Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-24T22:42:05.591Z Has data issue: false hasContentIssue false

New insights into the origins and radiation of the mid-Palaeozoic Gondwanan stem tetrapods

Published online by Cambridge University Press:  29 November 2018

Abstract

The earliest tetrapodomorph fishes appear in Chinese deposits of Early Devonian age, and by the Middle Devonian they were widespread globally. Evidence for the earliest digitated tetrapods comes from largely uncontested Middle Devonian trackways and Late Devonian body fossils. The East Gondwana Provence (Australasia, Antarctica) fills vital gaps in the phylogenetic and biogeographic history of the tetrapods, with the Gondwanan clade Canowindididae exhibiting a high degree of endemism within the early part of the stem tetrapod radiation. New anatomical details of Koharalepis, from the Middle Devonian Aztec Siltstone of Antarctica, are elucidated from synchrotron scan data. These include the position of the orbit, the condition of the hyomandibular, the shape of the palate and arrangement of the vomerine fangs. Biogeographical and phylogenetic models of stem tetrapod origins and radiations are discussed.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

6. References

Ahlberg, P. E. 1995. Elginerpeton pancheni and the earliest tetrapod clade. Nature 373, 420425.Google Scholar
Ahlberg, P. E. 1998. Postcranial stem tetrapod remains from the Devonian of Scat Craig, Morayshire, Scotland. Zoological Journal of the Linnean Society 122, 99141.Google Scholar
Ahlberg, P. E., Clack, J. A., Luksevics, E., Blom, H. & Zupins, I. 2008. Ventastega curonica and the origin of tetrapod morphology. Nature 453, 11991204.Google Scholar
Ahlberg, P. E. & Clack, J. A. 1998. Lower jaws, lower tetrapods – a review based on the Devonian genus Acanthostega. Transactions of the Royal Society of Edinburgh: Earth Sciences 89, 1146.Google Scholar
Ahlberg, P. E. & Johanson, Z. 1997. Second tristichopterid (Sarcopterygii, Osteolepiformes) from the Upper Devonian of Canowindra, New South Wales, Australia, and phylogeny of the Tristichopteridae. Journal of Vertebrate Paleontology 17, 653673.Google Scholar
Ahlberg, P. E. & Johanson, Z. 1998. Osteolepiforms and the ancestry of tetrapods. Nature 395, 792794.Google Scholar
Andrews, S. M. 1985. Rhizodont crossopterygian fish from the Dinantian of Foulden, Berwickshire, Scotland, with a re-evaluation of this group. Transactions of the Royal Society of Edinburgh: Earth Sciences 76, 6795.Google Scholar
Bernardi, M., Petti, F. M., Piñuela, L., García-Ramos, J. C., Avanzini, M. & Lockley, M. G. 2016. The Mesozoic vertebrate radiation in terrestrial settings. In Landman, N. H. & Harries, P. J. (eds) The Trace-Fossil Record of Major Evolutionary Events, 135177. Dordrecht: Springer.Google Scholar
Boisvert, C. A., Mark-Kurik, E. & Ahlberg, P. E. 2008. The pectoral fin of Panderichthys and the origin of digits. Nature 456, 636638.Google Scholar
Borgen, U. J. & Nakrem, H. A. 2017. Morphology, phylogeny and taxonomy of osteolepiform fish. Chichester: John Wiley & Sons.Google Scholar
Burrow, C. J. 2003. Redescription of the gnathostome fauna from the mid-Palaeozoic Silverband Formation, the Grampians, Victoria. Alcheringa 27, 3749.Google Scholar
Campbell, K. S. W. & Bell, M. W. 1997. A primitive amphibian from the Late Devonian of New South Wales. Alcheringa 1, 369381.Google Scholar
Chang, M. M. 1982. The braincase of Youngolepis, a Lower Devonian crossopterygian from Yunnan, south-western China. PhD Thesis, University of Stockholm and Section of Palaeozoology, Swedish Museum of Natural History, Stockholm, Sweden.Google Scholar
Chang, M. M. & Zhu, M. 1993. A new Middle Devonian osteolepid from Qujing, Yunnan. Memoirs of the Association of Australasian Palaeontologists 15, 183198.Google Scholar
Clack, J. A. 1988. New material of the early tetrapod Acanthostega from the Upper Devonian of East Greenland. Palaeontology 31, 699724.Google Scholar
Clack, J. A. 1997. Devonian tetrapod trackways and trackmakers; a review of the fossils and footprints. Palaeogeography Palaeoclimatology Palaeoecology 130, 227250.Google Scholar
Clack, J. A. 2012. Gaining ground: the origin and evolution of tetrapods. Bloomington, IN: Indiana University Press.Google Scholar
Clack, J. A., Bennett, C. E., Carpenter, D. K., Davies, S. J., Fraser, N. C., Kearsey, T. I., Marshall, J. E., Millward, D., Otoo, B. K., Reeves, E. J. & Ross, A. J. 2017. Phylogenetic and environmental context of a Tournaisian tetrapod fauna. Nature Ecology & Evolution 1, 0002.Google Scholar
Cope, E. D. 1882. On some new and little known Paleozoic vertebrates. Proceedings of the American Philosophical Society 30, 221229.Google Scholar
Daeschler, E. B., Shubin, N. & Jenkins, F. A. J. 2006. A Devonian tetrapod-like fish and the evolution of the tetrapod body plan. Nature 440, 757763.Google Scholar
Daeschler, E. B., Clack, J. A. & Shubin, N. H. 2009. Late Devonian tetrapod remains from Red Hill, Pennsylvania, USA: how much diversity? Acta Zoologica 90, 306317.Google Scholar
Dineley, D. L. & Loeffler, E. J. 1993. Biostratigraphy of the Silurian and Devonian gnathostomes of the Euramerica province. In Long, J. A. (ed.) Palaeozoic vertebrate biostratigraphy and biogeography, 104138. London: Belhaven Press.Google Scholar
Downs, J. P., Daeschler, E. B., Jenkins, F. A. J. & Shubin, N. H. 2008. The cranial endoskeleton of Tiktaalik roseae. Nature 455, 925929.Google Scholar
Fox, R. C., Campbell, K. S. W., Barwick, R. E. & Long, J. A. 1995. A new osteolepiform fish from the Lower Carboniferous Raymond Formation, Drummond Basin, Queensland. Memoirs of The Queensland Museum 38, 97221.Google Scholar
Friedman, M. & Brazeau, M. D. 2010. Sequences, stratigraphy and scenarios: what can we say about the fossil record of the earliest tetrapods? Proceedings of the Royal Society B 30, 18.Google Scholar
Garvey, J. M., Johanson, Z. & Warren, A. 2005. Redescription of the pectoral fin and vertebral column of the rhizodontid fish Barameda decipiens from the lower carboniferous of Australia. Journal of Vertebrate Paleontology 25, 818.Google Scholar
George, D. & Blieck, A. 2011. Rise of the earliest tetrapods: an Early Devonian origin from marine environment. PLoS ONE 6, 17.Google Scholar
Gess, R. & Ahlberg, P. E. 2018. A tetrapod fauna from within the Devonian Antarctic circle. Science 360, 11201124.Google Scholar
Gross, W. 1956. Über Crossopterygier und Dipnoer aus dem Baltischen Oberdevon im Zusammenhang Einer Vergleichenden Untersuchung des Porenkanalsystems Paläozoischer Agnathen und Fische. Stockholm: Almqvist and Wiksell.Google Scholar
Holland, T. 2009. Owensia chooi: a new tetrapodomorph fish from the Middle Devonian of the South Blue Range, Victoria, Australia. Alcheringa 33, 339353.Google Scholar
Holland, T. 2013. Pectoral girdle and fin anatomy of Gogonasus andrewsae Long, 1985: implications for tetrapodomorph limb evolution. Journal of Morphology 274, 147164.Google Scholar
Holland, T. 2014. The endocranial anatomy of Gogonasus andrewsae Long, 1985 revealed through micro CT-scanning. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 105, 934.Google Scholar
Holland, T., Warren, A., Johanson, Z., Long, J., Parker, K. & Garvey, J. 2007. A new species of Barameda (Rhizodontida) and heterochrony in the rhizodontid pectoral fin. Journal of Vertebrate Paleontology 27, 295315.Google Scholar
Holland, T., Long, J. & Snitting, D. 2010. New information on the enigmatic tetrapodomorph fish Marsdenichthys longioccipitus (Long, 1985). Journal of Vertebrate Paleontology 30, 6877.Google Scholar
Holland, T. & Long, J. A. 2009. On the phylogenetic position of Gogonasus andrewsae Long 1985, within the Tetrapodomorpha. Acta Zoologica 90, 285296.Google Scholar
Janvier, P. 1995. The brachial articulation and pectoral fin in antiarchs (Placodermi). Bulletin of the Museum d'Histoire Naturelle 17, 143161.Google Scholar
Janvier, P., Clément, G. & Cloutier, R. 2007. A primitive megalichthyid fish (Sarcopterygii, Tetrapodomorpha) from the Upper Devonian of Turkey and its biogeographical implications. Geodiversitas 29, 249268.Google Scholar
Jarvik, E. 1948. On the morphology and taxonomy of the Middle Devonian osteolepid fishes of Scotland. Vol. 3. Uppsala, Sweden: Almqvist & Wiksell Tryckeri.Google Scholar
Jarvik, E. 1966. Remarks on the structure of the snout in Megalichthys and certain other rhipidistid crossopterygians. Arkiv for Zoologi 19, 4198.Google Scholar
Jarvik, E. 1980. Basic structure and evolution of vertebrates. London: Academic Press.Google Scholar
Jarvik, E. 1996. The Devonian tetrapod Ichthyostega. Fossils Strata 40, 1–206.Google Scholar
Jessen, H. L. 1966. Die crossopterygier des Oberen Plattenkalkes (Devon) der Bergisch-Gladbach – Paffrather Mulde (Rheinisches Schiefergebirge) unter Ber¨ucksichtgung von amerikanischem und europ¨aischem Onychodus-material. Arkiv f¨or Zoologi 18, 305389.Google Scholar
Johanson, Z. 2004. Late Devonian sarcopterygian fishes from eastern Gondwana (Australia and Antarctica) and their importance in phylogeny and biogeography. In Arratia, G., Wilson, M. V. H. & Cloutier, R. (eds) Recent advances in the origin and early radiation of vertebrates, 287308. Munich: Verlag Dr. Friedrich Pfeil.Google Scholar
Johanson, Z., Turner, S. & Warren, A. 2000. First East Gondwanan record of Strepsodus (Sarcopterygii, Rhizodontida) from the Lower Carboniferous Ducabrook Formation, central Queensland, Australia. Geodiversitas 22, 161169.Google Scholar
Johanson, Z. & Ahlberg, P. E. 1997. A new tristichopterid (Osteolepiformes: Sarcopterygii) from the Mandagery Sandstone (Late Devonian, Famennian) near Canowindra, NSW, Australia. Transactions of the Royal Society of Edinburgh: Earth Sciences 88, 3968.Google Scholar
Johanson, Z. & Ahlberg, P. E. 1998. A complete primitive rhizodont from Australia. Nature 394, 569573.Google Scholar
Johanson, Z. & Ahlberg, P. E. 2001. Devonian rhizodontids and tristichopterids (Sarcopterygii; Tetrapodomorpha) from East Gondwana. Transactions of the Royal Society of Edinburgh: Earth Sciences 92, 4374.Google Scholar
Johanson, Z. & Ritchie, A. 2000. Rhipidistians (Sarcopterygii) from the Hunter Siltstone (Late Famennian) near Grenfell, NSW, Australia. Fossil Record 3, 111136.Google Scholar
Kohlsdorf, T. & Wagner, G. P. 2006. Evidence for the reversibility of digit loss: a phylogenetic study of limb evolution in Bachia (gymnophthalmidae: Squamata). Evolution 60, 18961912.Google Scholar
Lebedev, O. A. 1995. Morphology of a new osteolepidid fish from Russia. Bulletin du Muséum national d'Histoire naturelle, Paris. 4e Série. Section C. Sciences de la Terre. Paléontologie, Géologie, Minéralogie 17, 287341.Google Scholar
Lebedev, O. A. 2004. A new tetrapod Jakubsonia livnensis from the Early Famennian (Devonian) of Russia and palaeoecological remarks on the Late Devonian tetrapod habitats. Acta Universitatis Latviensis 679, 7998.Google Scholar
Lebedev, O. A. & Coates, M. I. 1995. The postcranial skeleton of the Devonian tetrapod Tulerpeton curtum Lebedev. Zoological Journal of the Linnean Society 114, 307348.Google Scholar
Long, J. A. 1985a. New information on the head and shoulder girdle of Canowindra grossi Thomson, from the Late Devonian Mandagery Sandstone, New South Wales. Records of the Australian Museum 37, 9199.Google Scholar
Long, J. A. 1985b. A new osteolepid fish from the Upper Devonian Gogo Formation of Western Australia. Records of the Western Australian Museum 12, 361377.Google Scholar
Long, J. A. 1985c. The structure and relationships of a new osteolepiform fish from the Late Devonian of Victoria, Australia. Alcheringa 9, 122.Google Scholar
Long, J. A. 1987. An unusual osteolepiform fish from the Late Devonian of Victoria, Australia. Palaeontology 30, 839852.Google Scholar
Long, J. A. 1988. New palaeoniscoid fishes from the Late Devonian and Early Carboniferous of Victoria. Memoirs of the Association of Australasian Palaeontologists 7, 164.Google Scholar
Long, J. A. 1989. A new rhizodontiform fish from the Early Carboniferous of Victoria, Australia, with remarks on the phylogenetic position of the group. Journal of Vertebrate Paleontology 9, 117.Google Scholar
Long, J. A. 1990. Heterochrony and the origin of tetrapods. Lethaia 23, 157163.Google Scholar
Long, J. A. 1991. The long history of Australian fossil fishes. In Vickers-Rich, P., Monaghan, J. M., Baird, R. F. & Rich, T. H. (eds) Vertebrate palaeontology of Australia, 336428. Melbourne: Monash University Publication Committee.Google Scholar
Long, J. A. 2011. The rise of fishes – 500 million years of evolution. Sydney: University of New South Wales Press.Google Scholar
Long, J. A., Barwick, R. E. & Campbell, K. S. W. 1997. Osteology and functional morphology of the osteolepiform fish Gogonasus andrewsae Long, 1985, from the Upper Devonian Gogo Formation, Western Australia. Records of the Western Australian Museum 53, 189.Google Scholar
Long, J. A., Young, G. C., Holland, T., Senden, T. J. & Fitzgerald, E. M. G. 2006. An exceptional Devonian fish from Australia sheds light on tetrapod origins. Nature 444, 199202.Google Scholar
Long, J. A. & Ahlberg, P. E. 1999. New observations on the snouts of rhizodont fishes (Palaeozoic Sarcopterygii). Records of the Western Australian Museum 57, 169173.Google Scholar
Long, J. A. & Campbell, K. S. W. 1985. A new lungfish from the Early Carboniferous of Victoria. Proceedings of the Royal Society of Victoria 97, 8793.Google Scholar
Long, J. A. & Holland, T. 2008. A possible ‘Elpistostegalid' fish From The Devonian Of Gondwana. Proceedings of the Royal Society of Victoria 120, 184193.Google Scholar
Long, J. A. & Trinajstic, K. 2018. A review of recent discoveries of exceptionally preserved fossil fishes from the Gogo sites (Late Devonian, Western Australia). Earth and Environmental Science Transactions of the Royal Society of Edinburgh 108, 111117.Google Scholar
Lu, J., Zhu, M., Long, J. A., Zhao, W., Senden, T. J., Jia, L. T. & Qiao, T. 2012. The earliest known stem-tetrapod from the Lower Devonian of China. Nature Communications 3, 1160.Google Scholar
McNamara, K. J. M. 2014. Early Palaeozoic colonisation of land: evidence form the Tumblagooda Sandstone, Southern Cararvon basin, Western Australia. Journal of the Royal Society of Western Australia 97, 111132.Google Scholar
Miall, L. C. 1875. On the structure of the skull of Rhizodus. Quarterly Journal of the Geological Society 31, 624627.Google Scholar
Niedźwiedzki, G., Szrek, P., Narkiewicz, K., Narkiewicz, M. & Ahlberg, P. E. 2010. Tetrapod trackways from the early Middle Devonian period of Poland. Nature 463, 4348.Google Scholar
Panchen, A. L. 1977. Geographical and ecological distribution of the earliest tetrapods. In Hecht, M. K., Goody, P. C. & Hecht, T. B. M. (eds) Major patterns in vertebrate evolution, 723738. New York: Plenum Press.Google Scholar
Pardo, J. D., Szostakiwskyj, M., Ahlberg, P. E. & Anderson, J. S. 2017. Hidden morphological diversity among early tetrapods. Nature 546(7660), 642.Google Scholar
Parker, K., Warren, A. & Johanson, Z. 2005. Strepsodus (Rhizodontida, Sarcopterygii) pectoral elements from the Lower Carboniferous Ducabrook Formation, Queensland, Australia. Journal of Vertebrate Paleontology 25, 4662.Google Scholar
Rackoff, J. S. 1980. The origin of the tetrapod limb and the ancestry of tetrapods. In Panchen, A. L. (ed.) The terrestrial environment and the origin of land vertebrates, 255292. New York: Academic Press.Google Scholar
Romer, A. S. 1937. The braincase of the Carboniferous Crossopterygian Megalichthys nitidus. Bulletin of the Museum of Comparative Zoology 132, 173.Google Scholar
Save-Soderbergh, G. 1932. Preliminary note on Devonian stegocephalians from East Greenland. Meddelelser om Grønland 94, 1–211.Google Scholar
Schultze, H.-P. & Arsenault, M. 1985. The panderichthyid fish Elpistostege: a close relative of tetrapods? Palaeontology 28, 293309.Google Scholar
Scotese, C. R. 1991. Jurassic and Cretaceous plate tectonic reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 87(1–4), 493501.Google Scholar
Shubin, N. H., Daeschler, E. B. & Jenkins, F. A. J. 2006. The pectoral fin of Tiktaalik roseae and the origin of the tetrapod limb. Nature 440, 764771.Google Scholar
Shubin, N. H., Daeschler, E. B. & Jenkins, F. A. J. 2014. Pelvic girdle and fin of Tiktaalik roseae. PNAS 111, 893899.Google Scholar
Simpson, C. J. & Woodfall, C. J. 1994. Geological note: new field evidence resolving relationship between the Grampians Group and the Rocklands Rhyolite, western Victoria. Australian Journal of Earth Sciences 41, 621624.Google Scholar
Stössel, I. 1995. The discovery of a new Devonian tetrapod trackway in SW Ireland. Journal of the Geological Society 152, 407413.Google Scholar
Stössel, I., Williams, E. A. & Higgs, K. T. 2016. Ichnology and depositional environment of the Middle Devonian Valentia Island tetrapod trackways, south-west Ireland. Palaeogeography, Palaeoclimatology, Palaeoecology 462, 1640.Google Scholar
Swartz, B. 2012. A marine stem-tetrapod from the Devonian of Western North America. PLoS ONE 7, e33683.Google Scholar
Thomson, K. S. 1964. Revised generic diagnoses of the fossil fishes Megalichthys and Ectosteorhachis (family Osteolepidae). Bulletin of the Museum of Comparative Zoology 131, 283311.Google Scholar
Thomson, K. S. 1969. The biology of the lobe-finned fishes. Biological Reviews 44, 91154.Google Scholar
Thomson, K. S. 1973. Observations on a new rhipidistian fish from the Upper Devonian of Australia. Palaeontographica A 143, 209220.Google Scholar
Thulborn, T., Warren, A. & Turner, S. 1996. Early Carboniferous tetrapods in Australia. Nature 381, 777.Google Scholar
Trewin, N. H. & Davidson, R. G. 1995. An Early Devonian lake and its associated biota in the Midland Valley of Scotland. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 86, 233246.Google Scholar
Turner, S. 1986. Thelodus macintoshi Stetson 1928, the largest known thelodont (Agnatha: Thelodonti). Breviora 486, 117.Google Scholar
Vorobyeva, E. I. 1977. Morphology and evolution of sarcopterygian fishes. Trudy Paleontologischeskogo Instituta Akademia, Nauk SSSR 163, 1–239.Google Scholar
Warren, A. 2007. New data on Ossinodus pueri, a stem tetrapod from the Early Carboniferous of Australia. Journal of Vertebrate Paleontology 27, 850862.Google Scholar
Warren, A., Jupp, R. & Bolton, B. 1986. Earliest tetrapod trackway. Alcheringa 10, 183186.Google Scholar
Warren, A. & Turner, S. 2004. The first stem tetrapod from the Lower Carboniferous of Gondwana. Palaeontology 47, 151184.Google Scholar
Warren, J. W. & Wakefield, N. A. 1972. Trackways of tetrapod vertebrates from the Upper Devonian of Victoria, Australia. Nature 238, 469470.Google Scholar
Williamson, W. C. 1837. On the affinity of fossils scales of fish from the Lancashire coal measures with those of the recent Salmonidae. The London and Edinburgh Philosophical Magazine 2, 300301.Google Scholar
Wisshak, M., Volohonsky, E. & Blomeier, D. 2004. Acanthodian fish trace fossils from the Early Devonian of Spitsbergen. Acta Palaeontologica Polonica 49, 04.Google Scholar
Witzmann, F. & Schoch, R. R. 2012. A megalichthyid sarcopterygian fish from the Lower Permian (Autunian) of the Saar-Nahe Basin, Germany. Geobios 45, 241248.Google Scholar
Woodward, A. S. 1906. On a tooth of Ceratodus and a dinosaurian claw from the Lower Jurassic of Victoria, Australia. Annals and Magazine of Natural History 18, 13.Google Scholar
Woodward, A. S. 1921. Fish-remains from the upper old red sandstone of Granite Harbour, Antarctica. British Antarctic ‘Terra Nova' Expedition 1910. Natural History Reports (Geology) 1, 5162.Google Scholar
Young, B., Dunstone, R. L., Senden, T. J. & Young, G. C. 2013. A gigantic sarcopterygian (tetrapodomorph lobe-finned fish) from the Upper Devonian of Gondwana (Eden, New South Wales, Australia). PLoS ONE 8, 125.Google Scholar
Young, G. C. 1981. The biogeography of Devonian vertebrates. Alcheringa 5, 225243.Google Scholar
Young, G. C. 1993. Middle Palaeozoic macrovertebrate biostratigraphy of Eastern Gondwana. In Long, J. (ed.) Palaeozoic vertebrate biostratigraphy and biogeography, 209251. London: Belhaven Press.Google Scholar
Young, G. C. 2006. Biostratigraphic and biogeographic context for tetrapod origins during the Devonian: Australian evidence. Alcheringa Special Issue 1, 409428.Google Scholar
Young, G. C. 2007. Devonian formations, vertebrate faunas and age control on the far south coast of New South Wales and adjacent Victoria. Australian Journal of Earth Sciences 54, 991–1008.Google Scholar
Young, G. C. 2008. Relationships of tristichopterids (osteolepiform lobe-finned fishes) from the Middle-Late Devonian of East Gondwana. Alcheringa 32, 321336.Google Scholar
Young, G. C., Long, J. A. & Ritchie, A. 1992. Crossopterygian fishes from the Devonian of Antarctica: systematics, relationships and biogeographic significance. Records of the Australian Museum 14, 177.Google Scholar
Young, G. C., Burrow, C. J., Long, J. A., Turner, S. & Choo, B. 2010. Devonian macrovertebrate assemblages and biogeography of East Gondwana (Australasia, Antarctica). Palaeoworld 19, 5574.Google Scholar
Young, G. C. & Gorter, J. D. 1981. A new fish fauna of Middle Devonian age from the Taemas/Wee Jasper region of New South Wales. Bureau of Mineral Resources Bulletin 209, 83147.Google Scholar
Young, G. C. & Goujet, D. 2003. Devonian fish remains from the Dulcie Sandstone and Cravens Peak Beds, Georgina Basin, central Australia. Records of the Western Australian Museum 65, 185.Google Scholar
Young, G. C. & Long, J. A. 2014. New arthrodires from the Aztec Siltstone (late Middle Devonian) of southern Victoria land, Antarctica. Australian Journal of Zoology 62, 4462.Google Scholar
Zhu, M., Ahlberg, P. E., Zhao, W. & Jia, L. T. 2002. First Devonian tetrapod from Asia. Nature 420, 760761.Google Scholar
Zhu, M., Zhao, W., Jia, L., Lu, J., Qiao, T. & Qu, Q. 2009. The oldest articulated osteichthyan reveals mosaic gnathostome characters. Nature 458, 469474.Google Scholar
Zhu, M., Yu, X., Lu, J., Qiao, T., Zhao, W. & Jia, L. T. 2012. Earliest known coelacanth skull extends the range of anatomically modern coelacanths to the Early Devonian. Nature Communications 3(772), 18.Google Scholar
Zhu, M., Ahlberg, P. E., Zhao, W. & Jia, L. T. 2017. A Devonian tetrapod-like fish reveals substantial parallelism in stem tetrapod evolution. Nature Ecology and Evolution 1, 14701476.Google Scholar
Zhu, M. & Ahlberg, P. E. 2004. The origin of the internal nostril of tetrapods. Nature 432, 9497.Google Scholar