Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-10T05:07:52.213Z Has data issue: false hasContentIssue false

A new taxonomic arrangement for Paleorhinus scurriensis

Published online by Cambridge University Press:  07 October 2013

Michelle R. Stocker*
Affiliation:
Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712, USA. Email: [email protected]

Abstract

The paraphyletic genus ‘Paleorhinus’ is understood currently as a cosmopolitan phytosaur taxon from the Late Triassic. There is no consensus regarding the number of species of ‘Paleorhinus,’ with multiple species and genera synonymised into a single genus or even a single species at various points in its published history. The taxonomy is confounded by historical descriptions without the benefit of comparisons to more recently collected specimens, emphasis on plesiomorphic cranial morphology as diagnostic features of the genus, and lack of cladistic analyses. When included in a recent explicitly cladistic phylogenetic analysis, the holotype of ‘Paleorhinusscurriensis (TTU P-00539) was found to be the earliest-branching phytosaur with respect to other North American specimens previously referred to ‘Paleorhinus,’ and is generically distinct from Paleorhinus. ‘Paleorhinusscurriensis differs from all known phytosaurs in five unambiguous characters: basitubera widely separated mediolaterally; ridge present on lateral surface of jugal; thickened shelf present along posteroventral edge of expanded pterygoid-quadrate wing; ‘septomaxillae’ separated and excluded from internarial septum; and nasal swelling present posterior to posterior borders of nares. This detailed morphological description of an early-branching phytosaur taxon is a first step towards resolving long-standing issues surrounding specific anatomical features and relationships among early members of the clade.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

7. References

Ballew, K. 1989. A phylogenetic analysis of Phytosauria from the Late Triassic of the western United States. 309339. In Lucas, S. G. & Hunt, A. P. (eds) Dawn of the Age of Dinosaurs in the American Southwest. Albuquerque: New Mexico Museum of Natural History.Google Scholar
Beede, J. W. & Christner, D. D. 1926. The San Angelo Formation and the Geology of Foard County. University of Texas Bulletin 2607, 157.Google Scholar
Brusatte, S. L., Benton, M. J., Desojo, J. B. & Langer, M. C. 2010. The higher-level phylogeny of Archosauria (Tetrapoda: Diapsida). Journal of Systematic Palaeontology 8 (1), 347.Google Scholar
Butler, R. J., Brusatte, S. L., Reich, M., Nesbitt, S. J., Schoch, R. R. & Hornung, J. J. 2011. The sail-backed reptile Ctenosauriscus from the latest Early Triassic of Germany and the timing and biogeography of the early archosaur radiation. PLoS ONE 6 (10), e25693.Google Scholar
Butler, R. J., Stocker, M. R., Rauhut, O. W. M., Lautenschlager, S. & Bronowicz, R. 2012. Systematic and anatomical re-evaluation of basal phytosaurs from the Late Triassic of Germany, with implications for Late Triassic biostratigraphy. In SVP Program and Abstracts, Journal of Vertebrate Paleontology 2012, 71.Google Scholar
Camp, C. L. 1930. A study of the phytosaurs with description of new material from western North America. Memoirs of the University of California 10, 1161.Google Scholar
Chatterjee, S. 1978. A primitive parasuchid (phytosaur) reptile from the Upper Triassic Maleri Formation of India. Palaeontology 21 (1), 83127.Google Scholar
Colbert, E. H. 1947. Studies of the phytosaurs Machaeroprosopus and Rutiodon. Bulletin of the American Museum of Natural History 88, 5396.Google Scholar
Doyle, K. D. & Sues, H.-D. 1995. Phytosaurs (Reptilia: Archosauria) from the Upper Triassic New Oxford Formation of York County, Pennsylvania. Journal of Vertebrate Paleontology 15 (3), 545–53.Google Scholar
Dutuit, J. M. 1977. Paleorhinus magnoculus, phytosaure du Trias supérieur de l'Atlas marocain. Géologie Méditerranée, Annales de l'Université de Provence 4, 255–68.Google Scholar
Dzik, J. 2001. A new Paleorhinus fauna in the Early Late Triassic of Poland. Journal of Vertebrate Paleontology 21 (3), 625–27.CrossRefGoogle Scholar
Dzik, J. & Sulej, T. 2007. A review of the Early Late Triassic Krasiejów biota from Silesia, Poland. Palaeontologica Polonica 64, 327.Google Scholar
Evans, S. E. 2008. The skull of lizards and Tuatara. In Gans, C., Gaunt, A. S., & Adler, K. (eds) Biology of the Reptilia, (The Skull of Lepidosauria) 20, 1347.Google Scholar
Fara, E. & Hungerbühler, A. 2000. Paleorhinus magnoculus from the Upper Triassic of Morocco: a juvenile primitive phytosaur (Archosauria). Comptes Rendus de l'Académie des Sciences, Paris, Earth and Planetary Sciences 331, 831–36.Google Scholar
Furin, S., Preto, N., Rigo, M., Roghi, G., Gianolla, P., Crowley, J. L. & Bowring, S. A. 2006. High-precision U–Pb zircon age from the Triassic of Italy: Implications for the Triassic time scale and the Carnian origin of calcareous nannoplankton and dinosaurs. Geology 34 (12), 1009–12.Google Scholar
Gauthier, J., Kluge, A. G. & Rowe, T. 1988. Amniote phylogeny and the importance of fossils. Cladistics 4 (2), 105209.Google Scholar
Gower, D. J. 2002. Braincase evolution in suchian archosaurs (Reptilia: Diapsida): evidence from the rauisuchian Batrachotomus kupferzellensis. Zoological Journal of the Linnean Society 136 (1), 4976.CrossRefGoogle Scholar
Gregory, J. T. 1962. The genera of phytosaurs. American Journal of Science 260, 652–90.Google Scholar
Huene, F. v. 1939. Ein primitiver Phytosaurier in der jüngeren nordost-alpinen Trias. Zentralblatt für Mineralogie, Geologie und Palaeontologie, Abteilung B 1939, 139–44.Google Scholar
Hungerbühler, A. 1998. Cranial anatomy and diversity of the Norian phytosaurs from southwestern Germany. Unpublished PhD Dissertation, University of Bristol, UK. 464 pp.Google Scholar
Hungerbühler, A. 2000. Heterodonty in the European phytosaur Nicrosaurus kapffi and its implications for the taxonomic utility and functional morphology of phytosaur dentitions. Journal of Vertebrate Paleontology 20 (1), 3148.Google Scholar
Hungerbühler, A. 2002. The Late Triassic phytosaur Mystriosuchus westphali, with a revision of the genus. Palaeontology 45 (2), 377418.Google Scholar
Hunt, A. P. & Lucas, S. G. 1991. The Paleorhinus biochron and the correlation of the nonmarine Upper Triassic of Pangea. Palaeontology 34 (2), 487501.Google Scholar
Irmis, R. B. 2005. The vertebrate fauna of the Upper Triassic Chinle Formation in northern Arizona. Mesa Southwest Museum Bulletin 9, 6388.Google Scholar
Irmis, R. B. 2007. Axial skeleton ontogeny in the Parasuchia (Archosauria: Pseudosuchia) and its implications for ontogenetic determination in archosaurs. Journal of Vertebrate Paleontology 27 (2), 350–61.Google Scholar
Irmis, R. B., Martz, J. W., Parker, W. G. & Nesbitt, S. J. 2010. Re-evaluating the correlation between Late Triassic terrestrial vertebrate biostratigraphy and the GSSP-defined marine stages. Albertiana 38, 4052.Google Scholar
Irmis, R. B., Mundil, R., Martz, J. W. & Parker, W. G. 2011. High-resolution U–Pb ages from the Upper Triassic Chinle Formation (New Mexico, USA) support a diachronous rise of dinosaurs. Earth and Planetary Science Letters 309 (3–4), 258–67.Google Scholar
Irmis, R. & Mundil, R. 2008. New age constraints from the Chinle Formation revise global comparisons of Late Triassic vertebrate assemblages. Journal of Vertebrate Paleontology 28 (3), 95A.Google Scholar
Langston, W. L. Jr. 1949. A new species of Paleorhinus from the Triassic of Texas. American Journal of Science 247, 324–41.Google Scholar
Lees, J. H. 1907. The skull of Paleorhinus a Wyoming phytosaur. Journal of Geology 15, 121–51.Google Scholar
Lehman, T. M. 1994. The saga of the Dockum Group and the case of the Texas/New Mexico boundary fault. Bureau of Mines & Mineral Resources Bulletin 150, 3751.Google Scholar
Long, R. A. & Murry, P. A. 1995. Late Triassic (Carnian and Norian) tetrapods from the southwestern United States. Bulletin of the New Mexico Museum of Natural History and Science 4. Albuquerque: New Mexico Museum of Natural History and Science. 254 pp.Google Scholar
Lucas, S. G. 1998. Global Triassic tetrapod biostratigraphy and biochronology. Palaeogeography, Palaeoclimatology, Palaeoecology 143 (4), 347–84.Google Scholar
Lucas, S. G., Anderson, O. J. & Hunt, A. P. 1994. Triassic stratigraphy and correlations, southern High Plains of New Mexico-Texas. In Ahlen, J., Peterson, J. & Bowsher, A. L. (eds) Geologic Activities in the 90s, Southwest Section of AAPG 1994, Ruidoso, New Mexico, New Mexico Bureau of Mines & Mineral Resources Bulletin 150, 105–26. Socorro: New Mexico Bureau of Mines & Mineral Resources.Google Scholar
Lucas, S. G., Heckert, A. B. & Hunt, A. P. 1997. Stratigraphy and biochronological significance of the Placerias Quarry, eastern Arizona. Neues Jahrbuch fur Geologie und Palaontologie Abhandlungen 203, 2346.Google Scholar
Lucas, S. G. & Hunt, A. P. 1993. Tetrapod biochronology of the Chinle Group (Upper Triassic), western United States. In Lucas, S. G. & Morales, M. (eds) The nonmarine Triassic. Bulletin of the New Mexico Museum of Natural History and Science 3, 327–29. Albuquerque: New Mexico Museum of Natural History and Science.Google Scholar
Martz, J. W. 2008. Lithostratigraphy, chemostratigraphy, and vertebrate biostratigraphy of the Dockum Group (Upper Triassic), of southern Garza County, West Texas. Unpublished PhD Dissertation, Texas Tech University, Lubbock, TX. 504 pp.Google Scholar
Martz, J. W., Mueller, B., Nesbitt, S. J., Stocker, M. R., Parker, W. G., Atanassov, M., Fraser, N., Weinbaum, J. & Lehane, J. R. 2013. A taxonomic and biostratigraphic re-evaluation of the Post Quarry vertebrate assemblage from the Cooper Canyon Formation (Dockum Group, Upper Triassic) of southern Garza County, western Texas. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 103 (for 2012), 339–64.Google Scholar
Mehl, M. G. 1928. The Phytosauria of the Wyoming Triassic. Denison University Bulletin, Journal of the Scientific Laboratories 23, 141–72. Granville, Ohio: Denison University.Google Scholar
Meyer, H. v. 1861. Reptilien aus dem Stubensandstein des oberen Keupers. Palaeontographica 10, 227–46.Google Scholar
Mundil, R., Pálfy, J., Renne, P. R. & Brack, P. 2010. The Triassic timescale: new constraints and a review of geochronological data. In Lucas, S. G. (ed.) The Triassic Timescale. Geological Society, London, Special Publications 334, 4160. Bath, UK: The Geological Society Publishing House.Google Scholar
Muttoni, G., Kent, D. V., Olsen, P. E., Di Stefano, P., Lowrie, W., Bernasconi, S. M. & Hernández, F. M. 2004. Tethyan magnetostratigraphy from Pizzo Mondello (Sicily) and correlation to the Late Triassic Newark astrochronological polarity time scale. Geological Society of America Bulletin 116 (9–10), 1043–58.Google Scholar
Nesbitt, S. J. 2011. The early evolution of archosaurs: relationships and the origins of major clades. Bulletin of the American Museum of Natural History 352, 1292.Google Scholar
Nesbitt, S. J., Liu, J. & Li, C. 2011. A sail-backed suchian from the Heshanggou Formation (Early Triassic: Olenekian) of China. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 101 (for 2010), 271–84.Google Scholar
Olsen, P. E., Kent, D. V. & Whiteside, J. H. 2011. Implications of the Newark Supergroup-based astrochronology and geomagnetic polarity time scale (Newark-APTS) for the tempo and mode of the early diversification of the Dinosauria. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 101 (for 2010), 201–29.Google Scholar
Padian, K. 1994. What were the tempo and mode of evolutionary change in the Late Triassic to Middle Jurassic?In Fraser, N. C. & Sues, H.-D. (eds) In the Shadow of the Dinosaurs: Early Mesozoic Tetrapods 401–07. New York: Cambridge University Press.Google Scholar
Parker, W. G., Hungerbühler, A., & Martz, J. W. 2013. The taxonomic status of the phytosaurs (Archosauriformes) Machaeroprosopus and Pseudopalatus from the Late Triassic of the western United States. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 103 (for 2012), 265-68.Google Scholar
Parker, W. G. & Irmis, R. B. 2006. A new species of the Late Triassic phytosaur Pseudopalatus (Archosauria: Pseudosuchia) from Petrified Forest National Park, Arizona. In Parker, W. G., Ash, S. R. & Irmis, R. B. (eds) A century of research at Petrified Forest National Park 1906–2006, geology and paleontology. Museum of Northern Arizona Bulletin 62, 126–43. Flagstaff: Museum of Northern Arizona. 187 pp.Google Scholar
Ramezani, J., Hoke, G. D., Fastovsky, D. E., Bowring, S. A., Therrien, F., Dworkin, S. I., Atchley, S. C. & Nordt, L. C. 2011. High-precision U-Pb zircon geochronology of the Late Triassic Chinle Formation, Petrified Forest National Park (Arizona, USA): temporal constraints on the early evolution of dinosaurs. Geological Society of America Bulletin 123 (11–12), 2142–59.Google Scholar
Riggs, N. R., Lehman, T. M., Gehrels, G. E. & Dickinson, W. R. 1996. Detrital zircon link between headwaters and terminus of the Upper Triassic Chinle–Dockum paleoriver system. Science 273 (5271), 97100.Google Scholar
Rowe, T. 1987. Definition and diagnosis in the phylogenetic system. Systematic Zoology 36 (2), 208–11.Google Scholar
Senter, P. 2003. New information on cranial and dental features of the Triassic archosauriform reptile Euparkeria capensis. Palaeontology 46 (3), 613–21.Google Scholar
Sereno, P. C. 1991. Basal archosaurs: phylogenetic relationships and functional implications. Journal of Vertebrate Paleontology Memoir 2, 151.CrossRefGoogle Scholar
Simpson, G. G. 1944. Tempo and Mode in Evolution. New York: Columbia University Press. 237 pp.Google Scholar
Stocker, M. R. 2010. A new taxon of phytosaur (Archosauria: Pseudosuchia) from the Late Triassic (Norian) Sonsela Member (Chinle Formation) in Arizona, and a critical reevaluation of Leptosuchus Case, 1922. Palaeontology 53 (5), 9971022.Google Scholar
Stocker, M. R. 2012. A new phytosaur (Archosauriformes, Phytosauria) from the Lot's Wife beds (Sonsela Member) within the Chinle Formation (Upper Triassic) of Petrified Forest National Park, Arizona. Journal of Vertebrate Paleontology 32 (3), 573–86.Google Scholar
Trauth, F. 1948. Geologie des Kalkalpenbereiches der zweiten Wiener Hochquellenleitung. Abhandlungen der Geologischen Bundesanstalt in Wien 26, 199.Google Scholar
Williston, S. W. 1904. Notice of some new reptiles from the Upper Trias of Wyoming. Journal of Geology 12, 688–97.Google Scholar
Witmer, L. M. 1997. Craniofacial air sinus systems. In Currie, P. J. & Padian, K. (eds) The Encyclopedia of Dinosaurs, 151–59. New York: Academic Press.Google Scholar
Wroblewski, A. 2003. Application of cladistic analysis towards resolving biostratigraphic uncertainty; an example from the Upper Triassic. Geological Society of America Abstracts with Programs 55th Annual Meeting Rocky Mountain Section 35 (5), 15.Google Scholar