Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T05:00:02.592Z Has data issue: false hasContentIssue false

Mafic granulites of the Schirmacher region, East Antarctica: fluid inclusion and geothermobarometric studies focusing on the Proterozoic evolution of the crust

Published online by Cambridge University Press:  03 November 2011

D. Rameshwar Rao
Affiliation:
Wadia Institute of Himalayan Geology, 33 General Mahadeo Singh Road, Dehradun-248 001, INDIA
Rajesh Sharma
Affiliation:
Wadia Institute of Himalayan Geology, 33 General Mahadeo Singh Road, Dehradun-248 001, INDIA
N. S. Gururajan
Affiliation:
Wadia Institute of Himalayan Geology, 33 General Mahadeo Singh Road, Dehradun-248 001, INDIA

Abstract

In the Proterozoic complex of the Schirmacher region of East Antarctica, a retrograde pressure–temperature (P–T) history has been inferred through quantitative geothermobarometry and fluid inclusion studies of the mafic granulites. Microthermometric investigations of the fluid phases trapped in quartz and garnet identified three types of inclusions, namely, earliest pure CO2 inclusions (0·987–1·057 g cm−3), CO2–H2O inclusions and aqueous inclusions.

The temperature and pressure of metamorphism have been estimated through different calibrations of geothermometers and geobarometers. The mineral reactions and compositional zoning in the minerals record P–T conditions from nearly 837 ± 26°C, 7·1±0·2 kbar to 652 ± 33°C, 5·9 ± 0·3 kbar. A good correlation between the fluid and mineral data is observed. The isochores typical of highdensity CO2 fluids fall well within the P–T box estimated by mineral thermobarometry. The abundance of primary CO2 inclusions in early metamorphic minerals (notably quartz and primary garnet) and the general correspondence between fluid and mineral P–T data indicate a ‘fluid-present’ carbonic regime for the high-grade metamorpism; however, from the present data largescale CO2 advection could not be envisaged. The subsequent stages involved a decrease in CO2 density, a progressive influx of hydrous fluids and the generation of retrograde amphibolite facies metamorphism in the area.

The estimated P–T conditions of the region suggest that the rocks were metamorphosed at a depth of 19–24 km, with a geothermal gradient of c. 3°5C km−1. The estimated P–T conditions of the rocks imply a clockwise P–T–t path with a gradual decrease in temperature of around 250°C and a decrease in pressure of around 1700 bar. They have a dP/dT gradient of ≈7 ± l bar °C−1, arguing for an isobaric cooling history of the terrane under normal thickened crust after the underplating of mantle-derived material.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, T., Austrheim, H. & Burke, E. A. J. 1991. Fluid induced retrogression of granulites in the Bergen Arcs, Caledonides of W Norway: fluid inclusion evidence from amphobilite facies shear zones. Lithos 27, 2942.CrossRefGoogle Scholar
Bhattacharya, A., Krishnakumar, K. R., Raith, M. & Sen, S. K. 1991. An improved set of a-X parameters for Fe-Mg-Ca garnets and refinements of the orthopyroxene-garnet thermometer and the orthopyroxene-garnet plagiocase-quartz barometer. J Petrol 32, 629–56.CrossRefGoogle Scholar
Bhattacharya, A., Mohanty, L., Maji, A., Sen, S. K. & Raith, M. 1992. Non-ideal mixing in the phlogopite-annite binary: constraints from experimental data on Mg-Fe partitioning and a reformulation of the biotite-garnet geothermometer. Contrib Mineral Petrol 111, 8793.CrossRefGoogle Scholar
Bohlen, S. R. 1987. Pressure temperature-time paths and a tectonic model for the evolution of granulites. J Geol 95, 617–32.CrossRefGoogle Scholar
Bohlen, S. R. 1991. On the formation of granulites. J Metamorph Geol 9, 223–9.CrossRefGoogle Scholar
Bohlen, S. R. & Mezger, K. 1989. Origin of granulite terranes and the formation of the lowermost continental crust. Science 244, 326–9.CrossRefGoogle ScholarPubMed
Bohlen, S. R., Peacor, D. r. & Essene, E. J. 1980. Crystal chemistry of a metamorphic biotite and its significance in water barometry. Am Mineral 65, 5562.Google Scholar
Bohlen, S. r, Wall, V. J. & Boettcher, A. L. 1983. Experimental investigation and application to garnet granulite equilibria. Contrib Mineral Petrol 83, 5261.CrossRefGoogle Scholar
Bohlen, S. r, Valley, J. W. & Essene, E. J. 1986. Metamorphism in the Adirondacks. I. Petrology, pressure and temperature, J Petrol 26, 971–92.CrossRefGoogle Scholar
Brown, P. E. 1989. Flincor: a microcomputer programme for the reduction and investigation of fluid-inclusion data. Am Mineral 74, 1390–3.Google Scholar
Burrussr, C. r, C. 1981. Analysis of fluid inclusions: phase equilibria at constant volume, Am J Sci 281, 1104–26.CrossRefGoogle Scholar
Carswell, D. A. & Gibb, F. G. F. 1987. Evaluation of mineral thermometers and barometers applicable to garnet lherzolite assemblages. Contrib Mineral Petrol 95, 499511.CrossRefGoogle Scholar
Carswell, D. A. & Harley, S. L. 1990. Mineral barometry and thermometry. In Carswell, D. A. (ed.) Eclogite Facies Rocks, 83110. Glasgow: Blackie,CrossRefGoogle Scholar
Clarke, G. L., Powell, r & Guiraud, M. 1989. Low-pressure granulite facies metapelitic assemblages and corona textures from MacRobertson Land, East Antarctica: the importance of Fe2O3 and TiO2, accounting for spinel-bearing assemblages. J Metamorph Geol 7, 323–35.CrossRefGoogle Scholar
Coolen, J. J. M. M. M. 1982. Carbonic fluid inclusions in granulites from Tanzania–a comparison of geobarometric methods based on fluid density and mineral chemistry. Chem Geol 37, 5977.CrossRefGoogle Scholar
Dahl, P. S. 1980. The thermal-compositional dependence of Fe+2–Mg+2 distributions between coexisting garnet and pyroxene: applications to geothermometry. Am Mineral 65, 852–66.Google Scholar
Eckert, J. O. Jr, NewtonR, C. R, C. & Kleppa, O. J. 1991. The δH of reaction and recalibration of garnet-pyroxene-plagioclase-quartz geobarometer in CMAS system in solution calorimetry. Am Mineral 76, 148–60.Google Scholar
Ellis, D. J. 1980. Osumilite–sapphirine–quartz granulites from Enderby Land. Antarctica: P–T conditions of metamorphism, implications for garnet–cordierite equilibria and the evolution of the deep crust. Contrib Mineral Petrol 74, 201–10.CrossRefGoogle Scholar
Ellis, D. J. 1987. Origin and evolution of granulites in normal and thickened crust. Geology 15, 167–70.2.0.CO;2>CrossRefGoogle Scholar
Ellis, D. J. & Green, D. H. 1979. An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contrib Mineral Petrol 71, 1322.CrossRefGoogle Scholar
Ferry, J. M. & Spear, F. S. 1978. Experimental calibration of the partioning of Fe and Mg between biotite and garnet. Contrib Mineral Petrol 66, 113–7.CrossRefGoogle Scholar
Frost, B. r & Chacko, T. 1989. The granulite uncertainty principle: limitations on thermobarometry in granulites. J Geol 97, 435–50.CrossRefGoogle Scholar
Ganguly, J. 1979. Garnet and clinopyroxene solid solutions, and geothermometry based on Fe–Mg distribution coefficient. Geoch1M Cosmochim Acta 43, 1021–9.CrossRefGoogle Scholar
Graham, C. M. & Powell, R. 1984. A garnet-hornblende geothermometer: calibration testing and application to the Pelona Schist. Southern California. J Metamorph Geol 2, 1331.CrossRefGoogle Scholar
Grewe, S. 1982. The Antarctic margin, In NairnaE, M. E, M. & Stehli, F. G. (eds) The Ocean Basins and Margins, The Indian Ocean, Vol. 6, 697755. New York: Plenum Press.CrossRefGoogle Scholar
Hansen, E. C.Newton, R. C. & Janardhan, A. S. 1984. Fluid inclusion in rocks from amphibolite facies gneiss to charnockite progression in southern Karnataka. India: direct evidence concerning the fluids of granulite metamorphism. J Metamorph Geol 2, 249–64.CrossRefGoogle Scholar
Harley, S. L. 1984. An experimental study of the partititioning of Fe and Mg between garnet and orthopyroxene, Contrib Mineral Petrol 86, 359–73.CrossRefGoogle Scholar
Harley, S. L. 1985. Garnet-orthopyroxene bearing granulites from Enderby Land, Antarctica: metamorphic pressure-temperature paths deduced from mafic and felsic granulites. J Petrol 26, 819–56.CrossRefGoogle Scholar
Harley, S. L. 1988. Proterozoic granulites from the Rauer Group, East Antarctica. I. Decompressional pressure-temperature paths deduced from mafic and felsic granulites. J Petrol 26, 1059–95.CrossRefGoogle Scholar
Harley, S. L. 1989. The origin of granulites: a metamorphic perspective, Geol Mag 126, 215–47.CrossRefGoogle Scholar
Harley, S. L. & Buick, I. S. 1992. Wollastonite-scapolite assemblages as indicators of granulite pressure-temperature-fluid histories: the Rauer Group, East Antarctica. J Petrol 33, 693728.CrossRefGoogle Scholar
Harley, S. L. & Fitzsimons, C. W. 1990. Pressure-temperature evolution of metapelitic granulites in a polymetamorphic terrane: the Rauer Group, East Antarctica. J Metamorph Geol 9, 231–43.CrossRefGoogle Scholar
Harley, S. L. & Hensen, B. J. 1990. Archean and Proterozoic highgrade terranes of East Antarctica (40–80°C)–a case study of diversity in granulite facies metamorphism. In Ashworth, J. R. & Brown, M. (eds) High-temperature Metamorphism and Crustal Anatexis. THE MINERALOGICAL SOCIETY SERIES, 320–70. London: Unwin Hyman.Google Scholar
Harley, S. L. & Santosh, M. 1995. Wollastonite at Nuliyam Kerala, southern India: a reassessment of CO2-infiltration and charnockite formation of a classic locality, Contrib Mineral Petrol 120, 8394.CrossRefGoogle Scholar
Harley, S. L., Fitzsimons, C. W. & Buick, I. S. 1994. Reaction textures in wollastonite-scapolite granulites and their significance for pressure-temperature-fluid histories of high grade terranes. Precambrian Res 66, 309–23.CrossRefGoogle Scholar
Hoeffenbauer, R. & Spiering, B. 1994. Petrologic phase equilibria and stable isotope fractionations of carbonate-silicate parageneses from granulite-grade rocks of Sri Lanka. Precambian Res 66, 325–49.CrossRefGoogle Scholar
Hoisch, T. D. 1990. Empirical calibration of six geobarometers for the mineral assemblage quartz + muscovite + biotite + plagioclase + garnet. Contrib Mineral Petrol 104, 225–34.CrossRefGoogle Scholar
Hollister, L. S. & Burruss, R. C. 1976. Phase equilibria in fluid inclusions from the Khtada Lake metamorphic complex. Geochim Cosmochim Acta 40, 163–75.CrossRefGoogle Scholar
Hollister, L. S., Burruss, R. C.Henry, D. L. & Hendele, M. 1979. Physical conditions during uplift of metamorphic terranes as recorded by fluid inclusions. Bull Mineral 102, 555–61.Google Scholar
Indares, A. & Martignole, J. 1985. Biotite-garnet thermometry in the granulite facies: the influence of Ti and Al in biotite, Am Mineral 70, 272–8.Google Scholar
Johnson, C. A., Bohlen, S. R. & Essene, E. J. 1983. An evaluation of garnet-clinopyroxene geothermometry in granulites. Contrib Mineral Petrol 84, 191–8.CrossRefGoogle Scholar
Kaiser, G. & Wand, V. 1985. K-Ar dating of basaltic dykes in the Schirmacher Oasis area, Dronning Maud Land, East Antarctica. Z Geol Wissenschaft 13, 299309.Google Scholar
Kampf, H & Stackebrant, W. 1985. Crustal evolution of the eastern Antarctica craton, Gerlands Beitr Geophysik, Leipzig 94, 251–8.Google Scholar
Kaul, M. K., Chakraborty, S. K. & Raina, V. K. 1985. Geology of the Dakshin Gangotri. Schirmacher Hill, Antarctica. Scientific Report, Department of Ocean Development. Technical Publication No. 2, 110.Google Scholar
Kohn, M. J. & Spear, F. S. 1990. Two new geobarometers for garnet amphibolites, with application to southeastern Vermont. Am Mineral 75, 8996.Google Scholar
Kretz, R. 1982. Transfer and exchange equilibria in a portion of the pyroxene quadrilateral as deduced from natural and experimental data. Geochim Cosmochim Acta 46, 411–22.CrossRefGoogle Scholar
Kretz, R. 1983. Symbols for rock-forming minerals. Am Mineral 68, 277–9.Google Scholar
KroghE, J. E, J. 1988. The garnet-clinopyroxene Fe-Mg geothermometer –a reinterpretation of existing experimental data. Contrib Mineral Petrol 99, 44–8.CrossRefGoogle Scholar
Lamb, W. & Valley, J. W. 1984. Metamorphism of reduced granulites in low-CO2 vapour free environment. Nature 312, 56–8.CrossRefGoogle Scholar
Lamb, W. M., Valley, J. W. & Brown, P. E. 1987. Post-metamorphic CO2-rich fluid inclusions in granulites. Contrib Mineral Petrol 96, 485–95.CrossRefGoogle Scholar
Lamb, W. M., Brown, P. E. & Valley, J. W. 1991. Fluid inclusions in Adirondack granulites: implications for the retrograde P–T path, Contrib Mineral Petrol 107, 472–83.CrossRefGoogle Scholar
LeeH, Y. H, Y. & Ganguly, J. 1988. Equilibrium compositions of coexisting garnet and orthopyroxene: experimental determinations in the system FeO-MgO-Al20,-SiO2 and applications. J Petrol 29, 93113.CrossRefGoogle Scholar
Lindsley, D. H. 1983. Pyroxene thermometry, Am Mineral 68, 477–93.Google Scholar
Lindsley, D. H., Grover, J. E. & Davidson, P. M. 1981. The thermodynamics of the Mg2Si206-CaMgSi206 join: a review and an imposed model. In Newton, R. C.Navrotsky, A. & Wood, B. J. (eds) Advances in Physical Geochemistry, 149–75. Berlin: Springer-Verlag.Google Scholar
Moecher, D. P. & Essene, E. J. 1990. Phase equilibria for calcic scapolite, and implications of variable Al-Si disorder for P–T, T-Xco2. and a-X reactions. J Petrol 31, 9971024.CrossRefGoogle Scholar
Moecher, D. P. & Essene, E. J. 1991. Calculations of CO2 activities using scapolite equilibria: constraints on the presence and composition of a fluid phase during high grade metamorphism. Contrib Mineral Petrol 108, 219–40.CrossRefGoogle Scholar
Morrison, J. & Valley, J. W. 1988. Post-granulite facies fluid infiltration in the Adirondack Mountains. Geology 16, 513–6.2.3.CO;2>CrossRefGoogle Scholar
Motoyoshi, Y., Thost, D. E. & Hensen, B. J. 1991. Reactions textures in calc-silicate granulites from the Bolingen Islands. Prydz Bay, East Antarctica: implications for the retrograde P–T path, J Metamorph Geol 9, 293300.CrossRefGoogle Scholar
Mueller, R. F. 1973. The system CaO–MgO–FeO–SiO2,–C–H2-O2: some correlations from nature and experiment. Am J Sci 273, 152–70.CrossRefGoogle Scholar
Newton, R. C. 1992. Charnockitic alteration: evidence of CO2 infiltration in granulite facies metamorphim. J Metamorph Geol 10, 383400.CrossRefGoogle Scholar
Newton, R. C. & Perkins, D III 1982. Thermodynamic calibration of geobarometers based on the assemblages garnet-plagioclaseorthopyroxene (clinopyroxene)-quartz. Am Mineral 67, 203–22.Google Scholar
Newton, R. C.Smith, J. V. & Windle, B. F. 1980. Carbonic metamorphism. granulites and crustal growth, Nature 288, 4550.CrossRefGoogle Scholar
Nicols, G. T. & Berry, R. F. 1991. A decompressional P–T path, Reinbolt Hills, East Antarctica. J Metamorph Geol 9, 257–66.CrossRefGoogle Scholar
Pattison, D. R. M. & Newton, R. C. 1989. Reversed experimental calibration of the garnet-clinopyroxene Fe-Mg exchange thermometer. Contrib Mineral Petrol 101, 87103.CrossRefGoogle Scholar
Perchuk, L. L. & Lavrent'eva, I. V. 1983. Experimental investigation of exchange equilibria in the system cordierite-garnet-biotite, In Saxena, S. K. (ed) Kinetics and Equilibrium in Mineral Reactions. 199239. New York: Springer-Verlag.CrossRefGoogle Scholar
Percival, J. A. 1983. High-grade metamorphism in the Chapleau-Foleyet Area, Ontario. Am Mineral 68, 667–86.Google Scholar
Perkins, D. III & Newton, R. C. 1981. Charnockite geobarometers based on coexisting garnet-pyroxene-plagiocase-quartz. Nature 292, 144–6.CrossRefGoogle Scholar
Philibert, J. 1963. X-ray Optics and X-ray Microanalysis. New York: Academic Press.Google Scholar
Phillip, G. N. 1980. Water activity changes across an amphibolitegranulite facies transition, Broken Hill Australia. Contrib Mineral Petrol 75, 377–86.CrossRefGoogle Scholar
Powell, R. 1978. The thermodynamics of pyroxene geotherms. Phil Trans R Soc London Ser A, 288, 457–69.Google Scholar
Raith, M., Raase, P., Ackermand, D. & Lai, R. K. 1983. Regional geothermobarometry in the granulite facies terrane of South India. Trans R Soc Edinburgh Earth Sci 73, 221–44.CrossRefGoogle Scholar
Rameshwar Rao, D. 1995. BGT–the macros driven spreadsheet program for biotite-garnet thermometry, Comput Geosci 21, 593604.Google Scholar
Rameshwar Rao, D. & Sharma, R. 1994. Geothermobarometry and synmetamorphic high density CO2 fluids in the lower crust mafic granulites of Schirmacher region, East Antarctica, [abstract]. Pacrofi V, 1921 May 1994, Mexico.Google Scholar
Rameshwar Rao, D. & Sharma, R. 1995. Evolution of leucogneiss, Schirmacher region, East Antarctica: evidence from fluid inclusions, geochemistry and mineral chemistry, [abstract]. XIII Ecrofi, 2123 June 1995, Sitges, Italy,Google Scholar
Rameshwar Rao, D. & Subba Rao, T. V. 1996. AMPH: a program for calculating formulas and for assigning names to the amphibole group of mineral. Comput Geosci. 22, 931-3.Google Scholar
Rameshwar Rao, D., Sharma, R. & Gururajan, N. S. 1997. Geothermobarometry and fluid inclusion studies of leucogneisses from Schirmacher Region, East Antarctica. J Geol Soc India (In press).Google Scholar
Rameshwar Rao, D., Sharma, R. & Gururajann, S. n, S. Mineral chemistry, fluid inclusion studies and P–T path of gneiss-granulite rocks of Schirmacher region, East Antarctica. Technical Paper. Department of Ocean Development, India, in press.Google Scholar
Roedder, e 1984. Fluid inclusions reviews. Rev Mineral. Mineral Soc Am 12, 646 pp.Google Scholar
Rudnick, R. L., Ashwal, L. D. & Henry, D. L. 1984. Fluid inclusions in high-grade gneisses of the Kapuskasing structural zone, Ontario: metamorphic fluids and uplift/erosion path, Contrib Mineral Petrol. 87, 399406.CrossRefGoogle Scholar
Sandiford, M. 1985. The metamorphic evolution of granulites at Fyfe Hills; implications for Archean crustal thickness in Enderby Land, Antarctica. J Metamorph Geol 3, 155–78.CrossRefGoogle Scholar
Sandiford, M. A. & Powell, R. 1986. Deep crustal metamorphism during continental extension; ancient and modern examples. Earth Planet Sci Lett 79, 151–8.CrossRefGoogle Scholar
Santosh, M. 1987. Cordierite gneisses of southern Kerala, India: petrology, fluid inclusions and implications for crustal uplift history, Contrib Mineral Petrol 96, 343–56.CrossRefGoogle Scholar
Selverstone, J. 1982. Fluid inclusions as petrogenetic indications in granulite xenoliths, Pali-alike Volcanic field, Southern Chile, Contrib Mineral Petrol 79, 19.CrossRefGoogle Scholar
Selverstone, J., Spear, F. S., Franz, G. & Morteani, G. 1983. Highpressure metamorphism in the SW Tauern Window, Austria: P–T paths from hornblende-kyanite-staurolite schists. J Petrol 25, 501–32.CrossRefGoogle Scholar
Sen, S. K. & Bhattacharya, A. 1984. An orthoproxene-garnet thermometer and its application to the Madras charnockites. Contrib Mineral Petrol 88, 6471.CrossRefGoogle Scholar
Sengupta, P. K., Dasgupta, S., Bhattacharya, P. K. & Hariya, Y. 1989. Mixing behaviour in quaternary garnet solid solution and an extended Ellis and Green garnet-clinopyroxene geothermometer. Contrib Mineral Petrol 103, 223–7.CrossRefGoogle Scholar
Sengupta, S. 1988. History of successive deformation in relation to metamorphism-migmatitic events in the Schirmacher Hills, Queen Maud Land, East Antarctica. J Geol Soc India 32, 295314.Google Scholar
Sengupta, S. 1993. Tectonothermal history recorded in mafic dykes and enclaves of gneissic basement in the Schirmacher Hills, East Antarctica. Precambrian Res, 63, 273–91.CrossRefGoogle Scholar
Spear, F. S. & Selverstone, J. 1983. Quantitative P–T paths from zoned minerals: theory and tectonic applications. Contrib Mineral Petrol 83, 348–57.CrossRefGoogle Scholar
Stackebrant, W., Kampf, H. & Wetzel, H. U. 1988. The geological setting of the Schirmacher Oasis, Queen Maud Land, East Antarctica. Z Geol Wissenschaft Berlin 7, 661–5Google Scholar
Sterner, S. M. & Bodnar, R. J. 1989. Synthetic fluid inclusions VII. Reequilibration of fluid inclusions in quartz during laboratorysimulated burial and uplift. J Metamorph Geol 7, 243-60.CrossRefGoogle Scholar
Stuwe, K. & Powell, R. 1989. Proterozoic decompression in the Larsemann Hills, East Antarctica. J Metamorph Geol 7, 465–84.Google Scholar
Stuwe, K., Braun, H. M. & Peer, H. 1989. Geology and structure of the Larsemann Hills area, Prydz Bay, East Antarctica. Aust J Earth Sci 36, 219–41.CrossRefGoogle Scholar
Swanenberg, H. E. C. 1979. Phase equilibria in carbonic systems and their application to freezing studies of fluid inclusions. Contrib Mineral Petrol 60, 303–6.CrossRefGoogle Scholar
Thompson, A. B. 1976. Mineral reaction in pelitic rocks. Calculations of some P–T–x (Fe-Mg) phase relations. Am Mineral 276, 425–54.Google Scholar
Tingey, R. J. 1982. The geological evolution of the Prince Charles Mountains—an Antarctic Archaean Cratonic Block. In Craddock, C. (ed.) Antarctic Geoscience, 455–63. Madison: University of Wisconsin.Google Scholar
Touret, J. 1988. Nature and interpretation of fluid inclusions in granulites. J Geol Soc India 31, 158–60.Google Scholar
Valley, J. W., Lelland, M. C.Essene, E. J. & Lamb, W. M. 1983. Metamorphic fluids in the deep crust: evidence from the Adirondacks. Nature 301, 226–8.CrossRefGoogle Scholar
Van Reenen, D. D. & Barton, J. M. Jr 1986. Parallel evolution of the granulite facies terranes of the central and southern marginal zones of the Limpopo belt. Southern Africa. Geol Assoc Can Abstr 11, 139.Google Scholar
Van Reenen, D. D., Pretorius, A. I. & Roering, C. 1994. Characterization of fluids associated with gold mineralization and with regional high temperature retrogression of granulites in the Limpopo belt, South Africa. Geochim Cosmochim Acta 58, 1147–59.CrossRefGoogle Scholar
Wood, B. J. & Banno, S. 1973. Garnet-orthopyroxene and orthopyroxene–clinopyroxene relationships in simple and complex systems. Contrib Mineral Petrol 42, 109–24.CrossRefGoogle Scholar
Wells, P. R. A. 1977. Pyroxene thermometry in simple and complex systems. Contrib Mineral Petrol 62, 129–39.CrossRefGoogle Scholar
Wells, P. R. A. 1979. Chemical and thermal evolution of Archean Sialic crust. Southern West Greenland. J Petrol 20, 187226.CrossRefGoogle Scholar