Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-03T00:15:58.050Z Has data issue: false hasContentIssue false

Long bone histology indicates sympatric species of Dimetrodon (Lower Permian, Sphenacodontidae)

Published online by Cambridge University Press:  07 October 2013

Christen D. Shelton
Affiliation:
Division of Palaeontology, Steinmann Institute, University of Bonn, Nussallee 8, 53115 Bonn, Germany. Email: [email protected]; [email protected]; [email protected]
P. Martin Sander
Affiliation:
Division of Palaeontology, Steinmann Institute, University of Bonn, Nussallee 8, 53115 Bonn, Germany. Email: [email protected]; [email protected]; [email protected]
Koen Stein
Affiliation:
Division of Palaeontology, Steinmann Institute, University of Bonn, Nussallee 8, 53115 Bonn, Germany. Email: [email protected]; [email protected]; [email protected]
Herman Winkelhorst
Affiliation:
Molenstraat 14, 7122ZW Aalten, The Netherlands. Email: [email protected]

Abstract

The Briar Creek Bonebed (Artinskian, Nocona Formation) in Archer County is one of the richest sources of Dimetrodon bones in the Lower Permian of Texas, USA. Based on size, a small (D. natalis), an intermediate (D. booneorum), and a large species (D. limbatus) have been described from this locality. It has been proposed that these traditionally recognised species represent an ontogenetic series of only one species. However, the ontogenetic series hypothesis is inconsistent with the late ontogenetic state of the small bones, as suggested by their osteology and degree of ossification. Histological analysis of newly excavated material from the Briar Creek Bonebed has resolved some of the discretion between these two competing hypothesis, confirming the coexistence of a small (D. natalis) with at least one larger Dimetrodon species. An external fundamental system is present in the largest sampled long bones identified as D. natalis. The histology of D. natalis postcrania is described as incipient fibro lamellar bone. This tissue is a combination of parallel-fibred and woven-fibred bone that is highly vascularised by incipient primary osteons. The species status of D. booneorum and D. limbatus remain unresolved.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

8. References

Bakker, R. T. 1975. Dinosaur Renaissance. Scientific America 232, 5878.Google Scholar
Bakker, R. T. 1982. Juvenile–adult habitat shift in Permian fossil reptiles and amphibians. Science 217, 5355.Google Scholar
Berman, D. S. 1977. A new species of Dimetrodon (Reptilia, Pelycosauria) from a non-deltaic facies in the Lower Permian of north-central New Mexico. Journal of Paleontology 51, 108–15.Google Scholar
Berman, D. S. 1993. Lower Permian vertebrate localities of New Mexico and their assemblages. Vertebrate Paleontology in New Mexico. In S. G. Lucas, S. G. & Zidek, J. (eds) Vertebrate Paleontology in New Mexico. New Mexico Museum of Natural History and Science Bulletin 2, 1121. Albuquerque: New Mexico Museum of Natural History and Science. 338 pp.Google Scholar
Berman, D. S., Reisz, R., Martens, T. & Henrici, A. C. 2001. A new species of Dimetrodon (Synapsida: Sphenacodontidae) from the Lower Permian of Germany records first occurrence of genus outside of North America. Canadian Journal of Earth Science 38, 803–12.Google Scholar
Berman, D. S., Henrici, A. C., Sumida, S. & Martens, T. 2004. New materials of Dimetrodon teutonis (Synapsida: Sphenacodontidae) from the Lower Permian of Germany. Annals of the Carnegie Museum 73, 4856.CrossRefGoogle Scholar
Bickelmann, C. & Sander, M. 2008. A partial skeleton and isolated humeri of Nothosaurus (Reptilia: Eosauropterygia) from Wintersijk, The Netherlands. Journal of Vertebrate Paleontology 28, 326–38.Google Scholar
Bonnan, M. F. 2004. Morphometric analysis of humerus and femur shape in Morrison sauropods: implications for functional morphology and paleobiology. Paleobiology 30, 444–70.Google Scholar
Brinkman, D. 1988. Size-independent criteria for estimating relative age in Ophiacodon and Dimetrodon (Reptilia, Pelycosauria) from the Admiral and Lower Belle Plains formations of West-central Texas. Journal of Vertebrate Paleontology 8, 172–80.CrossRefGoogle Scholar
Bromage, T. G., R. S. Lacruz, R. S., Hogg, R., Goldman, S. C., McFarlin, S. C., Dirks, W., Perey-Ocha, I., Smolyar, D. H., Enlow, D. H. & Boyde, A. 2009. Lamellar bone is an incremental tissue reconciling enamel rhythms, body size, and organismal life history. Calcified Tissue International 84, 388404.Google Scholar
Bybee, P. J., Lee, A. H. & Lamm, E. T. 2006. Sizing the Jurassic theropod dinosaur Allosaurus: Assessing growth strategy and evolution of ontogenetic scaling of limbs. Journal of Morphology 267, 347–59.Google Scholar
Carrano, M. T. 2006. Body-size evolution in the Dinosauria. In Carrano, M. T., Blob, R. W., Gaudin, T., & Wible, J. (eds) Amniote Paleobiology: Perspectives on the Evolution of Mammals, Birds, and Reptiles, 225–56. Chicago: University of Chicago Press.Google Scholar
Case, E. C. 1907. Revision of the Pelycosauria of North America. Carnegie Institution of Washington Publication 55, 1169.Google Scholar
Case, E. C. 1915. The Permo–Carboniferous redbeds of North America and their vertebrate fauna. The Carnegie Institution of Washington 20, 1157.Google Scholar
Castanet, J. 2006. Time recording in bone microstructure of endothermic animals; functional relationships. Comptes Rendus Palevol 5, 629–36.CrossRefGoogle Scholar
Castanet, J., Croci, S., Aujard, F., Perret, M., Cubo, J. & de Margerie, E. 2004. Lines of arrested growth in bone and age estimation in a small primate: Microcebus murinus. Journal of Zoology 263, 3139.Google Scholar
Chinsamy-Turan, A. 2005. The Microstructure of Dinosaur Bone. Baltimore, Maryland: Johns Hopkins University Press. 216 pp.Google Scholar
Cooper, L. N., Lee, A. H., Taper, M. L. & Horner, J. R. 2008. Relative growth rates of predator and prey dinosaurs reflect effect of predation. Proceedings of the Royal Society, London B 275, 2609–15.Google Scholar
Cope, E. C. 1878. Descriptions of extinct Batrachia and Reptilia from the Permian of Texas. Proceedings of the American Philosophical Society 17, 505–30.Google Scholar
Currey, J. D. 2002. Bones. Structure and Mechanics. Princeton, New Jersey: Princeton University Press. 436 pp.Google Scholar
Enlow, D. H. 1969. The bone of reptiles. In Gans, C. (ed.) Biology of the Reptiles, 4580. London: Academic Press.Google Scholar
Enlow, D. H. & Brown, O. S. 1956. A comparative histological study of fossil and recent bone tissues. Part I. Texas Journal of Science 9, 405–39.Google Scholar
Enlow, D. H. & Brown, O. S. 1957. A comparative histological study of fossil and recent bone tissues. Part II. Texas Journal of Science 9, 186214.Google Scholar
Enlow, D. H. & Brown, O. S. 1958. A comparative histological study of fossil and recent bone tissues. Part III. Texas Journal of Science 10, 187230.Google Scholar
Erickson, G. M., Makovicky, P. J., Philip, J. C., Norell, M. A., Yerby, S. A. & Brochu, C. A. 2004. Gigantism and comparative life history parameters of tyrannosaurid dinosaurs. Nature 430, 772–75.Google Scholar
Florides, G. A., Wrobel, L. C. & Kalogirou, S. A. 1999. A thermal model for reptiles and pelycosaurs. Journal of Thermal Biology 24, 113.Google Scholar
Florides, G. A., Kalogirou, S. A., Tassou, S. A. & Wrobel, L. C. 2001. Natural environment and thermal behaviour of Dimetrodon limbatus. Journal of Thermal Biology 26, 1520.CrossRefGoogle ScholarPubMed
Francillon-Vieillot, H., Buffrénil, V. de., Castenet, J., Géraudie, J., Meunier, F. J., Sire, J. Y., Zylbergberg, L. & Ricqlés, A. de. 1990. Microstructure and mineralization of vertebrate skeletal tissues. In Carter, J. G. (ed.) Skeletal biomineralization: Patterns, processes and evolutionary trends 1, 471530. New York: Van Nostrand Reinhold.Google Scholar
Hentz, T. F. 1988. Lithostratigraphy and paleoenvironments of Upper Paleozoic continental red beds, north-central Texas: Bowie (new) and Wichita (revised) groups. The University of Texas at Austin, Bureau of Economic Geology Report of Investigations 170, 155.Google Scholar
Horner, J. R. & Goodwin, B. 2009. Extreme cranial ontogeny in the Upper Cretaceous Dinosaur Pachycephalosaurus. PLoS One 4, 111.Google Scholar
Horner, J. R. & Goodwin, B. 2011. Major cranial changes during Triceratops ontogeny. Proceedings of the Royal Society, London B 273, 2757–61.Google Scholar
Hotton, N., MacLean, P. D., Roth, J. J. & Roth, E. C. (eds) 1986. The Evolution and Ecology of Mammal-Like Reptiles. Washington, DC: Smithsonian Institution Press. 326 pp.Google Scholar
Huttenlocker, A., Angielczyk, K. D. & Lee, A. 2006. Osteohistology of Sphenacodon (Synapsida: Sphenacodontidae) and the hidden diversity of growth patterns in basal synapsids. Journal of Vertebrate Paleontology 26, 7980A.Google Scholar
Huttenlocker, A., Rega, E. & Sumida, S. 2010. Comparative anatomy and osteohistology of hyperelongate neural spines in the sphenacodontids Sphenacodon and Dimetrodon (Amniota: Synapsida). Journal of Morphology 271, 1407–21.CrossRefGoogle ScholarPubMed
Huttenlocker, A., Mazierski, D. & Reisz, R. 2011. Comparative osteohistology of hyperelongate neural spines in Edaphosauridae (Amniota: Synapsida). Palaeontology 54, 573–90.Google Scholar
Huttenlocker, A. & Rega, E. 2011. The paleobiology and bone microstructure of pelycosaurian-grade synapsids. In Chinsamy, A. (ed.) The Forerunners of Mammals – Radiation, Histology, Biology. Bloomington: Indiana University Press. 352 pp.Google Scholar
Kemp, T. S. 2007. The Origin and Evolution of Mammals. Oxford: Oxford University Press. 331 pp.Google Scholar
Kilbourne, B. M. & Makovicky, P. J. 2010. Limb bone allometry during postnatal ontogeny in non-avian dinosaurs. Journal of Anatomy 217, 135–52.Google Scholar
Klein, N. 2010. Long bone histology of Sauropterygia from the Lower Muschelkalk of the Germanic Basin provides unexpected implications for phylogeny. PLoS One 5, 125.CrossRefGoogle ScholarPubMed
Klein, N. & Sander, P. M. 2007. Bone histology and growth of the prosauropod Plateosaurus engelhardti MEYER, 1837 from the Norian bonebeds of Trossingen (Germany) and Frick (Switzerland). Special Papers in Palaeontology 77, 169206.Google Scholar
Klein, N. & Sander, M. 2008. Ontogenetic stages in the long bone histology of sauropod dinosaurs. Paleobiology 34, 247–63.Google Scholar
Kohler, M., Marín-Moratalla, N., Jordana, X. & Aanes, R. 2012. Seasonal bone growth and physiology in endotherms shed light on dinosaur physiology. Nature 487, 358–61.Google Scholar
Labandeira, C. C. & Allen, E. G. 2007. Minimal insect herbivory for the Lower Permian coprolite bone bed site of north-central Texas, USA, and comparison to other Late Paleozoic floras. Palaeogeography Palaeoclimatology Palaeoecology 247, 197219.CrossRefGoogle Scholar
Lee, A. & Werning, S. 2008. Sexual maturity in growing dinosaurs does not fit reptilian growth models. PNAS 105, 582–87.Google Scholar
Lehman, T. M. & Woodward, H. N., 2008. Modelling growth rates for sauropod dinosaurs. Paleobiology 34, 264–81.Google Scholar
Rega, E. A., Noriega, K., Sumida, S. S., Huttenlocker, A., Lee, A. & Kennedy, B. 2012. Healed fractures in the neural spines of an associated skeleton of Dimetrodon: Implications for dorsal sail morphology and function. Fieldiana Life and Earth Sciences 5, 104–11.Google Scholar
Reisz, R. R. 1986. Encyclopedia of Paleoherpetology. 17A: Pelycosauria. Stuttgart: Fischer. 102 pp.Google Scholar
Ricqlès, A. de. 1974a. Evolution of endothermy: Histological evidence. Evolutionary Theory 1, 5180.Google Scholar
Ricqlès, A. de. 1974b. Recherches paléohistologiques sur les os longs des Tétrapodes IV: Eotheriodonts and pelycosaurs. Annales de Paleontologie 60, 339.Google Scholar
Ricqlès, A. de. 1976a. Recherches paléohistologiques sur les os longs des Tétrapodes VII. – Sur la classification, la signification fonctionnelle et l'histoire des tissus osseux des Tétrapodes. Deuxième partie. Annales de Paléontologie 62, 71126.Google Scholar
Ricqlès, A. de. 1976b. On the bone histology of fossil and living reptiles, with comments on its functional and evolutionary significance. In Bellaris, A. d. A., & Cox, B. C. (eds) Morphology and Biology of Reptiles, 123–50. Dorchester: Dorset Press.Google Scholar
Ricqlès, A. de. 1978. Recherches paléohistologiques sur les os longs des Tétrapodes VII. Sur la classification, la signification fonctionnelle et l'histoire des tissus osseux des Tétrapodes, Troisième partie. Annales de Paléontologie 64, 153–76.Google Scholar
Ricqlès, A. de., Meunier, F. J., Castanet, J. & Francillon-Viellot, H. 1991. Comparative microstructure of bone. In Hall, B. K. (ed.) Bone. Vol. 3: Bone Matrix and Bone specific Products. Boca Raton, Florida: CRC Press. 187 pp.Google Scholar
Romer, A. S. 1936. Studies on American Permo-Carboniferous tetrapods. Problems of Paleontology 1, 8596.Google Scholar
Romer, A. S. 1937. New genera and species of pelycosaurian reptiles. New England Zoology Club Proceedings 16, 8996.Google Scholar
Romer, A. S. 1969. Osteology of the reptiles. Chicago Illinois: University of Chicago Press. 800 pp.Google Scholar
Romer, A. S. 1974. The stratigraphy of the Permian Wichita redbeds of Texas. Breviora 427, 128.Google Scholar
Romer, A. S. & Price, L. W. 1940. Review of the Pelycosaurs. Geological Society of America Special Papers 28. 538 pp.Google Scholar
Rushforth, R. & Small, B. 2003. Analysis of Wichita Group (revised) “series A” Dimetrodon species using beta probability plots and Hotelling's T2 statistic. Journal of Vertebrate Paleontology 23(3, Suppl.), 91A.Google Scholar
Sander, P. M. 1987. Taphonomy of the Lower Permian Geraldine Bonebed in Archer County, Texas. Palaeogeography, Palaeoclimatology, Palaeoecology 61, 221–36.Google Scholar
Sander, P. M. 2000. Long bone histology of the Tendaguru sauropods: Implications for growth and biology. Paleobiology 26, 466–88.Google Scholar
Sander, P. M., Mateus, O.Laven, T. & Knötschke, N. 2006. Bone histology indicates insular dwarfism in a new Late Jurassic sauropod dinosaur. Nature 441, 739–41.CrossRefGoogle Scholar
Sander, P. M., Klein, N., Stein, K. & Wings, O. 2011. Sauropod bone histology and implications for sauropod biology. In Klein, N., Remes, K., Gee, C. T., & Sander, P. M. (eds) Understanding the Life of Giants: Biology of the Sauropod Dinosaurs, 276302. Bloomington: Indiana University Press.Google Scholar
Sander, M. & Klein, N. 2005. Developmental plasticity in the life history of a prosaruopod dinosaur. Science 310, 1800–02.Google Scholar
Stein, K. 2011. Osteocyte lacuna density in saurischian dinosaurs and the convergence of fibrolamellar bone in mammals and dinosaurs: different strategies to grow fast. Journal of Vertebrate Paleontology 31, 133A.Google Scholar
Stein, K., Csiki, Z., Curry Rogers, K., Weishampel, D. B., Redelstorff, R., Carballido, J. L. & Sander, P. M. 2010. Small body size and extremem cortical remodeling indicate phyletic dwarfism in Magyarosaurus dacus (Sauropoda: Titanosauria). Proceedings of the National Academy of Sciences of the United States of America 107, 9258–63.Google Scholar
Sumida, S., Rega, E., & Noriega, K. 2005. Evidence-based paleopathology II: Impact on phylogenetic analysis of the genus Dimetrodon. Journal of Vertebrate Paleontology 25(3, Suppl.), 120A.Google Scholar
Tomkins, J. L., LeBas, N. R., Witton, M. P., Martill, D. M. & Humphries, S. 2010. Positive allometry and the prehistory of sexual selection. The American Naturalist 176, 141148.Google Scholar
Tracey, R. C., Turner, J. S. & Huey, R. B. 1986. A biophysical analysis of thermoregulatory adaptations in sailed pelycosaurs. In Hotton, N. III, MacLean, P. D., Roth, J. J., & Roth, E. C. (eds) The ecology and biology of mammal-like reptiles, 195206. Washington DC: Smithsonian Institute.Google Scholar
Tumarkin-Deratzian, A. R., Vann, D. R. & Dodson, P. 2006. Bone surface texture as an ontogentic indicator in long bones of the Canada goose Branta canadensis (Anseriformes: Anatidae). Zoological Journal of the Linnean Society 148, 133–68.Google Scholar
Vaughn, P. P. 1966. Comparison of the Early Permian vertebrate fauna of the Four Corners region and north-central Texas. Los Angeles County Museum of Natural History Contributions in Science 105, 113.Google Scholar
Vaughn, P. P. 1969. Early Permian vertebrates from southern New Mexico and their paleozoogeographic significance. Los Angeles County Museum of Natural History Contributions in Science 166, 122.Google Scholar