.Google Scholar
Major, J., Rondon, M., Molina, D., Riha, S. & Lehmann, J. 2010. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil 333, 117–28.Google Scholar
Mondini, C., Cayuela, M. L., Sinicco, T., Sanchez-Monedero, M., Bertolone, E. & Bardi, L. 2008. Soil application of meat and bone meal. Short-term effects on mineralisation dynamics and soil biochemical and microbiological properties. Soil Biology & Biochemistry 40, 462–74.Google Scholar
MTT. 1986. Methods of soil and plant analysis. Jokioinen, Finland: Agrifood Research Finland MTT. 45 pp.Google Scholar
Nelson, N. O., Agudelo, S. C., Yuan, W. & Gan, J. 2011. Nitrogen and Phosphorus Availability in Biochar-Amended Soils. Soil Science 176, 218–26.Google Scholar
Nguyen, B. T., Lehmann, J., Hockaday, W. C., Joseph, S. & Masiello, C. A. 2010. Temperature sensitivity of black carbon decomposition and oxidation. Environmental Science & Technology 44, 3324–31.CrossRefGoogle ScholarPubMed
Novak, J. M., Busscher, W. J., Laird, D. L., Ahmedna, M., Watts, D. W. & Niandou, M. A. S. 2009. Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Science 174, 105–12.Google Scholar
Novak, J. M., Busscher, W. J., Watts, D. W., Laird, D. A., Ahmedna, M. A., Niandou, M. A. S. 2010. Short-term CO2 mineralisation after additions of biochar and switchgrass to a Typic Kandiudult. Geoderma 154, 281–88.CrossRefGoogle Scholar
Römer, W. 2009. Concepts for a more efficient use of phosphorus based on experimental observations. Berichte über Landwirtschaft 87, 530.Google Scholar
Roy, R. N., Misra, R.V. & Montanez, A. 2002. Decreasing reliance on mineral nitrogen – yet more food. Ambio 31, 177–83.Google Scholar
Salomonsson, L., Jonsson, A., Salomonsson, A. C. & Nilsson, G. 1994. Effects of organic fertilisers and urea when applied to spring wheat. Acta Agriculturae Scandinavica Section B-Soil and Plant Science 44, 170–78.Google Scholar
Salomonsson, L., Salomonsson, A. C., Olofsson, S. & Jonsson, A. 1995. Effects of organic fertilisers and urea when applied to winter-wheat. Acta Agriculturae Scandinavica Section B-Soil and Plant Science 45, 171–80.Google Scholar
Shackley, S. & Sohi, S. (eds) 2010. An assessment of the benefits and issues associated with the application of biochar to soil. A report commissioned by the United Kingdom Department for Environment, Food and Rural Affairs, and Department of Energy and Climate Change. 132 pp.Google Scholar
Stanford, G., Carter, J. N. & Smith, S. J. 1974. Estimates of potentially mineralizable soil nitrogen based on short term incubations. Proceedings of the Soil Science Society of America 38, 99102.Google Scholar
Steiner, C., Teixeira, W. G., Lehmann, J., Nehls, T., de Macedo, J. L. V., Blum, W. E. H. & Zech, W. 2007. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil 291, 275–90.Google Scholar
Stevenson, F. J. & Cole, M. A. 1999. The internal cycle of nitrogen in soil. In Stevenson, F. J. & Cole, M. A.Cycles of Soil: Carbon, Nitrogen, Phosphorus, Sulfur, Micronutrients. 205–06. New York: Wiley.Google Scholar
USEPA 1996. Microwave assisted acid digestion of siliceous and organically based matrices. In: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. EPA Publication SW-846. Washington, DC: USEPA. Available at http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/3052.pdf (verified 16 August, 2011).Google Scholar
Verheijen, F., Jeffery, S., Bastos, A. C., van der Velde, M. & Diafas, I. 2009. Biochar application to soils. A critical scientific review of effects on soil properties, processes and functions. JRC Scientific and Technical Report EUR 24099 EN. Luxembourg: Office for the Official Publications of the European Communities. 149 pp.Google Scholar
Viljavuuspalvelu, Oy. 2008. Viljavuustutkimuksen tulkinta peltoviljelyssä. Mikkeli, Finland: Viljavuuspalvelu Oy.Google Scholar
Vuorinen, J. & Mäkitie, O. 1955. The method of soil testing in use in Finland. Agrogeological Publishing 63, 144.Google Scholar
Wardle, D. A., Nilsson, M. C. & Zackrisson, O. 2008. Fire-derived charcoal causes loss of forest humus. Science 320, 629.CrossRefGoogle ScholarPubMed
Warnock, D. D., Lehmann, J., Kuyper, T. W. & Rillig, M. C. 2007. Mycorrhizal responses to biochar in soil concepts and mechanisms. Plant and Soil 300, 920.Google Scholar
Yanai, Y., Toyota, K. & Ozakaki, M. 2007. Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Science and Plant Nutrition 53, 181–88.Google Scholar
Ylivainio, K., Uusitalo, R. & Turtola, E. 2008. Meat bone meal and fox manure as P sources for ryegrass (Lolium multiflorum) grown on a limed soil. Nutrient Cycling in Agroecosystems 81, 267–78.Google Scholar
Ylivainio, K. & Turtola, E. 2009. Meat bone meal and fur animal manure as P sources in plant production. In Turtola, E. & Ylivainio, K. (eds) Suomen kotieläintalouden fosforikierto-säätöpotentiaali maatloilla ja aluetasolla, 66160. Jokioinen, Finland: Agrifood Research Finland MTT.Google Scholar
Zimmerman, A. R. 2010. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environmental Science & Technology 44, 12951301.Google Scholar