Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T19:41:53.650Z Has data issue: false hasContentIssue false

Integrated statistical and hydro-geochemical approach to identify the origin and process of saline contamination of Remila plain groundwater (Khenchela, Algeria)

Published online by Cambridge University Press:  29 June 2021

Laiche AOUIDANE*
Affiliation:
Agricultural Sciences Department. Faculty of Nature and Life Sciences, University of Abbes Laghrour Khenchela, BP 1252 Route de Batna, Khenchela40004, Algeria.
Mohamed BELHAMRA
Affiliation:
Department of Agricultural Sciences, University of Mohamed Khider, BP 145 RP, Biskra07000, Algeria.
Asma KHEDDOUMA
Affiliation:
Department of Biology, Faculty of Nature and Life Sciences, University of Abbes Laghrour Khenchela, BP 1252 Route de Batna, Khenchela40004, Algeria.
*
*Corresponding author. Email: [email protected]

Abstract

Groundwater is widely used in the semi-arid region of Remila plain (Khenchela, Algeria) for urban and agricultural supplies. An integrated statistical and hydro-geochemical approach was performed with 70 water samples in order to identify the main processes and the origin of water salinisation. The results have suggested the dominance of three chemical facies: Sulphato cloruro calcic (SO4–Cl–Ca) in the northeastern part, Sulphato cloruro calci magnisian (SO–4Cl–Ca–Mg) in most of the waters andalkali-earth bicarbonate (HCO3–Ca–Mg) in the southeastern part. Although based on principal component analysis and hierarchical clustering analysis, the statistical approach identified three water groups: (1) saline water (17 %; total dissolved solids >1000 mg l−1 with the dominance of Sulphate (SO42−)); (2) moderately saline water (17 %) with a dominance of bicarbonate (HCO3); and (3) moderately saline water (66 %) with mixed facies. The binary diagrams confirmed the predominance of three processes: evaporite dissolution and/or precipitation, combined by ionic exchange. In the northeastern part of the area, however, another process was detected – the saline intrusion of Sabkha water, favoured by extensive groundwater use.

Type
Articles
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

4. References

Abu-alnaeem, M. F., Yusoff, I., Ng, T. F., Alias, Y. & Raksmey, M. 2018. Assessment of groundwater salinity and quality in Gaza coastal aquifer, Gaza Strip, Palestine: an integrated statistical, geostatistical and hydrogeochemical approaches study. Science of the Total Environment 615, 972–89.CrossRefGoogle ScholarPubMed
Ahoussi, E. K., Soro, N., Kouassi, A. M., Soro, G., Blaise, Y. & Pacôme, S. 2010. Application des méthodes d'analyses statistiques multivariées à l’étude de nappes phréatiques de la ville d'Abidjan. 4, 1753–65.Google Scholar
Akouvi, A., Dray, M., Violette, S., de Marsily, G. & Zuppi, G. M. 2008. The sedimentary coastal basin of Togo: example of a multilayered aquifer still influenced by a palaeo-seawater intrusion. Hydrogeology Journal 16, 419–36.CrossRefGoogle Scholar
Aouidane, L. 2017. Origines de la salinisation des eaux et des sols d'une zone à climat semi-aride: Cas de Remila (W . Khenchela). Thèse de Doctrat. Université Mohamed Khider Biskra. 220 p.Google Scholar
Aouidane, L. & Belhamra, M. 2017. Hydrogeochemical processes in the Plio-Quaternary Remila aquifer (Khenchela, Algeria). Journal of African Earth Sciences 130, 3847.CrossRefGoogle Scholar
Appelo, C. A. J. 1994. Cation and proton exchange, pH variations, and carbonate reactions in a freshening aquifer. Water Resources Research 30, 2793–805.CrossRefGoogle Scholar
Ayadi, Y., Mokadem, N., Besser, H., Redhaounia, B., Khelifi, F., Harabi, S., Nasri, T. & Hamed, Y. 2018. Statistical and geochemical assessment of groundwater quality in Statistical and geochemical assessment of groundwater quality in Teboursouk area (Northwestern Tunisian Atlas). Environmental Earth Sciences 77, 349.CrossRefGoogle Scholar
Bekkoussa, B., Jourde, H., Batiot-Guilhe, C., Meddi, M., Khaldi, A. & Azzaz, H. 2013. Origine de la salinité et des principaux éléments majeurs des eaux de la nappe phréatique de la plaine de Ghriss, Nord-Ouest algérien. Hydrological Sciences Journal 58, 1111–27.CrossRefGoogle Scholar
Bouderbala, A. 2015. Groundwater salinization in semi-arid zones: an example from Nador plain (Tipaza, Algeria). Environmental Earth Sciences 73, 5479–96.CrossRefGoogle Scholar
Bouzourra, H., Bouhlila, R. & Elango, L. et al. 2015. Characterization of mechanisms and processes of groundwater salinization in irrigated coastal area using statistics, GIS, and hydrogeochemical investigations. Environmental Science and Pollution Research 22, 2643–60. https://doi.org/10.1007/s11356-014-3428-0CrossRefGoogle Scholar
Brovelli, A., Carranza-Diaz, O., Rossi, L. & Barry, D. A. 2011. Design methodology accounting for the effects of porous medium heterogeneity on hydraulic residence time and biodegradation in horizontal subsurface flow constructed wetlands. Ecological Engineering 37, 758–70.CrossRefGoogle Scholar
Capaccioni, B., Didero, M., Paletta, C. & Didero, L. 2005. Saline intrusion and refreshening in a multilayer coastal aquifer in the Catania Plain (Sicily, Southern Italy): dynamics of degradation processes according to the hydrochemical characteristics of groundwaters. Journal of Hydrology 307, 116. doi.org/10.1016/j.jhydrol.2004.08.037.CrossRefGoogle Scholar
Cassardo, C. & Jones, J. A. A. 2011. Managing water in a changing world. Water 3, 618–28.CrossRefGoogle Scholar
C.G.G. 1969. Prospection Geophysique de la plaine de Remila (Khenchela). Coupes transversales. Departement Trav. Publique Batna.Google Scholar
C.P.H. 1977. Proposition de realisation d’étude et projets d'amenagement hydro agricole de la plaine de Remila Rapport de Consortium Projectum-HIDROESB, Rio de Janeiro Janvier. 100 p.Google Scholar
Dechesne, M., Barraud, S. & Bardin, J. P. 2004. Indicators for hydraulic and pollution retention assessment of stormwater infiltration basins. Journal of Environmental Management 71, 371–80.CrossRefGoogle ScholarPubMed
D.H.W.K. 1984. Schema Directeur de plani fication et d'amenagement. Services de production et d'aménagement. Direction de l'Hydraulique de la Wilaya de Khenchela. 27 p.Google Scholar
Edmunds, W. M., Bath, A. H. & Miles, D. 1982. Hydrochemical evolution of the East Midlands Triassic sandstone aquifer, England. Geochimica et Cosmochimica Acfa 46, 2069–81.CrossRefGoogle Scholar
Edmunds, W. M., Guendouz, A. H., Mamou, A., Moulla, A., Shand, P. & Zouari, K. 2003. Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: trace element and isotopic indicators. 18, 805–22.CrossRefGoogle Scholar
Farid, I., Trabelsi, R., Zouari, K. & Beji, R. 2013. Geochemical and isotopic study of surface and groundwaters in Ain Bou Mourra basin, central Tunisia. Quaternary International 303, 210–27.Google Scholar
Frape, S. K., Fritz, P. & McNutt, R. H. 1984. Water-rock interaction and chemistry of groundwaters from the Canadian shield. Geochimica et Cosmochimica Acta 48, 1617–27.CrossRefGoogle Scholar
García, G.M., Hidalgo del, V.M. & Blesa, M.A. (2001). Geochemistry of groundwater in the alluvial plain of Tucumán province, Argentina. Hydrogeology Journal 9, 597610. https://doi.org/10.1007/s10040-001-0166-4CrossRefGoogle Scholar
Ghabayen, S. M. S., Mckee, M. & Kemblowski, M. 2006. Isotopic ratios for identification of salinity sources and missing data in the Gaza aquifer. Journal of Hydrology, 318, 360–73. doi.org/10.1016/j.jhydrol.2005.06.041CrossRefGoogle Scholar
Ghesquière, O., Walter, J., Chesnaux, R. & Rouleau, A. 2015. Journal of hydrology: regional studies scenarios of groundwater chemical evolution in a region of the Canadian shield based on multivariate statistical analysis. Journal of Hydrology: Regional Studies 4, 246–66.Google Scholar
Gibbs, R. J. 1970. Mechanisms controlling world water chemistry. Science (New York, N.Y.) 170, 1088–90.CrossRefGoogle ScholarPubMed
Gil-márquez, J. M., Antonio, J. & Andreo, B. 2017. Geochemical evolution of groundwater in an evaporite karst system: brujuelo area (jaén, S Spain). Procedia Earth and Planetary Science 17, 336–39.CrossRefGoogle Scholar
Grillot, J. C. & Schoeller, M. 2015. Exemple d'approche pluridisciplinaire dans la caractérisation d'eaux thermales carbo-gazeuses. A pluridisciplinary approach to carbonic and groundwater survey. Journal of Water Science 2, 211–28.Google Scholar
Hamzaoui-Azaza, F., Tlili-Zrelli, B., Bouhlila, R. & Gueddari, M. 2013. An integrated statistical methods and modelling mineral-water interaction to identifying hydrogeochemical processes in groundwater in Southern Tunisia. Chemical Speciation and Bioavailability 25, 165–78.CrossRefGoogle Scholar
Hassen, I., Hamzaoui-Azaza, F. & Bouhlila, R. 2016. Application of multivariate statistical analysis and hydrochemical and isotopic investigations for evaluation of groundwater quality and its suitability for drinking and agriculture purposes: case of Oum ali-thelepte aquifer, central Tunisia. Environmental Monitoring and Assessment 188, 220.CrossRefGoogle ScholarPubMed
Hosseini, S. Z., Kappas, M., Bodaghabadi, M. B., Chahouki, M. A. Z. & Khojasteh, E. R. 2014. Comparison of different geostatistical methods for soil mapping using remote sensing and environmental variables in Poshtkouh rangelands, Iran. Polish Journal of Environmental Studies 23, 737–51.Google Scholar
Hsissoua, Y., Chauvea, P., Maniaa, J., Manginb, A., Bakalowicz, M. & Gaiz, A. 1996. Characterization of the groundwaters of the Turonian catchment of Tadla (Morocco) by the concentration ratios of Sr 2+/Ca 2+. 183, 445–51. doi.org/10.1016/0022-1694(95)03009-3Google Scholar
Kerry, R. & Oliver, M. A. 2007. Determining the effect of asymmetric data on the variogram. I. Underlying asymmetry. Computers and Geosciences 33, 1212–32.CrossRefGoogle Scholar
Kharroubi, A., Tlahigue, F., Agoubi, B., Azri, C. & Bouri, S. 2012. Hydrochemical and statistical studies of the groundwater salinization in Mediterranean arid zones: case of the Jerba coastal aquifer in southeast Tunisia. Environmental Earth Sciences 67, 2089–100.CrossRefGoogle Scholar
K.M.S. 2014. les donnees climatiques de la wilaya de Khenchela (S. M. de la W. de Khenechela (ed.); Service de).Google Scholar
Kraiem, Z., Zouari, K., Bencheikh, N. & Agoun, A. 2015. Processus de minéralisation de la nappe du Plio- Quaternaire dans la plaine de Segui-Zograta (Sud- Ouest tunisien). Hydrological Sciences Journal 60, 534–48.Google Scholar
Kuldip-Singh, , Hundal, H.S. & Dhanwinder, S. 2011. Geochemistry and assessment of hydrogeochemical processes in groundwater in the southern part of Bathinda district of Punjab, northwest India. Environmental Earth Science 64, 1823–33.Google Scholar
Laffitte, R. 1939. Etude geologique de l'Aures Bull. Serv. Géol. de L'Algérie. 1 ° série.Google Scholar
Lakshmanan, E., Kannan, R. & Senthil Kumar, M. 2003. Major ion chemistry and identification of hydrogeochemical processes of ground water in a part of Kancheepuram district, Tamil Nadu, India. Environmental Geosciences 10, 157–66.CrossRefGoogle Scholar
Li, J., Wang, Y. & Xie, X. 2016. Science of the Total Environment Cl / Br ratios and chlorine isotope evidences for groundwater salinization and its impact on groundwater arsenic, fluoride and iodine enrichment in the Datong basin, China. Science of the Total Environment, The 544, 158–67.CrossRefGoogle Scholar
Masoud, A. A., El-horiny, M. M., Atwia, M. G. & Gemail, K. S. 2018. Journal of African Earth Sciences Assessment of groundwater and soil quality degradation using multivariate and geostatistical analyses, Dakhla Oasis, Egypt. Journal of African Earth Sciences 142, 6481.CrossRefGoogle Scholar
Oliver, M. A. 2010. Geostatistical Applications for Precision Agriculture (M. A. Oliver (ed.); Springer D). Springer Science + Business Media B.V. 2010.CrossRefGoogle Scholar
Oliver, M. A. & Webster, R. 2014. A tutorial guide to geostatistics: computing and modelling variograms and kriging. Catena 113, 5669.CrossRefGoogle Scholar
Parkhurst, D. L. & Appelo, C. A. J. 1999. USER'S GUIDE TO PHREEQC (VERSION 2)— A COMPUTER PROGRAM FOR SPECIATION, AND INVERSE GEOCHEMICAL CALCULATIONS (U. S. D. O. T. INTERIOR (ed.); Hydrochemi, Issue Version 2). U.S. Geological Survey.Google Scholar
Pazand, K., Hezarkhani, A., Ghanbari, Y. & Aghavali, N. 2012. Geochemical and quality assessment of groundwater of Marand Basin, East Azarbaijan Province, northwestern Iran. Environmental Earth Science 67, 1131–43. doi.org/10.1007/s12665-012-1557-7CrossRefGoogle Scholar
Piper, A. M. 1944. A graphic procedure in the geochemical interpretation of water analyses. Transactions of the American Geophysical Union 25, 914–23.CrossRefGoogle Scholar
Pisinaras, V., Tsihrintzis, V. A., Petalas, C. & Ouzounis, K. 2010. Soil salinization in the agricultural lands of Rhodope district, northeastern Greece. Environmental Monitoring and Assessment 166, 7994.CrossRefGoogle ScholarPubMed
Rina, K., Singh, C. K., Datta, P. S., Singh, N. & Mukherjee, S. 2013. Geochemical modelling, ionic ratio and GIS based mapping of groundwater salinity and assessment of governing processes in Northern Gujarat, India. Environmental Earth Sciences 69, 2377–91.CrossRefGoogle Scholar
Rodier, J., Legube, B., Merlet, N. & Coll, . 2009. L'analyse de l'eau (P. Dunod (ed.); 9e édition). Dunod Paris, 1959.Google Scholar
Scanlon, B. R., Keese, K. E., Flint, A. L., Flint, L. E., Gaye, C. B., Edmunds, W. M. & Simmers, I. 2006. Global synthesis of groundwater recharge in semiarid and arid regions. Hydrological Processes 3370, 3335–70.CrossRefGoogle Scholar
Schoeller, H. 1965. La classification géochimique des eaux. 2, 1624.Google Scholar
Siebert, S., Burke, J., Faures, J. M., Frenken, K., Hoogeveen, J., Döll, P. & Portmann, F. T. 2010. Groundwater use for irrigation – a global inventory. Hydrology and Earth System Sciences Discussions 7, 39774021.Google Scholar
Tijani, M. N. 2004. Evolution of saline waters and brines in the Benue-Trough, Nigeria. Applied Geochemistry 19, 1355–65. https://doi.org/10.1016/j.apgeochem.2004.01.020CrossRefGoogle Scholar
Tlili-Zrelli, B., Hamzaoui-Azaza, F., Gueddari, M. & Bouhlila, R. 2013. Geochemistry and quality assessment of groundwater using graphical and multivariate statistical methods. A case study: Grombalia phreatic aquifer (Northeastern Tunisia). Arabian Journal of Geosciences 6, 3545–61.CrossRefGoogle Scholar
Van Breukelen, B. M., Appelo, C. A. J. & Olsthoorn, T. N. 1998. Hydrogeochemical transport modeling of 24 years of Rhine water infiltration in the dunes of the Amsterdam Water Supply. Journal of Hydrology 209, 281–96.CrossRefGoogle Scholar
Varol, S. & Davraz, A. 2014. Assessment of geochemistry and hydrogeochemical processes in groundwater of the Tefenni plain (Burdur/Turkey). Journal Environmental Earth Science 71, 4657–73. https://doi.org/10.1007/s12665-013-2856-3CrossRefGoogle Scholar
Vila, J. M. 1977. Notice explicative de la carte geologique, au 1/50.000, Touffana (feuille n 202) (Sonatrach (ed.)).Google Scholar
Viswanath, N. C., Dileep, P. G. & Ammad, K. K. 2015. Statistical analysis of quality of water in various water shed for Kozhikode City, Kerala, India. Aquatic Procedia 4, 1078–85.CrossRefGoogle Scholar
Wang, Y. & Jiao, J. J. 2012. Origin of groundwater salinity and hydrogeochemical processes in the confined Quaternary aquifer of the Pearl River Delta, China. Journal of Hydrology 438–39, 112–24.CrossRefGoogle Scholar
Yang, F., Zhang, G., Yin, X. & Liu, Z. 2011. Field-scale spatial variation of saline-sodic soil and its relation with environmental factors in Western Songnen Plain of China. International Journal of Environmental Research and Public Health 8, 374–87.CrossRefGoogle ScholarPubMed
Yermani, M., Zouari, K., Michelot, J. L., Mamou, A. & Moumni, L. 2003. Geochemical approach to the functioning of the Gafsa North deep aquifer (central Tunisia). Hydrological Sciences Journal 48, 95108.CrossRefGoogle Scholar
Yidana, S. M., Ophori, D. & Banoeng-Yakubo, B. 2008. A multivariate statistical analysis of surface water chemistry data - the Ankobra Basin, Ghana. Journal of Environmental Management 86, 8087.CrossRefGoogle ScholarPubMed
Zektser, I. S. & Loaiciga, H. A. 1993. Groundwater fluxes in the global hydrologic cycle: past, present and future. Journal of Hydrology 144, 405–27.CrossRefGoogle Scholar
Zewdu, S., Suryabhagavan, K. V. & Balakrishnan, M. 2017. Geo-spatial approach for soil salinity mapping in Sego Irrigation Farm, South Ethiopia. Journal of the Saudi Society of Agricultural Sciences 16, 1624.CrossRefGoogle Scholar