Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-22T11:49:35.683Z Has data issue: false hasContentIssue false

Isotope evidence for the origin of Andean granites

Published online by Cambridge University Press:  03 November 2011

R. J. Pankhurst
Affiliation:
British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 OET, U.K.
M. J. Hole
Affiliation:
British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 OET, U.K.
M. Brook
Affiliation:
Nerc Isotope Geology Centre, c/o British Geological Survey, Geochemical Division, 64 Gray's Inn Road, London WC2X 8NG, U.K.

Abstract

The genesis of subduction-related magmas in the Andean region of South America and the Antarctic Peninsula is considered in relation to the Palaeozoic to Cenozoic granitoids belts which are thought to parallel palaeo-coastlines. Their Sr-Nd isotope systematics show a wide range of initial compositions (87Sr/86Sr0 0·7038 to >0·710; εNd, +4 to –10) requiring material input from both depleted mantle and continental crust. In local transects there are consistent trends with time of emplacement, from enriched (crustal) to depleted (mantle) sources, regardless of the sense of migration of magmatism (towards or away from the continent). These trends represent mixing between mantle-derived material and anatectic melts of the lower crust: in each case the crustal end-member reflects the age and isotopic composition of the local deep crustal basement (Precambrian in the easternmost Andes, Palaeozoic in the W and in the Antarctic Peninsula). The depleted end-member could be derived by melting within the subducted oceanic crust, the overlying mantle or previously crystallised mafic underplating. One of the most important factors controlling the mixing process is the angle of subduction, resulting in magma generation under variable tectonic conditions.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adie, R. J. 1955. The petrology of Graham Land. II. The Andean granite-gabbro intrusive suite. FALKLAND ISLANDS DEPENDENCIES SURV SCI REP 12.Google Scholar
Barker, P. F. 1982. The Cenozoic subduction history of the Pacific margin of the Antarctic Peninsula: ridge crest-trench interactions. J GEOL SOC LONDON 139, 787801.CrossRefGoogle Scholar
Beckinsale, R. D., Sanchez-Fernandez, A. W., Brook, M., Cobbing, E. J., Taylor, W. P. & Moore, N. D. 1985. Rb-Sr whole-rock isochron and K-Ar age determinations for the Coastal Batholith of Peru. In Pitcher, W. S., Atherton, M. P., Cobbing, E. J. & Beckinsale, R. D. (eds) Magmatism at a Plate Edge: the Peruvian Andes, 177202. Glasgow: Blackie/Halsted Press.CrossRefGoogle Scholar
Berg, K., Breitkreuz, C., Dairan, K.-W., Pichowiak, S. & Zeil, W. 1983. The north-Chilean Coast Range—an example for the development of an active continental margin. GEOL RUNDSCH 72, 715–31.CrossRefGoogle Scholar
Berg, K. & Baumann, A. 1985. Plutonic and metasedimentary rocks from the Coastal Range of northern Chile: Rb-Sr and U-Pb isotopic systematics. EARTH PLANET SCI LETT 75, 101–15.CrossRefGoogle Scholar
Breitkreuz, C. 1986. Plutonism in the central Andes. ZEITBLATT FÜR GEOL UND PALÄONTOL BERLIN I(H9/10), 1283–93.Google Scholar
Brook, M., Pankhurst, R. J., Shepherd, T. J. & Spiro, B. 1986. Andchron: Andean geochronology and metallogenesis. Overseas Development Agency, Open File Report.Google Scholar
Brook, M. & Pankhurst, R. J. 1986. Isotope geochemistry of Cordilleran intrusive rocks from northern Chile (abstract). TERRA COGNITA 6, 195.Google Scholar
Chappell, B. W. & Stephens, E. 1988. Origin of infracrustal (I-type) granite magmas. TRANS R SOC EDINBURGH EARTH SCI 79, 7186.Google Scholar
Clark, A. H., Farrar, E., Caelles, J. C., Haynes, S. J., Lorite, R. B., McBride, S. L., Quirt, G. S. & Zentilli, M. 1973. The magmatic, tectonic, and metallogenetic evolution of the Central Andean mobile belt between latitudes 26° and 29° South. Conference on Geodynamics, International Union of Geodesy and Geophysics, Lima, CGD-44.Google Scholar
Coira, B., Davidson, J., Mpodozis, C. & Ramos, V. 1982. Tectonic and magmatic evolution of the Andes of northern Argentina and Chile. EARTH SCI REV 18, 303–32.CrossRefGoogle Scholar
Dalziel, I. W. D. 1981. Back-arc extension in the southern Andes: a review and critical reappraisal. PHILOS TRANS R SOC LONDON A300, 315–35.Google Scholar
Damm, K.-W. & Pichowiak, S. 1981. Geodynamik und Magmengenese in der Küstenkordillere Nordchiles zwischen Taltal und Chañaral. GEOTEKTON FORSCH 61.Google Scholar
DePaolo, D. J. 1980. Sources of continental crust: neodymium isotope evidence from the Sierra Nevada and Peninsular Ranges. SCIENCE 209, 684–7.CrossRefGoogle ScholarPubMed
DePaolo, D. J. 1981a. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. EARTH PLANT SCI LETT 53, 189202.CrossRefGoogle Scholar
DePaolo, D. J. 1981b. A neodymium and strontium isotopic study of the Mesozoic calc-alkaline grantic batholiths of the Sierra Nevada and Peninsular Ranges, California. J GEOPHYS RES 86(B11), 10470–88.CrossRefGoogle Scholar
Deruelle, B., Harmon, R. S. & Moorbath, S. 1983. Combined Sr-O isotope relationships and petrogenesis of Andean volcanics of South America. NATURE 302, 814–6.CrossRefGoogle Scholar
Domenick, M. A. R., Kistler, R. W., Dodge, F. C. W. & Tatsumoto, M. 1983. Nd and Sr isotopic study of crustal and mantle inclusions from the Sierra Nevada and implications for batholith petrogenesis. BULL GEOL SOC AM 94, 713–9.2.0.CO;2>CrossRefGoogle Scholar
Farrar, E., Clark, A. H., Haynes, S. J., Quirt, G. S., Conn, H & Zentilli, M. 1970. K-Ar evidence for the post-Palaeozoic migration of granitic foci in the Andes of northern Chile. EARTH PLANET SCI LETT 10, 6066.CrossRefGoogle Scholar
Francis, P. W., Moorbath, S. & Thorpe, R. S. 1977. Strontium isotope data for recent andesites in Ecuador and northern Chile. EARTH PLANET SCI LETT 37, 197202.CrossRefGoogle Scholar
Garrett, S. W. & Storey, B. C. 1987. Lithospheric extension on the Antarctic Peninsula during Cenozoic subduction. In Coward, M. P., Dewey, J. F. & Hancock, P. L. (eds) Continental Extension Tectonics, 419–31. SPEC PUBL GEOL SOC LONDON 28.CrossRefGoogle Scholar
Grunow, A. M., Kent, D. V. & Dalziel, I. W. D. 1987. Mesozoic evolution of West Antarctica and the Weddell Sea Basin; new palaeomagnetic constraints. EARTH PLANET SCI LETT 86, 1626.CrossRefGoogle Scholar
Harmon, R. S., Thorpe, R. S. & Francis, P. W. 1981. Petrogenesis of Andean andesites from combined O-Sr isotope relationships. NATURE 290, 396–9.CrossRefGoogle Scholar
Hawkesworth, C. J. 1982. Isotope characteristics of magmas erupted along destructive plate margins. In Thorpe, R. S. (ed.) Andesites, 549–71. Chichester: Wiley & Sons.Google Scholar
Hawkesworth, C. J., Menzies, M. A. & van Calsteren, P. 1986. Geochemical and tectonic evolution of the Damara belt, Namibia. In Coward, M. P. & Ries, A. C. (eds) Collision Tectonics, 305–19. SPEC PUBL GEOL SOC LONDON 19.CrossRefGoogle Scholar
Hole, M. J. 1986. Time controlled geochemistry of igneous rocks of the Antarctic Peninsula. Unpublished Ph.D. Thesis, Bedford College, University of London.Google Scholar
Hole, M. J., Pankhurst, R. J. & Saunders, A. D. in press. Geochemical evolution of the Antarctic Peninsula magmatic arc: the importance of mantle-crust interactions during granitoid genesis. In Thomson, M. R. A. (ed.) 5th Antarctic Earth Science Symposium. Cambridge: Cambridge University Press.Google Scholar
James, D. E. 1982. A combined O, Sr, Nd and Pb isotopic and trace element study of crustal contamination in central Andean lavas. EARTH PLANET SCI LETT 57, 4762.CrossRefGoogle Scholar
James, D. E., Brooks, C. & Cuyubamba, A. 1976. Andean Cenozoic volcanism and magma genesis in the light of strontium isotopic composition and trace element geochemistry. BULL GEOL SOC AM 87, 592600.2.0.CO;2>CrossRefGoogle Scholar
Kistler, R. W. & Peterman, Z. E. 1973. Variations in Sr, Rb, K, Na, and initial 87Sr/86Sr in mesozoic granitic rocks and intruded wall rocks in central California. BULL GEOL SOC AM 84, 3489–512.2.0.CO;2>CrossRefGoogle Scholar
Macdonald, R. & Smith, R. L. 1988. Relationships between silicic plutonism and volcanism: geochemical evidence. TRANS R SOC EDINBURGH EARTH SCI 79, 257263.Google Scholar
Magaritz, M.Whitford, D. J. & James, D. E. 1978. Oxygen isotopes and the origin of high 87Sr/86Sr andesites. EARTH PLANET SCI LETT 40, 220–30.CrossRefGoogle Scholar
McCourt, W. J., Aspden, J. A., & Brook, M. 1984. New geological and geochronological data from the Colombian Andes: continental growth by multiple accretion. J GEOL SOC LONDON 141, 831845.CrossRefGoogle Scholar
McNutt, R. H., Crocket, J. H., Clark, A. H., Caelles, J. C., Farrar, E., Haynes, S. J. & Zentilli, M. 1975. Initial 87Sr/86Sr ratios of plutonic and volcanic rocks of the central Andes between latitudes 26° and 29° South. EARTH PLANET SCI LETT 27, 305–13.CrossRefGoogle Scholar
Milne, A. M. & Millar, I. L. in press. Mid-Palaeozoic basement in eastern Graham Land and its relation to East Antarctica. In Thomson, M. R. A. (ed.) 5th Antarctic Earth Science Symposium. Cambridge University Press.Google Scholar
Mpodozis, C., Hervé, F., Davidson, J. & Rivano, S. 1983. Los granitoides de Cerro de Lila, manifestaciones de un episodio intrusivo y termal del Palaeozoico inferior en los Andes del Norte de Chile. REV GEOL CHILE 18, 314.Google Scholar
Mukasa, S. B. & Tilton, G. R. 1985. Pb-isotope systematics as a guide to crustal involvement in the generation of the Coastal Batholith of Peru. In Pitcher, W. S., Atherton, M. P., Cobbing, E. J. & Beckinsale, R. D. (eds) Magmatism at a Plate Edge: the Peruvian Andes, 235–8. Glasgow: Blackie/Halsted Press.CrossRefGoogle Scholar
Pankhurst, R. J. 1982. Rb-Sr geochronology of Graham Land. J GEOL SOC LONDON 139, 701–11.CrossRefGoogle Scholar
Pankhurst, R. J. 1983. Rb-Sr constraints on the ages of basement rocks of the Antarctic Peninsula. In Oliver, R. L., James, P. R. & Jago, J. B. (eds) Antarctic Earth Science, 367–71. Canberra: Australian Academy of Science.Google Scholar
Pearce, J. A. 1983. The role of sub-continental lithosphere in magma genesis at active continental margins. In Hawkesworth, C. J. & Norry, M. J. (eds) Continental basalts and mantle xenoliths, 230–49. Nantwich: Shiva Publications.Google Scholar
Pearce, J. A., Harris, N. B. W. & Tindle, A. G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J PETROL 25, 956–83.CrossRefGoogle Scholar
Rex, D. C. 1976. Geochronology in relation to the stratigraphy of the Antarctic Peninsula. BR ANTARCT SURV BULL 43, 4958.Google Scholar
Saunders, A. D., Tarney, J. & Weaver, S. D. 1980. Transverse geochemical variations across the Antarctic Peninsula: implications for the genesis of calc-alkaline magmas. EARTH PLANET SCI LETT 46, 344–60.CrossRefGoogle Scholar
Taylor, H. P. 1980. The effects of assimilation of country rocks by magmas on 18O/16O and 87Sr/86Sr systematics in igneous rocks. EARTH PLANET SCI LETT 47, 243–54.CrossRefGoogle Scholar
Tilton, G. R. & Barreiro, B. A. 1980. Origin of lead in Andean calc-alkaline lavas, southern Peru. SCIENCE 210, 1245–7.CrossRefGoogle ScholarPubMed
Uyeda, S. 1984. Subduction zones: their diversity, mechanism and human impacts. GEO J 8.4, 381406.Google Scholar
Wyllie, P. S. 1983a. Experimental studies on biotite- and muscovite-granites and some crustal magmatic sources. In Atherton, M. P. & Gribble, C. D. (eds) Migmatites, melting and metamorphism, 1226. Orpington: Shiva Publishing.Google Scholar
Wyllie, P. S. 1983b. Experimental and thermal constraints on the deep-seated parentage of some granitoid magmas in subduction zones. In Atherton, M. P. & Gribble, C. D. (eds) Migmatites, melting and metamorphism, 3751. Orpington: Shiva Publishing.Google Scholar
Wyllie, P. S., Huang, W.-L., Stern, C. R. & Maaloe, S. 1976. Granitic magmas: possible and impossible sources, water contents and crystallization sequences. CAN J EARTH SCI 13, 1007–19.CrossRefGoogle Scholar
Zartman, R. E. 1974. Lead isotopic provinces in the cordillera of the western United States and their geological significance. ECON GEOL 69, 792805.CrossRefGoogle Scholar