Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-22T16:48:32.034Z Has data issue: false hasContentIssue false

A new tristichopterid (Osteolepiformes: Sarcopterygii) from the Mandagery Sandstone (Late Devonian, Famennian) near Canowindra, NSW, Australia

Published online by Cambridge University Press:  03 November 2011

Zerina Johanson
Affiliation:
Palaeontology Section, Australian Museum, 6 College Street, Sydney, NSW, 2000, Australia, and MUCEP, School of Earth Sciences, Macquarie University, NSW, 2109, Australia
Per Erik Ahlberg
Affiliation:
Department of Palaeontology, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK

Abstract

A new member of the Tristichopteridae (=Eusthenopteridae), Mandageria fairfaxi gen. et sp. nov., is described from the Late Devonian (Famennian) Mandagery Sandstone outcropping near Canowindra, NSW, Australia. It is represented by several complete or partial heads and bodies, preserved as natural moulds. Mandageria shares derived characters with the Late Famennian tristichopterid Eusthenodon wängsjöi from East Greenland; the pineal plate series is large and kite-shaped and is posterior to the middle of the parietals, the intertemporal does not contact the posterior supraorbital, a posterior process of the premaxilla divides the apical fossa, the anteriormost premaxillary tooth is enlarged, the postorbital is excluded from the orbit by a supraorbital–lacrimal contact, and the coronoids lack marginal teeth except posteriorly. Mandageria fairfaxi differs from Eusthenodon in superficial fusion of the supratemporal, tabular and postparietals, in the lateral extrascapulars being separated by only 2–3 mm in the midline anteriorly, and in having proportionately smaller scales. It also has an elongate supracleithrum, which is probably autapomorphic. The postcranial skeleton is comparable to that of the Frasnian genus Eusthenopteron, but differs in the more posterior position of the median fins, the poorly ossified vertebral column, and the flattened ectepicondyle. Mandageria fairfaxi is the second osteolepiform described from Canowindra (the first, Canowindra grossi) and, other than the now-reinterpreted Marsdenichthys, the first tristichopterid described from Australia.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlberg, P. E. 1991. A re-examination of sarcopterygian interrelationships, with special reference to the Porolepiformes. ZOOL J LINN SOC 103, 241–87.CrossRefGoogle Scholar
Ahlberg, P. E. 1992. The palaeoecology and evolutionary history of the porolepiform sarcopterygians. In Mark-Kurik, E. (ed.) Fossil Fishes as Living Animals, 7190. Tallinn: Academy of Sciences of Estonia. Institute of Geology.Google Scholar
Ahlberg, P. E. 1995. Etginerpeton pancheni and the earliest tetrapod clade. NATURE 373, 420–5.CrossRefGoogle Scholar
Ahlberg, P. E. & Trewin, N. H. 1995. The postcranial skeleton of the Middle Devonian lungfish Dipterus i-alenciennesi. TRANS R SOC EDINBURGH: EARTH SCI 85, 159–74.CrossRefGoogle Scholar
Ahlberg, P. E., Luksevics, E. & Lebedev, O. 1994. The first tetrapod finds from the Devonian (Upper Famennian) of Latvia. PHIL TRANS R SOC B 343, 303–28.CrossRefGoogle Scholar
Alexeev, A. A., Lebedev, O. A., Barskov, I. S., Barskova, M. I., Kononova, L. I. & Chizhova, V. A. 1994. On the stratigraphic position of the Famennian and Tournaisian fossil vertebrate beds in Andreyevka, Tula Region. Central Russia. PROC GEOL ASSN 105, 4152.Google Scholar
Andrews, S. M. 1985. Rhizodont crossopterygian fish from the Dinantian of Foulden, Berwickshire, Scotland, with a re-evaluation of this group. TRANS R SOC EDINBURGH: EARTH SCI 76, 6795.CrossRefGoogle Scholar
Andrews, S. M. & Westoll, T. S. 1970a. The postcranial skeleton of Eusthenopteron foordi Whiteaves. TRANS R SOC EDINBURGH 68, 207329.CrossRefGoogle Scholar
Andrews, S. M. & Westoll, T. S. 1970b. The postcranial skeleton of rhipidistians excluding Eusthenopteron. TRANS R SOC EDINBURGH 68, 391489.CrossRefGoogle Scholar
Berg, L. S. 1940. Classification of fishes, both recent and fossil. TRUDY ZOOL INST AKAD NAUK SSSR 5, 1517 [in Russian].Google Scholar
Campbell, K. S. W. & Barwick, R. E. 1987. Palaeozoic Lungfishes–a review. In Bemis, W. W., Burggren, W. W. & Kemp, N. E. (eds) The biology and evolution of lungfishes. J MORPHOL (SUPPL 1) 1986. 93131.Google Scholar
Clack, J. A. 1994. Acanthostega gunnari, a Devonian tetrapod from Greenland: the snout, palate and ventral parts of the braincase. MEDD GRØNLAND GEOSC1ENCE 31, 124.Google Scholar
Clack, J. A. 1996. The palate of Crassigyrinus scoticus, a primitive tetrapod from the Lower Carboniferous of Scotland. SPEC PAP PALAEONTOL 52, 5564.Google Scholar
Cloutier, R. & Ahlberg, P. E. 1996. Morphology, characters and the interrelationships of basal sarcopterygians. In Stiassny, M. L. J., Parenti, L. & Johnson, G. D. (eds) Interrelationships of Fishes, 445–79. San Diego: Academic Press.CrossRefGoogle Scholar
Coates, M. I. & Clack, J. A. 1990. Polydactyly in the earliest known tetrapod limbs. NATURE 347, 66–9.CrossRefGoogle Scholar
Cope, E. D. 1889. Synopsis of the families of vertebrata. AMER NATURALIST 23, 849–77.CrossRefGoogle Scholar
Egerton, P.De, M. G. 1861. Tristichopterus alatus. Figures and Descriptions Illustrative of British Organic Remains. MEM GEOL SURV UK, Decade X, 51–5.Google Scholar
Fox, R. C, Campbell, K. S. W., Barwick, R. E. & Long, J. A. 1995. A new osteolepiform fish from the lower Carboniferous Raymond Formation, Drummond Basin, Queensland. MEM QUEENSLAND MUS 38, 97221.Google Scholar
Gardiner, B. G. 1984. The relationships of the palaeoniscid fishes, a review based on new specimens of Mimia and Moythomasia from the Upper Devonian of Western Australia. BULL BR MUS NAT HIST 37, 173427.Google Scholar
Gess, R. W. & Hiller, N. 1995. A preliminary catalogue of fossil algal, plant, arthropod, and fish remains from a Late Devonian black shale near Grahamstown, South Africa. ANN CAPE PROV MUS NAT HIST 19, 225304.Google Scholar
Gross, W. 1941. Uber den Unterkiefer einiger devonischer Crossopterygier. ABH PREUSS AKAD WSS MATH-NATURW KL 1941, 151.Google Scholar
Jarvik, E. 1948. On the morphology and taxonomy of the middle Devonian osteolepid fishes of Scotland. K SVEN VETENSKAPSAKAD HANDL 25 (1), 1301.Google Scholar
Jarvik, E. 1952. On the fish-like tail in the ichthyostegid stegocephalians with descriptions of a new stegocephalian and a new crossopterygian from the Upper Devonian of East Greenland. MEDD GRØNLAND 114, 190.Google Scholar
Jarvik, E. 1954. On the visceral skeleton in Eusthenopteron. with a discussion of the parasphenoid and palatoquadrate in fishes. K SVEN VETENSKAPSAKAD HANDL 4, 1104.Google Scholar
Jarvik, E. 1966. Remarks on the structure of the snout in Megalichthys and certain other rhipidistid crossopterygians ARK ZOOL 19, 4198.Google Scholar
Jarvik, E. 1972. Middle and Upper Devonian Porolepiformes from East Greenland with special reference to Glyptolepis groenlandica n. sp. MEDD GRNLAND 187, 1307.Google Scholar
Jarvik, E. 1980. Basic Structure and Evolution of Vertebrates, Vol. 1. London: Academic Press.Google Scholar
Lebedev, O. 1995. Morphology of a new osteolepidid fish from Russia. BULL MUS NATL HIST NAT PARIS 17(C)14, 287341.Google Scholar
Long, J. A. 1985a. New information of the head and shoulder girdle of Canowindra grossi Thomson 1973, from the Upper Devonian Mandagery Sandstone, New South Wales. REC AUS MUS 37, 919.CrossRefGoogle Scholar
Long, J. A. 1985b. The structure and relationships of a new osteolepiform fish from the Late Devonian of Victoria, Australia. ALCHERINGA 8, 123.CrossRefGoogle Scholar
Long, J. A. 1985c. A new osteolepidid fish from the Upper Devonian Gogo Formation, Western Australia. REC WEST AUS MUS 12, 36177.Google Scholar
Long, J. A. 1987a. An unusual osteolepiform fish from the Late Devonian of Victoria, Australia. PALAEONTOLOGY 30, 83952.Google Scholar
Long, J. A. 1987b. Late Devonian fishes from the Gogo Formation, Western Australianew discoveries. SEARCH 18, 2035.Google Scholar
Long, J. A. 1989. A new rhizodontiform fish from the Early Carboniferous of Victoria, Australia, with remarks on the phylogenetic position of the group. J VERT PALEONTOL 9, 117.CrossRefGoogle Scholar
Miles, R. S. 1977. Dipnoan (lungfish) skulls and the relationships of the group: a study based on new species from the Devonian of Australia. ZOOL J LINN SOC 61, 1328.CrossRefGoogle Scholar
Millot, J. & Anthony, J. 1958. Anatomie de Latimeria chalumnae. Tome I. Squelette, muscles et formations de soutien. Paris: Editions du CNRS.Google Scholar
Rackoff, J. S. 1980. The origin of the tetrapod limb and the ancestry of tetrapods. In Panchen, A. L. (ed.) The Terrestrial Environment and the Origin of Land Vertebrates, 25592, London: Academic Press.Google Scholar
Smithson, T. R. 1982. The cranial morphology of Greererpeton burkemorani Romer (Amphibia: Temnospondyli). ZOOL J LINN SOC 76, 2990.CrossRefGoogle Scholar
Thomson, K. S. 1962. Rhipidistian classification in relation to the origin of the tetrapods. BREVORIA 177, 112.Google Scholar
Thomson, K. S. 1964. Revised generic diagnoses of the fossil fishes Megalichthys and Ectosteorhachis (Family Osteolepidae). BULL MUS COMP ZOOL 131, 283311.Google Scholar
Thomson, K. S. 1968. A new Devonian fish (Crossopterygii; Rhipidistia) considered in relation to the origin of the amphibia. POSTILLA 124, 113.Google Scholar
Thomson, K. S. 1973. Observations on a new rhipidistian fish from the Upper Devonian of Australia. PALAEONTOGRAPHICA A 143, 20920.Google Scholar
Vorobyeva, E. I. 1962. Rhizodontid crossopterygians of the Main Devonian Field in the USSR. TRUDY PALEONTOL INST 104, 1108 (In Russian).Google Scholar
Vorobyeva, E. I. 1977. Morphology and nature of the evolution of crossopterygian fishes. TRUDY PALEONTOL INST 163, 1240 (In Russian).Google Scholar
Vorobyeva, E. I. & Kuznetsov, A. 1992. The locomotor apparatus of Panderichthys rhombolepis (Gross), a supplement to the problem of fish-tetrapod transition. In Mark-Kurik, E. (ed.) Fossil Fishes as Living Animals, 13140. Tallinn: Academy of Sciences of Estonia.Google Scholar
Vorobyeva, E. I. & Schultze, H.-P. 1991. Description and systematics of panderichthyid fishes with comments on their relationship to tetrapods. In Schultze, H.-P. & Trueb, L. (eds) Origins of the Higher Groups of Tetrapods: Controversy and Consensus, 68109. Ithaca: Cornell Publishing Associates.Google Scholar
Webb, P. W. 1982. Locomotor patterns in the evolution of Actinopterygian fishes. AM ZOOL 22, 329342.CrossRefGoogle Scholar
Young, G. C. 1993. Middle Palaeozoic macrovertebrate biostratigraphy of eastern Gondwana. In Long, J. A. (ed.) Palaeozoic Vertebrate Biostratigraphy and Biogeography, 20851, London: Bellhaven Press.Google Scholar
YoungG. C. & Gorter, J. D. G. C. & Gorter, J. D. 1981. A new fish fauna of Middle Devonian age from the TaemasWee Jasper region of New South Wales. BULL BUR MIN RES GEOL GEOPHYS 209, 83147.Google Scholar
Young, G. C., Long, J. A. & Ritchie, A. 1992. Crossopterygian fishes from the Devonian of Antarctica: systematics, relationships and biogeographic significance. REC AUS MUS SUPPL 14, 177.CrossRefGoogle Scholar