Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T05:36:19.926Z Has data issue: false hasContentIssue false

Multi-chronometer dating of the Souter Head complex: rapid exhumation terminates the Grampian Event of the Caledonian Orogeny

Published online by Cambridge University Press:  08 July 2020

Darren F. MARK*
Affiliation:
Isotope Geoscience Unit, Scottish Universities Environmental Research Centre, Rankine Avenue, East Kilbride, Scotland, G75 0QF, UK Department of Earth & Environmental Science, University of St Andrews, St Andrews, KY16 9AJ, UK
Clive M. RICE
Affiliation:
Department of Geology & Petroleum Geology, University of Aberdeen, Aberdeen, AB24 3UE, UK
Malcolm HOLE
Affiliation:
Department of Geology & Petroleum Geology, University of Aberdeen, Aberdeen, AB24 3UE, UK
Dan CONDON
Affiliation:
NERC Isotope Geosciences Laboratory, British Geological Survey, Keyworth, NG12 5GG, UK
*
*Corresponding author. Email: [email protected]

Abstract

The Souter Head sub-volcanic complex (Aberdeenshire, Scotland) intruded the high-grade metamorphic core of the Grampian Orogen at 469.1 ± 0.6 Ma (uranium-238–lead-206 (238U–206Pb) zircon). It follows closely peak metamorphism and deformation in the Grampian Terrane and tightly constrains the end of the Grampian Event of the Caledonian Orogeny. Temporally coincident U–Pb and argon/argon (40Ar/39Ar) data show the complex cooled quickly with temperatures decreasing from ca.800 °C to less than 200 °C within 1 Ma. Younger rhenium–osmium (Re–Os) ages are due to post-emplacement alteration of molybdenite to powellite. The U–Pb and Ar/Ar data combined with existing geochronological data show that D2/D3 deformation, peak metamorphism (Barrovian and Buchan style) and basic magmatism in NE Scotland were synchronous at ca.470 Ma and are associated with rapid uplift (5–10 km Ma−1) of the orogen, which, by ca.469 Ma, had removed the cover to the metamorphic pile. Rapid uplift resulted in decompressional melting and the generation of mafic and felsic magmatism. Shallow slab break-off (50–100 km) is invoked to explain the synchroneity of these events. This interpretation implies that peak metamorphism and D2/D3 ductile deformation were associated with extension. Similarities in the nature and timing of orogenic events in Connemara, western Ireland, with NE Scotland suggest that shallow slab break-off occurred in both localities.

Type
Articles
Copyright
Copyright © The Author(s) 2020. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

10. References

Ague, J. J. & Baxter, E. F. 2007. Brief thermal pulses during mountain building recorded by Sr diffusion in apatite and multicomponent diffusion in garnet. Earth & Planetary Science Letters 261, 500–16.CrossRefGoogle Scholar
Andrews, E. R. & Billen, M. I. 2009. Rheologic controls on the dynamics of slab detachment. Tectonophysics 464, 6069.CrossRefGoogle Scholar
Anthony, J. W., Bideaux, R. A., Bladh, K. W. & Nichols, M. C. 2003. Handbook of mineralogy, 5, Tucson, Arizona: Mineral Data Publishing. 813 pp.Google Scholar
Appleby, S. K., Gillespie, M. R., Graham, C. M., Hinton, R. W., Oliver, G. J. H. & Kelly, N. M. 2010. Do S-type granites commonly sample infracrustal sources? New results from an integrated O, U-Pb and Hf isotope study of zircon. Contributions Mineralogy and Petrology 160, 115–32.CrossRefGoogle Scholar
Ashcroft, W. A., Kneller, B., Leslie, A. G. & Munro, M. 1984. Major shear zones and autochthonous Dalradian in the northeast Scottish Caledonides. Nature, London 310, 760–62.CrossRefGoogle Scholar
Barfod, D. N., Mark, D. F., Tait, A., Dymoch, R. C. & Imlach, J. 2014. Argon extraction from geological samples by CO2 scanning laser step-heating. Geological. Society Special. Publication 378, 7990.CrossRefGoogle Scholar
Baumann, C., Gerya, T. V. & Connolly, A. D. 2010. Numerical modelling of spontaneous slab breakoff dynamics during continent collision. Geological Society, London, Special Publications 332, 99114, 1.CrossRefGoogle Scholar
Baxter, E. F., Ague, J. J. & Depaulo, D. J. 2002. Prograde temperature-time evolution in the Barrovian type-locality constrained by Sm/Nd garnet ages from Glen Clova, Scotland. Journal Geological Society, London 159, 7182.CrossRefGoogle Scholar
Bowring, J. F. & Mclean, N. M. 2011. Engineering cyber infrastructure for U-Pb geochronology: Tripoli and U-Pb_Redux. Geochemical Geophysics Geosystems 12, Q0AA19.Google Scholar
Brown, D., Ryan, P. D., Afonso, J. C., Boutelier, D., Burg, J. P., Byrne, T., Calvert, A., Cook, F., DeBari, S., Dewey, J. F., Gerya, T. V., Harris, R., Herrington, R., Konstantinovskaya, E., Reston, T. & Zagorevski, A. 2011. Arc-Continent collision: the making of an orogen. In Brown, D. & Ryan, P. (eds) Arc-continent collision, frontiers in earth science, 477–93. Heidelberg: Springer, Springer-Verlag.CrossRefGoogle Scholar
Buiter, S. J. H., Govers, R. & Wortel, M. J. R. 2002. Two-dimensional simulations of surface deformation caused by slab detachment. Tectonophysics 354, 195210. https://link.springer.com/chapter/10.1007/978-3-540-88558-0_17CrossRefGoogle Scholar
Cahill, T. & Isacks, B. L. 1992. Seismicity and shape of the subducted Nazca Plate. Journal of Geophysical Research 97, 503–17, 529.CrossRefGoogle Scholar
Carty, J. P., Connelly, J. N., Hudson, N. F. C. & Gale, J. F. W. 2012. Constraints on the timing of deformation, magmatism and metamorphism in the Dalradian of NE Scotland. Journal Geological Society, London 48, 103–07.Google Scholar
Cassel, E. J., Smith, M. E. & Jicha, B. R. 2018. The impact of slab rollback on Earth's surface: uplift and extension in the hinterland of the North American Cordillera. Geophysical Research Letters 45, 10996–1004.CrossRefGoogle Scholar
Chappell, B. W. & White, A. J. R. 1974. Two contrasting granite types. Pacific Geology 8, 173–74.Google Scholar
Chen, P. F., Bina, C. R. & Okal, E. A. 2001. Variations in slab dip along the subducting Nazca Plate as related to stress patterns and moment release of intermediate-depth seismicity and to surface volcanism. Geochemistry, Geophysics. Geosystems 2. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2001GC000153Google Scholar
Chew, D. M., Daly, J. S., Magna, T., Page, L. M., Kirkland, C. L., Whitehouse, M. J. & Lam, R. 2010. Timing of ophiolite obduction in the Grampian orogen. GSA Bulletin 122, 1787–99.CrossRefGoogle Scholar
Chew, D. M. & Strachan, R. A. 2013. The Laurentian Caledonides of Scotland and Ireland. In Corfu, F., Gasser, D. & Chew, D. M. (eds) New perspectives on the Caledonides of Scandinavia and related areas, 390, 4591. Geological Society, London, Special Publication. https://sp.lyellcollection.org/content/390/1/45Google Scholar
Clift, P. D., Dewey, J. F., Draut, A. E., Chew, D. M., Mange, M. & Ryan, P. D. 2004. Rapid tectonic exhumation, detachment faulting and orogenic collapse in the Caledonides of western Ireland. Tectonophysics 384, 91113.CrossRefGoogle Scholar
Condon, D. J., Schoene, B. & Mclean, N. M. 2015. Metrology and traceability of U–Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I). Geochimica et Cosmochimica Acta 164, 464–80.CrossRefGoogle Scholar
Cooper, M. R., Crowley, Q. C., Hollis, S. P., Noble, S. R., Roberts, S., Chew, D., Earls, G., Herrington, R. & Merriman, R. J. 2011. Age constraints and geochemistry of the Ordovician Tyrone Igneous Complex, northern Ireland: implications for the Grampian orogeny. Journal Geological Society, London 168, 837–50.CrossRefGoogle Scholar
Creaser, R. A., Papanastassiou, D. A. & Wasserburg, G. J. 1991. Negative thermal ion mass spectrometry of osmium, rhenium and iridium. Geochimica et Cosmochimica Acta 55, 397401.CrossRefGoogle Scholar
Crowley, Q. G. & Strachan, R. A. 2015. U-Pb zircon constraints on obduction initiation of the Unst Ophiolite: an oceanic core complex in the Scottish Caledonides? Journal of the Geological Society, London 172, 279–82.CrossRefGoogle Scholar
Dempster, T. J., Rogers, G., Tanner, P. W. G., Bluck, M. J., Redwood, R. J., Ireland, T. R. & Paterson, B. A. 2002. Timing and deposition, orogenesis and glaciation within the Dalradian rocks of Scotland: constraints from U-Pb ages. Journal Geological Society, London 159, 8394.CrossRefGoogle Scholar
Dewey, J. & Mange, M. 1999. Petrography of Ordovician and Silurian sediments in the western Ireland Caledonides: traces of a short-lived Ordovician continent-arc collision orogeny and the evolution of the Laurentian Appalachian-Caledonide margin. In Macniocaill, C. & Ryan, P. D. (eds) Continental tectonics, 164, 55107. Geological Society, London. Special Publications. https://sp.lyellcollection.org/content/164/1/55Google Scholar
Dewey, J. F. 2005. Orogeny can be very short. Proceedings of the National Academy of Sciences 102, 15286–93.CrossRefGoogle ScholarPubMed
Duretz, T., Gerva, T. V. & May, D. A. 2011. Numerical modelling of spontaneous slab breakoff and subsequent topographic response. Tectonophysics 502, 244–56.CrossRefGoogle Scholar
Friedrich, A. M., Hodges, K. V., Bowring, S. A. & Martin, M. W. 1999. Geochronological constraints on the magmatic, metamorphic and thermal evolution of the Connemara, Caledonides, western Ireland. Journal Geological Society of London 156, 1217–30.CrossRefGoogle Scholar
Friedrich, A. M. & Hodges, K. V. 2016. Geological significance of 40Ar/39Ar mica ages across a mid-crustal continental plate margin, Connemara (Grampian Orogeny, Irish Caledonides), implications for the evolution of lithospheric collisions. Canadian Journal of Earth Sciences 53, 1258–78.CrossRefGoogle Scholar
Gerya, T. D., Yuen, D. A. & Maresch, W. V. 2004. Thermomechanical modelling of slab detachment. Earth & Planetary Science Letters 226, 101–16.CrossRefGoogle Scholar
Harmon, R. S. 1983. Oxygen and strontium isotope evidence regarding the role of continental crust in the origin and evolution of the British Caledonian granites. In Atherton, M. P. & Gribble, C. D. (eds) Migmatites, melting and metamorphism, 6279. Shiva, Orpington. https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7314189Google Scholar
Harte, B., Booth, J. E., Dempster, T. J., Fettes, D. J., Mendum, J. R. & Watts, D. 1984. Aspects of the post-depositional evolution of Dalradian and Highland Border Complex rocks in the Southern Highlands of Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 75, 151–63.CrossRefGoogle Scholar
Harte, B., Booth, J. E. & Fettes, D. J. 1987. Stonehaven to Findon: Dalradian structures and metamorphism. In Trewin, N. H., Kneller, B. C. & Gillen, C. (eds) Geology of the Aberdeen area, 211–26. Geological Society of Aberdeen. Scottish Academic Press. https://abdn.pure.elsevier.com/en/publications/excursion-guide-to-the-geology-of-the-aberdeen-area-scotlandGoogle Scholar
Hole, M. J., Millett, J. M., Rogers, N. W. & Jolley, D. W. 2015. Rifting and mafic magmatism in the Hebridean basins. Journal of the Geological Society, London 172, 218–36.CrossRefGoogle Scholar
Ickert, R. B., Mundil, R., Magee, C. W. Jr. & Mulcahy, S. R. 2015. The U-Th-Pb systematics of zircon from the Bishop Tuff: a case study in challenges to high precision Pb/U geochronology at millennial scale. Geochimica et Cosmochimica Acta 168, 88110.CrossRefGoogle Scholar
Johnson, T. E., Kirkland, C. L., Viete, D. R., Fischer, S., Reddy, S. M., Evans, N. J. & Mcdonald, B. J. 2017. Zircon geochronology reveals polyphase magmatism and crustal anatexis in the Buchan Block, NE Scotland: implications for the Grampian Orogeny. Geoscience Frontiers 8, 1469–78.CrossRefGoogle Scholar
Kneller, B. C. 1987. A geological history of north-east Scotland. In Trewin, N. H., Kneller, B. C. & Gillen, C. (eds) Geology of the Aberdeen area, 150. Geological Society of Aberdeen. Scottish Academic Press. https://abdn.pure.elsevier.com/en/publications/excursion-guide-to-the-geology-of-the-aberdeen-area-scotlandGoogle Scholar
Kneller, B. C. & Aftalion, M. 1987. The isotopic and structural age of the Aberdeen granite. Journal Geological Society of London 144, 717–22.CrossRefGoogle Scholar
Kneller, B. C. & Gillen, C. 1987. Aberdeen city and environs, excursion 1. In Trewin, N. H., Kneller, B. C. & Gillen, C. (eds) Geology of the Aberdeen area, 5564. Geological Society of Aberdeen. Scottish Academic Press. https://abdn.pure.elsevier.com/en/publications/excursion-guide-to-the-geology-of-the-aberdeen-area-scotlandGoogle Scholar
Lawley, C. J. M. & Selby, D. 2012. Re-Os Geochronolgy of Quartz Enclosed ultrafine Molybdenite: Implications for Ore Geochronolgy. Economic Geology 107, 1499–506.CrossRefGoogle Scholar
Lee, J.-Y., Marti, K., Severinghaus, J. P., Kawamura, K., Yoo, H. S., Lee, J. B. & Kim, J. S. 2006. A redetermination of the isotopic abundances of atmospheric Ar. Geochimica et Cosmochimica Acta 70, 4507–12.CrossRefGoogle Scholar
Mackie, W. 1926. The heavier accessory minerals in the granites of Scotland. Transactions of the Edinburgh Geological Society 12, 2240.CrossRefGoogle Scholar
Mark, D. F., Parnell, J., Kelley, S. P., Lee, M., Sherlock, S. C. & Carr, A. 2005. Dating of multistage fluid flow in sandstones. Science (New York, N.Y.) 309, 2048–51.CrossRefGoogle ScholarPubMed
Mark, D. F., Parnell, J., Kelley, S. P. & Sherlock, S. C. 2007. Resolution of regional fluid flow related to successive orogenic events on the Laurentian margin. Geology 35, 547–50.CrossRefGoogle Scholar
Mark, D. F., Barfod, D. N., Stuart, F. M. & Imlach, J. G. 2009. The ARGUS multicollector noble gas mass spectrometer: performance for 40Ar/39Ar geochronology. Geophysics Geochemistry Geosystems 10, 19.CrossRefGoogle Scholar
Mark, D. F., Stuart, F. M. & De PODESTA, M. 2011. New high-precision measurements of the isotopic composition of atmospheric argon. Geochimica et Cosmochimica Acta 75, 7494–501.CrossRefGoogle Scholar
Mark, D. F., Renne, P. R., Dymock, R., Smith, V. C., Simon, J. I., Morgan, L. E., Staff, R. A. & Ellis, B. S. 2017. High precision Ar/Ar dating of Pleistocene tuffs and temporal anchoring of the Matuyama-Brunhes boundary. Quaternary Geochronology 39, 123.CrossRefGoogle Scholar
Mattinson, J. M. 2005. Zircon U-Pb chemical abrasion (‘CA-TIMS’) method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology 220, 4766.CrossRefGoogle Scholar
Mckenzie, D. P. & Bickle, M. J. 1989. The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology 29, 625–79.CrossRefGoogle Scholar
Mckerrow, W. S. & Campbell, C. J. 1960. The stratigraphy and structure of the lower Palaeozoic rocks of north-west Galway. Proceedings of the Royal Society of Dublin 1, 2752.Google Scholar
Mclean, N., Bowring, J. F. & Bowring, S. A. 2011. An algorithm for U-Pb isotope dilution data reduction and uncertainty propagation. Geochemistry Geophysics Geosystems 12, Q0AA18.CrossRefGoogle Scholar
Mclellan, E. L. 1985. Metamorphic reactions in the kyanite and sillimanite zones of the Barrovian type area. Journal of Petrology 26, 789818.CrossRefGoogle Scholar
Mclellan, E. L. 1989. Sequential formation of subsolidus and anatectic migmatites in response to thermal evolution, eastern Scotland. Journal of Geology 97, 165–82.CrossRefGoogle Scholar
Menant, A., Sternai, P., Jolivet, L., Guillou-Frottier, L. & Gerya, T. 2016. 3D Numerical modeling of mantle flow, crustal dynamics and magma genesis associated with slab roll-back and tearing: The eastern Mediterranean case. Earth and Planetary Science Letters 442, 93107.CrossRefGoogle Scholar
Morgan, L. E., Mark, D. F., Imlach, J., Barfod, D. & Dymock, R. 2014. FCs-EK: a new sampling of the Fish Canyon Tuff 40Ar/39Ar neutron flux monitor. Geological Society Special Publication 378, 6367.CrossRefGoogle Scholar
Munro, M. 1986. Geology of the country around Aberdeen. Memoir of the British Geological Survey, Sheet 77 (Scotland).Google Scholar
Noble, S. R., Condon, D. J., Carney, J. N., Wilby, P. R., Pharaoh, T. C. & Ford, T. D. 2014. U-Pb geochronology and global context of the Charnian Supergroup, UK: Constraints on the age of key Ediacaran fossil assemblages. Geological Society of America Bulletin 127, 250–65.CrossRefGoogle Scholar
Oliver, G. J. H. 2001. Reconstruction of the Grampian episode in Scotland; its place in the Caledonian Orogeny. Tectonophysics 332, 2349.CrossRefGoogle Scholar
Oliver, G. J. H., Chen, F., Buchwaldt, R. & Hegner, E. 2000. Fast tectonometamorphism and exhumation in the type area of the Barrovian and Buchan zones. Geology 28, 459–62.2.0.CO;2>CrossRefGoogle Scholar
Oliver, G. J. H., Wilde, S. A. & Wan, Y. 2008. Geochronology and geodynamics of Scottish granitoids from the late Neoproterozoic break-up of Rodinia to Palaeozoic collision. Journal Geological Society of London 165, 661–74.CrossRefGoogle Scholar
Paterson, S. R., Vernon, R. H. & Tobisch, O. T. 1989. A review of criteria for the identification of magmatic and tectonic foliations in granitoids. Journal of Structural Geology 11, 349–63.CrossRefGoogle Scholar
Porteous, W. G. 1973. A breccia pipe in the Dalradian series, East Kincardineshire. Scottish Journal Geology 9, 233–37.CrossRefGoogle Scholar
Renne, P. R., Cassata, W. S. & Morgan, L. E. 2009. The isotopic composition of atmospheric argon and 40Ar/39Ar geochronology: time for a change? Quaternary Geochronology 4, 288–98.CrossRefGoogle Scholar
Renne, P. R., Mundil, R., Balco, G., Min, K. & Ludwig, K. R. 2010. Joint determination of 40 K decay constants and 40Ar*/40 K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochimica et Cosmochimica Acta 74, 5349–67.CrossRefGoogle Scholar
Renne, P. R., Balco, G., Ludwig, K. R., Mundil, R. & Min, K. 2011. Response to the comment by W.H. Schwarz et al. On ‘Joint determination of 40 K decay constants and 40Ar*/40 K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology’ by P.R. Renne et al. (2010). Geochimica et Cosmochimica Acta 75, 5097–100.CrossRefGoogle Scholar
Rice, C. & Mark, D. 2020. Geology of the Souter Head subvolcanic complex, Aberdeenshire, Scotland: An Ordovician granite-related Mo–(Bi–As–Au) system. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 118. doi:10.1017/S1755691019000161.CrossRefGoogle Scholar
Seedorff, E., Dilles, J. H, Proffett, J. M. Jr, Einaudi, M. T, Zurche, L., Stavast, W. J. A., Johnson, D. A. & Barton, M. D. 2005. Porphyry deposits: characteristics and origin of hypogene features. Economic Geology, 100th Anniversary Volume, 251–98. https://pubs.geoscienceworld.org/books/book/1940/chapter/107713475/Porphyry-DepositsCharacteristics-and-Origin-ofGoogle Scholar
Selby, D., Creaser, R. A. & Feely, M. 2004. Accurate and precise Re-Os molybdenite dates from the Galway Granite, Ireland. Critical comment on ‘Disturbance of the Re-Os chronometer of molybdenites from the late-Caledonian Galway Granite, Ireland, by hydrothermal fluid circulation’ by Suzuki et al. Geochemical Journal 35, 2935.Google Scholar
Selby, D. & Creaser, R. A. 2001. Re-Os geochronology and systematics in molybdenite from the endako porphyry molybdenum deposit, British Columbia. Economic Geology 96, 197204.CrossRefGoogle Scholar
Selby, D. & Creaser, R. A. 2004. Macroscale NTIMS and microscale LA-MC-ICPMS Re-Os isotope analysis of molybdenite: testing spatial restrictions for reliable Re-Os age determinations and implications for the decoupling of Re-Os within molybdenite. Geochimica et Cosmochimica Acta 68, 3897–908.CrossRefGoogle Scholar
Soper, N. J., Ryan, P. D. & Dewey, J. F. 1999. Age of Grampian orogeny in Scotland and Ireland. Journal of the Geological Society, London 156, 1231–36.CrossRefGoogle Scholar
Spray, J. G. & Dunning, G. R. 1991. A U/Pb age for the Shetland Islands oceanic fragment, Scottish Caledonides: evidence from anatectic plagiogranites in ‘layer 3’ shear zones. Geological Magazine 128, 667–71.CrossRefGoogle Scholar
Stewart, E. M., Baxter, E. F. & Ague, J. J. 2017. Initiation and duration of Grampian orogenesis constrained by refined Sm-Nd garnet geochronology of the Ballantrae ophiolite, Scotland. Journal of the Geological Society 174, 968–78.CrossRefGoogle Scholar
Strachan, R. A., Smith, M., Harris, A. L. & Fettes, D. J. 2002. The Northern Highland and Grampian terranes. In Trewin, N. H. (ed) The geology of Scotland, 81147. https://pubs.geoscienceworld.org/books/book/1524/The-Geology-of-ScotlandGoogle Scholar
Suzuki, K. 2004. Reply to ‘Accurate and precise Re-Os molybdenite dates from the Galway Granite, Ireland’ by D. Selby et Al.: critical comment on ‘Disturbance of the Re-Os chronometer of molybdenites from the late-Caledonian Galway Granite, Ireland, by hydrothermal fluid circulation’. Geochemical Journal 38, 295–98.CrossRefGoogle Scholar
Suzuki, K., Feely, M. & O'reilly, C. 2000. Disturbance of molybdenites from the late-Caledonian Galway Granite, Ireland, by hydrothermal circulation. Geochemical Journal 35, 2935.CrossRefGoogle Scholar
Tanner, P. W. G. 2014. A kinematic model for the Grampian Orogeny, Scotland. In Corfu, F., Gasser, D. & Chew, D. (eds) New perspectives on the Caledonides of Scandinavia and related areas, 390, 467511. Geological Society of London Special Publication. https://sp.lyellcollection.org/content/390/1/467/tab-figures-dataGoogle Scholar
Viete, D. R., Oliver, G. J. H., Fraser, G. L., Forster, M. A. & Lister, G. S. 2013. Timing and heat sources for the Barrovian metamorphism, Scotland. Lithos 177, 148–63.CrossRefGoogle Scholar
Viete, D.R., Richards, S.W., Lister, G.S., Oliver, G.J.H. & Banks, G.J. 2017. Lithospheric-scale extension during Grampian orogenesis in Scotland. In Law, R. D., Butler, R. W. H., Holdsworth, R. E., Krabbendam, M. & Strachan, R. A. (eds) Continental tectonics and mountain building: the legacy of Peach and Horne, 335, 121–60. Geological Society, London, Special Publications. https://sp.lyellcollection.org/content/335/1/121Google Scholar
Volkenning, J., Walczyk, T. & Heumann, K. G. 1991. Osmium isotope ratio determinations by negative ion mass spectrometry. International Journal of Mass Spectrometry Ion Processes 105, 147–59.CrossRefGoogle Scholar
Vorhies, S. H., Ague, J. J. & Schmitt, A. K. 2013. Zircon growth and recrystallisation during progressive metamorphism, Barrovian zones. Scotland American Mineralogist 98, 219–30.CrossRefGoogle Scholar
Vorhies, S. H. & Ague, J. J. 2011. Pressure-temperature evolution and thermal regimes in the Barrovian zones. Scotland. Journal Geological Society of London 68, 1147–66.CrossRefGoogle Scholar
Wendt, I. & Carl, C. 1991. The statistical distribution of the mean squared weighted deviation. Chemical Geology: Isotope Geoscience Section 86, 275–85.Google Scholar
Yang, X.-M. 2017. Estimation of crystallization pressure of granite intrusions. Lithos, 286–87, 324–29. https://www.sciencedirect.com/science/article/abs/pii/S0024493717302293Google Scholar
Supplementary material: File

Mark et al. supplementary material

Mark et al. supplementary material 1

Download Mark et al. supplementary material(File)
File 15.5 KB
Supplementary material: PDF

Mark et al. supplementary material

Mark et al. supplementary material 2

Download Mark et al. supplementary material(PDF)
PDF 140.4 KB
Supplementary material: File

Mark et al. supplementary material

Mark et al. supplementary material 3

Download Mark et al. supplementary material(File)
File 21.3 KB