Article contents
Glacial and volcanic geomorphology of the Chimborazo-Carihuairazo Massif, Ecuadorian Andes
Published online by Cambridge University Press: 03 November 2011
Abstract
The Chimborazo (6,310 m)–Carihuairazo (5,102 m) massif is one of the largest ice-capped central volcanic complexes in the northern Andes. Combined evidence from volcanic and glacial landforms and sediments suggests cyclical evolution during the Pleistocene. Effusive eruptions of mixed high-silica andesite (SiO2%wt c. 60) predominated and built the bulk of the edifice. Explosive activity developed as the parental magma evolved to dacite-rhyolite (SiO2%wt 64–74), culminating with cone collapse and large-scale debris avalanching. Post-collapse activity evolved from the production of high-silica andesite to terminate with monogenetic eruptions of basic andesite (SiO2%wt 54–56) from flank fissures. The last eruption occurred before 11,000 yBP.
The interstratification of volcanic and glacial deposits shows that glaciers expanded and contracted several times during the later Pleistocene, while the volcanic edifices were evolving. Glaciers expanded to altitudinal limits of 3,400–3,600 m during the early last glaciation and reached similar limits sometime after 33,000 yBP; an intervening interstadial interval lasted for 10,000 y. By 20,000–18,000 yBP, glaciers receded slightly because of decreased precipitation, but later readvances culiminated at 12,000–10,000 yBP and during the last 5,000 y. Glacier reconstruction and estimation of former equilibrium line altitudes suggest that the mean annual temperatures during the full glacial, late-glacial and Neoglaciation intervals were lower than now by c. 5–6°C, 2–3°C and 1°C, respectively, but these may be underestimates because of the assumption that precipitation was constant.
Keywords
- Type
- Research Article
- Information
- Earth and Environmental Science Transactions of The Royal Society of Edinburgh , Volume 81 , Issue 2 , 1990 , pp. 91 - 116
- Copyright
- Copyright © Royal Society of Edinburgh 1990
References
- 50
- Cited by