Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-22T11:40:49.489Z Has data issue: false hasContentIssue false

Geochemistry and original nature of Precambrian khondalites in the Eastern Ghats, Orissa, India

Published online by Cambridge University Press:  03 November 2011

B. Dash
Affiliation:
Department of Geology, Utkal University, Bhubaneswar 751004, Orissa, India.
K. N. Sahu
Affiliation:
Department of Earth Sciences, Sambalpur University, Jyoti Vihar, Burla 768017, Orissa, India.
D. R. Bowes
Affiliation:
Department of Geology, University of Glasgow, Glasgow G12 8QQ, Scotland.

Abstract

The quartz-sillimanite-garnet rocks of the Precambrian khondalite assemblage of Orissa consist dominantly of SiO2 + Al2O3 + Fe2O3 + FeO (average c. 95%) with Fe2O3 > FeO. An average analysis (H2O and CO2 free) also shows MgO, CaO and Na2O having 1·0, 0·5 and 0·4%, respectively. Compared with average crustal abundances, enrichment is shown in SiO2, Al2O3 and Fetot and depletion shown in MgO, CaO, Na2O and P2O5 with that for CaO being more than an order of magnitude and that for Na2O being a factor of >7. On an SiO2–Al2O3–Fetot plot a clearly defined field, elongate nearly parallel to the SiO2–Al2O3 sideline, is similar to that for deeply weathered soil profiles in Brazil. This correspondence also extends to enrichment, stability or depletion, compared to crustal averages, for Ce, Co, Cu, Ga, La, Ni, Nb, Th, U, Y, Zn and Zr, but not for Ba, Cr and Rb. In addition comparison of the proportions and ratios of alkalis and alkaline earths in average khondalite and in a weathering profile over a granodiorite, considered to be typical of the weathering of continents, shows remarkable similarities.

The major and trace element data are consistent with the khondalites being granulite facies—upper amphibolite facies metamorphic equivalents of a deeply weathered soil profile. Associated quartzites and calc-silicate granulites are interpreted as having been silcretes and calcretes, respectively. This interpretation implies (1) the previous existence of a large stable cratonic mass on which the soil profile formed, (2) climatic conditions suitable for the development of such a profile, (3) topography, drainage systems and groundwater movement in Precambrian times similar to those of present day peneplane regions, (4) the presence of free oxygen in the atmosphere, (5) rapid covering (e.g. by products of volcanism) to preclude mass wasting, (6) a Precambrian stratigraphy in the crystalline rocks of the Eastern Ghats region similar to that of South India, and (7) orogenesis that involved tectonic repetition of lithological units and a mechanism for taking products of surface weathering down to granulite facies P–T conditions and subsequently elevating them.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acharya, B. C. 1979. Graphite in the Eastern Ghats rocks. Unpublished Ph.D. thesis, Utkal University.Google Scholar
Acharya, B. C. & Dash, B. 1984. Graphite in the Eastern Ghats Precambrian migmatites, Orissa, India. TRANS R SOC EDINBURGH EARTH SCI 75, 391406.CrossRefGoogle Scholar
Adams, F. D. 1929. The geology of Ceylon. CAN J RES 1, 486–90.CrossRefGoogle Scholar
Banerjee, D. M. 1985. Precambrian palaeosols. J GEOL SOC INDIA 26, 893.Google Scholar
Banerji, P. K. 1982. The khondalites of Orissa, India—a case history of confusing terminology. J GEOL SOC INDIA 23, 155–9.Google Scholar
Bear, F. F. 1964. Chemistry of the Soil. New York: Van Nostrand and Reinhold.CrossRefGoogle Scholar
Beckinsale, R. D., Drury, S. A. & Holt, R. W. 1980. 3360 my old gneisses from the southern Indian craton. NATURE 283, 469–70.CrossRefGoogle Scholar
Beckinsale, R. D., Reeves Smith, G., Gale, N. H., Holt, R. W. & Thompson, B. 1982. Rb–Sr and Pb–Pb whole rock ages and REE data for Archaean gneisses and granites, Karnataka State, South India (abstract). In Indo-US Workshop on ‘Precambrians of South India’ (12–15th January 1982), p. 35. Hyderabad: NGRI.Google Scholar
Bowes, D. R., Halden, N. M., Koistinen, T. J. & Park, A. F. 1984. Structural features of basement and cover rocks in the eastern Svecokarelides. In Kröner, A. & Greiling, R. (eds) Precambrian Tectonics Illustrated, 157–71. Stuttgart: Schweizerbart'sche Verlagsbuchlandlung.Google Scholar
Buhl, D., Grauert, B. & Raith, M. 1983. U–Pb zircon dating of Archaean rocks from the South India craton: results from the amphibolite to granulite facies transition zone at Kabbal quarry, southern Karnataka. FORTSCHR MINERAL 61, 43–5.Google Scholar
Chatterjee, S. C. 1974. Petrography of the igneous and metamorphic rocks of India, 1st edn. Madras: Macmillan India.Google Scholar
Choudhuri, R. & Banerji, K. C. 1974. On some calc-silicate rocks around Sitarampuram in Visakhapatnam district, Andhra Pradesh. J GEOL SOC INDIA 15, 4857.Google Scholar
Cooray, P. G. 1960. Khondalites and charnockites of the Lagalla–Pallegamma area, Ceylon. BULL MYSORE GEOL ASSOC 18, 34.Google Scholar
Crawford, A. R. 1969. Reconnaissance Rb–Sr dating of Precambrian rocks of Southern Peninsular India. J GEOL SOC INDIA 10, 117–66.Google Scholar
Dash, B. 1976. On the structure and lithology of the Eastern Ghats group in parts of Orissa. J GEOL SOC INDIA 17, 156.Google Scholar
Dash, B. & Das, J. K. 1969. A structural study of the Eastern Ghat tectonite around Tigiria, Cuttack district, Orissa. PRAKRUTI UTKAL UNIV J SCI 6, 191206.Google Scholar
Dash, B. & Paul, A. K. 1976. Migmatites associated with the Precambrian rocks of a part of the Eastern Ghats. In Seminar on the Precambrian Geology of the Peninsular Shield, 335–46. MISC PUBL GEOL SURV INDIA 23(2).Google Scholar
El-Shahat, A. 1986. Composition of some Egyptian calcretes. J UNIV KUWAIT SCI 13, 229–42.Google Scholar
Gopalakrishna, D., Hansen, E. C., Janardhan, A. S. & Newton, R. C. 1986. The southern high-grade margin of the Dharwar craton. J GEOL 94, 247–60.CrossRefGoogle Scholar
Goudie, A. 1972. The chemistry of world calcrete deposits. J GEOL 80, 449–63.CrossRefGoogle Scholar
Goudie, A. 1973. Duricrusts in Tropical and Subtropical Landscapes. Oxford: Clarendon Press.Google Scholar
Grew, E. S. & Manton, W. I. 1984. Age of allanite from Kabbaldurga quarry, Karnataka. J GEOL SOC INDIA 25, 193–5.Google Scholar
Halden, N. M., Bowes, D. R. & Dash, B. 1982. Structural evolution of migmatites in granulite facies terrane: Precambrian crystalline complex of Angul, Orissa, India. TRANS R SOC EDINBURGH EARTH SCI 73, 109–18.CrossRefGoogle Scholar
Heiskanen, K. I. 1980. The Karelian Geosyncline (in Russian). Petrozavodsk: Nauka.Google Scholar
Howie, R. A. & Subramanian, A. P. 1957. The paragenesis of garnet in charnockite, enderbite and related granulites. MINERAL MAG 51, 565–86.Google Scholar
Hussain, S. M., Naqvi, S. M. & Gnaneswar Rao, T. 1982. Geochemistry and significance of mafic-ultramafic rocks from the southern part of the Holenarasipar schist belt, Karnataka. J GEOL SOC INDIA 23, 1931.Google Scholar
Janardhan, A. S., Newton, R. C. & Smith, J. V. 1979. Ancient crustal metamorphism at low : charnockite formation at Kabbaldurga, South India. NATURE 278, 571–4.CrossRefGoogle Scholar
Krishnan, M. S. 1968. Geology of India and Burma, 5th edn. Madras: Sankar.Google Scholar
Kronberg, B. I., Fyfe, W. S., Leonardos, O. H. & Santos, A. M. 1979. The chemistry of some Brazilian soils: element mobility during intense weathering: CHEM GEOL 24, 211–29.CrossRefGoogle Scholar
Narain, H. & Subrahmanyan, C. 1986. Precambrian tectonics of the South Indian shield inferred from geophysical data. J GEOL 94, 187–98.CrossRefGoogle Scholar
Narayanaswami, S. 1970. Tectonic setting and manifestation of the upper mantle in the Precambrian rocks of south India. In Narain, H. (ed.) Proceedings of the 2nd Upper Mantle Project Symposium, 378403. Hyderabad: NGRI.Google Scholar
Narayanaswami, S. 1975. Proposal for charnockite-khondalite system in the Archaean Shield of Peninsular India. MISC PUBL GEOL SURV INDIA 23(1), 116.Google Scholar
Nesbitt, H. W., Markories, G. & Price, R. C. 1980. Chemical processes affecting alkalis and alkaline earths during continental weathering. GEOCHIM COSOCHIM ACTA 44, 1659–66.CrossRefGoogle Scholar
Park, A. F. & Bowes, D. R. 1983. Basement-cover relationships during polyphase deformation in the Svecokarelides of the Kaavi district, eastern Finland. TRANS R SOC EDINBURGH EARTH SCI 74, 95118.CrossRefGoogle Scholar
Park, A. F., Bowes, D. R., Halden, N. M. & Koistinen, T. J. 1984. Tectonic evolution at an early Proterozoic continental margin: the Svecokarelides of eastern Finland. J GEODYNAM 1, 359–86.CrossRefGoogle Scholar
Park, A. F. & Dash, B. 1984. Charnockite and related neosome development in the Eastern Ghats, Orissa, India: petrographic evidence. TRANS R SOC EDINBURGH EARTH SCI 75, 341–52.CrossRefGoogle Scholar
Paulose, C. V. 1956. Charnockite and associated rocks of Cape Komurine. BULL MYSORE GEOL ASSOC 9.Google Scholar
Perraju, P., Kovách, Á. & Svingor, E. 1979. Rubidium–strontium ages of some rocks from parts of the Eastern Ghats in Orissa and Andhra Pradesh, India. BULL GEOL SOC INDIA 20, 290–6.Google Scholar
Pichamuthu, C. S. 1967. The Precambrian of India. In Rankama, K. (ed.) The Precambrian 3, 196. New York: John Wiley.Google Scholar
Plumb, K. A. 1985. Subdivision and correlation of late Precambrian sequences in Australia. PRECAMBRIAN RES 29, 303–29.CrossRefGoogle Scholar
Raase, P., Raith, M., Ackermand, D. & Lai, R. K. 1986. Progressive metamorphism of mafic rocks from greenchist to granulite facies in the Dharwar craton of South India. J GEOL 94, 261–82.CrossRefGoogle Scholar
Radhakrishna, B. P. 1983. Archaean granite-greenstone terrain of South Indian Shield. In Naqvi, S. M. & Rogers, J. J. W. (eds) Precambrian of South India, 146. MEM GEOL SOC INDIA 4.Google Scholar
Radhakrishna, B. P. & Naqvi, S. M. 1986. Precambrian continental crust of India and its evolution. J GEOL 94, 145–66.CrossRefGoogle Scholar
Raith, M., Raase, P., Ackermand, D. & Lai, R. K. 1983. Metamorphic conditions in the charnockite-khondalite zone of South India: geothermobarometry on garnet-pyroxene-plagioclase rocks. In Naqvi, S. M. & Rogers, J. J. W. (eds) Precambrian of South India, 436–49. MEM GEOL SOC INDIA 4.Google Scholar
Ray, S. 1963. Fifty Years of Science in India Progress of Geology. Calcutta: Indian Science Congress Association.Google Scholar
Rogers, J. J. W. 1986. The Dharwar craton and the assembly of Peninsular India. J GEOL 94, 129–43.CrossRefGoogle Scholar
Ronov, A. B. & Yaroshevsky, A. A. 1972. Earth's crust geochemistry. In Fairbridge, R. W. (ed.) The Encyclopedia of Geochemistry and Environmental Sciences—Encyclopedia of Earth Sciences, Vol. IV A, 243–54. New York: Van Nostrand and Reinhold.Google Scholar
Sahu, K. N. 1975. Petrology and Structure of Charnockite–Khondalite association of a part of the Eastern Ghats around Tapang, Orissa, India. Unpublished Ph.D. thesis, Utkal University.Google Scholar
Sen, S. 1953. Origin of Charnockitic Assemblages of East Manbhum, Bihar. AM J SCI 251, 388–92.CrossRefGoogle Scholar
Shackleton, R. M. 1976. Shallow and deep-level exposures of the Archaean crust in India and Africa. In Windley, B. F. (ed.) The early history of the Earth, 317–21. London: Wiley.Google Scholar
Singh, I. B. 1980. Precambrian sedimentary sequences of India, their peculiarities and comparison with modern sediments. PRECAMBRIAN RES 12, 411–36.CrossRefGoogle Scholar
Sokolov, V. A., Galdobina, L. P., Rylev, A. V., Sachik, Y. I., Svetov, A. L. & Heiskanen, K. I. 1970. Geology, lithology and palaeogeography of the Jatulian of central Karelia (in Russian). Petrozavodsk: Nauka.Google Scholar
Spooner, C. M. & Fairbairn, H. W. 1970. Strontium 87/strontium 86 initial ratios in pyroxene granulite terrains. J GEOPHYS RES 75, 6706–13.CrossRefGoogle Scholar
Srikantappa, C., Raith, M. & Spiering, B. 1985. Progressive charnockitisation of a leptynite-khondalite suite in southern Kerela, India—Evidence for formation of charnockites through decrease in fluid pressure? J GEOL SOC INDIA 26, 849–72.Google Scholar
Stevens, M. B., Glasson, M. J. & Keay, R. R. 1979. Structural and chemical aspects of metamorphic layering development in metasediments from Clunes, Australia. AM J SCI 279, 129–60.CrossRefGoogle Scholar
Swami Nath, J. & Ramakrishnan, M. 1981. Early Precambrian supracrustals of Southern Karnataka. MEM GEOL SURV INDIA 112.Google Scholar
Taylor, S. R. 1964 Trace element abundances and the chondritic earth model. GEOCHIM COSMOCHIM ACTA 28, 1989–98.CrossRefGoogle Scholar
Treloar, P. J., Koistinen, T. J. & Bowes, D. R. 1981. Metamorphic development of cordierite–amphibole rocks and mica schists in the vicinity of the Outokumpu ore deposit, Finland. TRANS R SOC EDINBURGH EARTH SCI 72, 201–15.CrossRefGoogle Scholar
Trendall, A. F. 1983. The Hammersly Basin. In Trendall, A. F. & Morris, R. C.Iron formation facts and problems, 69129. Developments in Precambrian Geology 6. Amsterdam: Elsevier.CrossRefGoogle Scholar
Vinogradov, A., Tugarinov, A., Zhykov, C., Stapnikova, N., Bibikova, E. & Khorre, K. 1964. Geochronology of Indian Pre-Cambrian. REP 22ND INT GEOL CONGR 10, 553–67.Google Scholar
Walker, T. L. 1902. The geology of Kalahandi State, Central Province. MEM GEOL SURV INDIA 33(3), 122.Google Scholar
Winkler, H. G. F. 1967. Petrogenesis of metamorphic rocks (revised 2nd edn). Berlin: Springer-Verlag.CrossRefGoogle Scholar