Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T00:31:43.399Z Has data issue: false hasContentIssue false

Evolutionary changes in the orbits and palatal openings of early tetrapods, with emphasis on temnospondyls

Published online by Cambridge University Press:  12 February 2019

Florian WITZMANN*
Affiliation:
Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, 10115 Berlin, Germany. Email: [email protected]
Marcello RUTA*
Affiliation:
School of Life Sciences, University of Lincoln, Lincoln LN6 7DL, UK.
*
*Corresponding author

Abstract

Open palates with large interpterygoid vacuities are a diagnostic characteristic of temnospondyl amphibians, the most species-rich group of early tetrapods. Aside from their functional roles, several other aspects of such vacuities, such as their variation and spatial relationships relative to the orbits, have received only scarce attention. The present work examines patterns of shape and size changes in the orbits and vacuities of temnospondyls using a time-calibrated phylogeny of 69 temnospondyl taxa and 13 additional early tetrapod ‘outgroups' (colosteids, an embolomere, ‘microsaurs' and nectrideans). Orbit and vacuity outlines are quantified in a comparative framework using standard eigenshape analyses. In addition, we employ a series of ratios of linear measurements of both orbits and vacuities, and subject them to a phylogenetic principal component analysis in order to evaluate their proportional changes relative to the skull and to one another. Finally, we examine rates of evolutionary change and their associated shifts for shape and size for both structures, and assess the strength and significance of the correlations between these two variables using phylogenetic generalised least squares analyses. Although orbits and vacuities have fairly simple outlines, they both reveal complex models of proportional change across the temnospondyl phylogeny. These changes exhibit strong phylogenetic signal, that is, trait covariance among taxa is predicted by tree topology. We discuss the hypothesis that, early in tetrapod evolution, the functional role of the vacuities was related to the accommodation of the anterior jaw muscles. Only later in evolution did such vacuities serve to accommodate the eye muscles only.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

7. References

Anderson, J. S. 2001a. The phylogenetic trunk: maximal inclusion of taxa with missing data in an analysis of the Lepospondyli (Vertebrata, Tetrapoda). Systematic Biology 50, 170193.10.1080/10635150119889Google Scholar
Anderson, M. J. 2001b. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26, 3246.Google Scholar
Angielczyk, K. D. & Sheets, S. D. 2007. Investigation of simulated tectonic deformation in fossils using geometric morphometrics. Paleobiology 33, 125148.10.1666/06007.1Google Scholar
Bapst, D. W. 2013. A stochastic rate-calibrated method for time-scaling phylogenies of fossil taxa. Methods in Ecology and Evolution 4, 724733.10.1111/2041-210X.12081Google Scholar
Bapst, D. W. 2014. Assessing the effect of time-scaling methods on phylogeny-based analyses in the fossil record. Paleobiology 40, 331351.10.1666/13033Google Scholar
Beaumont, E. H. 1977. Cranial morphology of the Loxommatidae (Amphibia: Labyrinthodontia). Philosophical Transactions of the Royal Society London B: Biological Sciences 280, 29101.Google Scholar
Bell, M. A. & Lloyd, G. T. 2015. Strap: an R package for plotting phylogenies against stratigraphy and assessing their stratigraphic congruence. Palaeontology 58, 379389.10.1111/pala.12142Google Scholar
Bininda-Emonds, O. R. P. (ed.) 2004. Phylogenetic supertrees: combining information to reveal the tree of life. London: Kluwer Academic Publishers.10.1007/978-1-4020-2330-9Google Scholar
Blomberg, S. P., Garland, T. Jr & Ives, A. R. 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717745.10.1111/j.0014-3820.2003.tb00285.xGoogle Scholar
Bossy, K. A. & Milner, A. C. 1998. Order nectridea. In Wellnhofer, P. (ed.) Encyclopedia of paleoherpetology, part 1: lepospondyli, 73131. Munich: Verlag Dr. Friedrich Pfeil.Google Scholar
Boy, J. A. 1989. Über einige Vertreter der Eryopoidea (Amphibia: Temnospondyli) aus dem europäischen Rotliegend (?höchstes Karbon-Perm) 2. Acanthostomatops. Paläontologische Zeitschrift 63, 133151.10.1007/BF02989530Google Scholar
Boy, J. A. 1990. Über einige Vertreter der Eryopoidea (Amphibia: Temnospondyli) aus dem europaischen Rotliegend (?höchstes Karbon-Perm) 3. Onchiodon. Paläontologische Zeitschrift 64, 287312.10.1007/BF02985720Google Scholar
Boy, J. A. 1993. Über einige Vertreter der Eryopoidea (Amphibia: Temnospondyli) aus dem europäischen Rotliegend (?höchstes Karbon – Perm). 4. Cheliderpeton latirostre. Paläontologische Zeitschrift 67, 123143.10.1007/BF02985874Google Scholar
Boy, J. A. 1995. Über die Micromelerpetontidae (Amphibia: Temnospondyli) 1. Morphologie und Paläoökologie des Micromelerpeton credneri (Unter-Perm; SW-Deutschland). Paläontologische Zeitschrift 69, 429457.10.1007/BF02987805Google Scholar
Brusatte, S. L., Benton, M. J., Ruta, M. & Lloyd, G. T. 2008. Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs. Science 321, 14851488.10.1126/science.1161833Google Scholar
Burnham, K. P. & Anderson, D. R. 1998. Model selection and inference: a practical information-theoretic approach. New York: Springer.10.1007/978-1-4757-2917-7Google Scholar
Butler, R. J. & Goswami, A. 2008. Body size evolution in Mesozoic birds: little evidence for Cope's rule. Journal of Evolutionary Biology 21, 16731682.10.1111/j.1420-9101.2008.01594.xGoogle Scholar
Carroll, R. L. 1964. The early evolution of the dissorophid amphibians. Bulletin of the Museum of Comparative Zoology 131, 161250.Google Scholar
Carroll, R. L. 1998. Order microsauria. In Wellnhofer, P. (ed.) Encyclopedia of paleoherpetology, part 1: lepospondyli, 172. Munich: Verlag Dr. Friedrich Pfeil.Google Scholar
Carroll, R. L. & Gaskill, P. 1978. The order microsauria. Memoirs of the American Philosophical Society 126, 1211.Google Scholar
Chase, J. N. 1965. Neldasaurus wrightae, a new rhachitomous labyrinthodont from the Texas Lower Permian. Bulletin of the Museum of Comparative Zoology, Harvard University 133, 155230.Google Scholar
Clack, J. A. 1992. The stapes of acanthostega gunnari and the role of the stapes in early tetrapods. In Webster, D. B., Fay, R. R. & Popper, A. N. (eds) Evolutionary biology of hearing, 405420. New York: Springer-Verlag.10.1007/978-1-4612-2784-7_24Google Scholar
Clack, J. A. 2012. Gaining ground: The origin and evolution of tetrapods. Bloomington, IN: Indiana University Press.Google Scholar
Clack, J. A., Witzmann, F., Müller, J. & Snyder, D. 2012. A colosteid-like early tetrapod from the St. Louis Limestone (Early Carboniferous, Meramecian), St. Louis, Missouri, USA. Fieldiana Life and Earth Sciences 5, 1739.10.3158/2158-5520-5.1.17Google Scholar
Clack, J. A. & Milner, A. R. 2010. Morphology and systematics of the Pennsylvanian amphibian Platyrhinops lyelli (Amphibia: Temnospondyli). Transactions of the Royal Society of Edinburgh: Earth Sciences 100, 275295.10.1017/S1755691010009023Google Scholar
Clarke, K. R. 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18, 117143.10.1111/j.1442-9993.1993.tb00438.xGoogle Scholar
Damiani, R., Schoch, R. R., Hellrung, H., Werneburg, R. & Gastou, S. 2009. The plagiosaurid temnospondyl Plagiosuchus pustuliferus (Amphibia: Temnospondyli) from the Middle Triassic of Germany: anatomy and functional morphology of the skull. Zoological Journal of the Linnean Society 155, 348373.10.1111/j.1096-3642.2008.00444.xGoogle Scholar
Deban, S. M. & Wake, D. B. 2000. Aquatic feeding in salamanders. In Schwenk, K. (ed.) Feeding: form, function and evolution in tetrapod vertebrates, 6594. San Diego: Academic Press.10.1016/B978-012632590-4/50004-6Google Scholar
Dilkes, D. W. 1990. A new trematopsid amphibian (Temnospondyli: Dissorophoidea) from the Lower Permian of Texas. Journal of Vertebrate Paleontology 10, 222243.10.1080/02724634.1990.10011809Google Scholar
Duellman, W. E. & Trueb, L. 1994. Biology of amphibians. Baltimore: John Hopkins University Press.Google Scholar
Fox, J. & Weisberg, F. 2011. An R companion to applied regression. Thousand Oaks: SAGE Publications.Google Scholar
Francis, E. T. B. 1934. The anatomy of the salamander. Oxford: Clarendon Press.Google Scholar
Fröbisch, N. B. & Reisz, R. R. 2008. A new Lower Permian amphibamid (Dissorophoidea, Temnospondyli) from the fissure fill deposits near Richards Spur, Oklahoma. Journal of Vertebrate Paleontology 28, 10151030.10.1671/0272-4634-28.4.1015Google Scholar
Fröbisch, N. B. & Schoch, R. R. 2009. Testing the impact of miniaturization on phylogeny: paleozoic dissorophoid amphibians. Systematic Biology 58, 312327.Google Scholar
Garamszegi, L. Z. (ed.) 2014. Modern phylogenetic comparative methods and their application in evolutionary biology. New York: Springer.10.1007/978-3-662-43550-2Google Scholar
Gee, B. M., Haridy, Y. & Reisz, R. R. 2017. Histological characterization of denticulate palatal plates in an Early Permian dissorophoid. PeerJ 5, e3727, 132.10.7717/peerj.3727Google Scholar
Godfrey, S. J. & Holmes, R. B. 1995. The Pennsylvanian temnospondyl Cochleosaurus florensis Rieppel, from the lycopsid stump fauna at Florence, Nova Scotia. Breviora 500, 125.Google Scholar
Gubin, Y. M. 1991. Permian archegosauroid amphibians of the USSR. Trudy Paleontologichesko Instituta Nauka SSSR 249, 1138. [In Russian.]Google Scholar
Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. 2008. GEIGER: investigating evolutionary radiations. Bioinformatics (Oxford, England) 24, 129131.10.1093/bioinformatics/btm538Google Scholar
Holmes, R. B. 1984. The Carboniferous amphibian Proterogyrinus scheelei Romer, and the early evolution of tetrapods. Philosophical Transactions of the Royal Society of London B: Biological Sciences 306, 431524.Google Scholar
Holmes, R. B., Carroll, R. L. & Reisz, R. R. 1998. The first articulated skeleton of Dendrerpeton acadianum (Temnospondyli, Dendrerpetontidae) from the Lower Pennsylvanian locality of Joggins, Nova Scotia, and a review of its relationships. Journal of Vertebrate Paleontology 18, 6479.Google Scholar
Hook, R. W. 1983. Colosteus scutellatus (Newberry): a primitive temnospondyl amphibian from the Middle Pennsylvanian of Linton, Ohio. American Museum Novitates 2770, 141.Google Scholar
Janis, C. M. & Keller, J. C. 2001. Modes of ventilation in early tetrapods: costal aspiration as a key feature of amniotes. Acta Palaeontologica Polonica 46, 137170.Google Scholar
Jenkins, F. A. Jr., Walsh, D. M. & Carroll, R. L. 2007. Anatomy of Eocaecilia macropodia, a limbed caecilian of the early Jurassic. Bulletin of the Museum of Comparative Zoology, Harvard University 158, 285366.10.3099/0027-4100(2007)158[285:AOEMAL]2.0.CO;2Google Scholar
Keck, F., Rimet, F., Bouchez, A. & Franc, A. 2016. Phylosignal: an R package to measure, test, and explore the phylogenetic signal. Methods in Ecology and Evolution 6, 27742780.10.1002/ece3.2051Google Scholar
Kimmel, C., Sidlauskas, B. & Clack, J. A. 2009. Linked morphological changes during palate evolution in early tetrapods. Journal of Anatomy 215, 91109.Google Scholar
Langston, W. Jr. 1953. Permian amphibians from New Mexico. University of California Publications in Geological Sciences 29, 349416.Google Scholar
Laurin, M. 2010. How vertebrates left the water. Oakland: University of California Press.10.1525/california/9780520266476.001.0001Google Scholar
Lautenschlager, S., Witzmann, F. & Werneburg, I. 2016. Palate anatomy and morphofunctional aspects of interpterygoid vacuities in temnospondyl cranial evolution. The Science of Nature 103, 110.10.1007/s00114-016-1402-zGoogle Scholar
Levine, R. P., Monroy, J. A. & Brainerd, E. L. 2004. Contribution of eye retraction to swallowing performance in the northern leopard frog, Rana pipiens. Journal of Experimental Biology 207, 1361–8.10.1242/jeb.00885Google Scholar
Lohmann, G. P. 1983. Eigenshape analysis of microfossils: a general morphometric method for describing changes in shape. Mathematical Geology 15, 659672.Google Scholar
MacLeod, N. 1999. Generalizing and extending the eigenshape method of shape space visualization and analysis. Paleobiology 25, 107138.Google Scholar
Marcé-Nogué, J., Fortuny, J., de Esteban-Trivigno, S., Sánchez, M., Gil, L. & Galobart, À. 2015. 3D computational mechanics elucidate the evolutionary implications of orbit position and size diversity of early amphibians. PLoS ONE 10 , 123.10.1371/journal.pone.0131320Google Scholar
Marjanović, D. & Laurin, M. 2013. The origin(s) of extant amphibians: a review with emphasis on the “lepospondyl hypothesis”. Geodiversitas 35, 207272.Google Scholar
Milner, A. C. 1980. A review of the Nectridea (Amphibia). In Panchen, A. L. (ed.) The terrestrial environment and the origin of land vertebrates, 377405. London: Academic Press.Google Scholar
Milner, A. R. 1990. The radiations of temnospondyl amphibians. In Taylor, P. D. & Larwood, G. P. (eds) Major evolutionary radiations, 321349. Oxford: Clarendon Press.Google Scholar
Milner, A. R. 1993. The Paleozoic relatives of lissamphibians. Herpetological Monographs 7, 827.Google Scholar
Milner, A. R. 1996. A revision of the temnospondyl amphibians from the Upper Carboniferous of Joggins, Nova Scotia. Special Papers in Palaeontology 52, 81103.Google Scholar
Milner, A. R. & Schoch, R. R. 2013. Trimerorhachis (Amphibia: Temnospondyli) from the Lower Permian of Texas and New Mexico: cranial osteology, taxonomy and biostratigraphy. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 270, 91128.Google Scholar
Milner, A. R. & Sequeira, S. E. K. 1994. The temnospondyl amphibians from the Viséan of East Kirkton, West Lothian, Scotland. Transactions of the Royal Society of Edinburgh, Earth Sciences 84, 331361.Google Scholar
Milner, A. R. & Sequeira, S. E. K. 1998. A cochleosaurid temnospondyl amphibian from the Middle Pennsylvanian of Linton, Ohio, USA. Zoological Journal of the Linnean Society 122, 261290.10.1111/j.1096-3642.1998.tb02532.xGoogle Scholar
Milner, A. R. & Sequeira, S. E. K. 2011. The amphibian Erpetosaurus radiatus (Temnospondyli, Dvinosauria) from the Middle Pennsylvanian of Linton, Ohio: morphology and systematic position. Special Papers in Palaeontology 86, 5773.Google Scholar
Mukherjee, R. N. & Sengupta, D. P. 1998. New capitosaurid amphibians from the Triassic Denwa Formation of the Satpura Gondwana basin, central India. Alcheringa 22, 317327.10.1080/03115519808619330Google Scholar
Mundry, R. 2014. Statistical issues and assumptions of Phylogenetic Generalised Least Squares. In Garamszegi, L. Z. (ed.) Modern phylogenetic comparative methods and their application in evolutionary biology, 131153. New York: Springer.Google Scholar
Orme, C. D. L., Freckleton, R. P., Thomas, G. H., Petzoldt, T., Fritz, S. A. & Isaac, N. J. B. 2013. CAPER: comparative analyses of phylogenetics and evolution in R. Methods in Ecology and Evolution 3, 145151.Google Scholar
Pagel, M. 1999. Inferring the historical patterns of biological evolution. Nature 401, 877884.10.1038/44766Google Scholar
Pardo, J. D., Szostakiwskyj, M., Ahlberg, P. E. & Anderson, J. S. 2017. Hidden morphological diversity among early tetrapods. Nature 546, 642–5.10.1038/nature22966Google Scholar
Polley, B. P. & Reisz, R. R. 2011. A new Lower Permian trematopid (Temnospondyli: Dissorophoidea) from Richards Spur, Oklahoma. Zoological Journal of the Linnean Society 161, 789815.Google Scholar
Porro, L. B., Rayfield, E. J. & Clack, J. A. 2015. Descriptive anatomy and three-dimensional reconstruction of the skull of the early tetrapod Acanthostega gunnari Jarvik, 1952. PloS ONE 10, e0118882, 132.10.1371/journal.pone.0118882Google Scholar
Revell, L. J. 2009. Size-correction and principal components for interspecific comparative studies. Evolution 63, 32583268.10.1111/j.1558-5646.2009.00804.xGoogle Scholar
Romer, A. S. & Witter, R. V. 1942. Edops, a primitive rhachitomous amphibian from the Texas red beds. The Journal of Geology 50, 925960.Google Scholar
Ruta, M., Wagner, P. J. & Coates, M. I. 2006. Evolutionary patterns in early tetrapods. I. Rapid initial diversification followed by decrease in rates of character change. Proceedings of the Royal Society of London B: Biological Sciences 273, 21072111.Google Scholar
Ruta, M. & Bolt, J. R. 2006. A reassessment of the temnospondyl amphibian Perryella olsoni from the Lower Permian of Oklahoma. Transactions of the Royal Society of Edinburgh: Earth Sciences 97, 113165.10.1017/S0263593300001437Google Scholar
Ruta, M. & Coates, M. I. 2007. Dates, nodes, and character conflict: addressing the lissamphibian origin problem. Journal of Systematic Palaeontology 5, 69122.10.1017/S1477201906002008Google Scholar
Sawin, H. G. 1941. The cranial anatomy of Eryops megacephalus. Bulletin of the Museum of Comparative Zoology, Harvard College 88, 405464.Google Scholar
Schoch, R. R. 2006. A complete trematosaurid amphibian from the Middle Triassic of Germany. Journal of Vertebrate Paleontology 26, 2943.Google Scholar
Schoch, R. R. 2008. A new stereospondyl from the German Middle Triassic, and the origin of the Metoposauridae. Zoological Journal of the Linnean Society 152, 79113.Google Scholar
Schoch, R. R. 2012. Character distribution and phylogeny of the dissorophid temnospondyls. Fossil Record 15, 121137.10.1002/mmng.201200010Google Scholar
Schoch, R. R. 2013. The evolution of major temnospondyl clades: an inclusive phylogenetic analysis. Journal of Systematic Palaeontology 11, 673705.10.1080/14772019.2012.699006Google Scholar
Schoch, R. R. 2014 Amphibian evolution: the life of early land vertebrates. Oxford: Wiley Blackwell.10.1002/9781118759127Google Scholar
Schoch, R. R. & Milner, A. R. 2000. Handbook of paleoherpetology, part 3: stereospondyli, 1–220. Munich: Verlag Dr. Friedrich Pfeil.Google Scholar
Schoch, R. R. & Milner, A. R. 2004. Structures and implications of theories on the origins of lissamphibians. In Arratia, G., Wilson, M. V. H. & Cloutier, R. (eds) Recent advances in the origin and radiation of vertebrates, 345377. Munich: Verlag Dr. Friedrich Pfeil.Google Scholar
Schoch, R. R. & Milner, A. R. 2008. The intrarelationships and evolutionary history of the temnospondyl family Branchiosauridae. Journal of Systematic Palaeontology 6, 409431.10.1017/S1477201908002460Google Scholar
Schoch, R. R. & Milner, A. R. 2014. Handbook of paleoherpetology, part 3A2: temnospondyli I, 1150. Munich: Verlag Dr. Friedrich Pfeil.Google Scholar
Schoch, R. R. & Rubidge, B. S. 2005. The amphibamid Micropholis from the Lystrosaurus assemblage zone of South Africa. Journal of Vertebrate Paleontology 25, 502522.Google Scholar
Schoch, R. R. & Witzmann, F. 2009a. Osteology and relationships of the temnospondyl Sclerocephalus. Zoological Journal of the Linnean Society 157, 135168.10.1111/j.1096-3642.2009.00535.xGoogle Scholar
Schoch, R. R. & Witzmann, F. 2009b. The temnospondyl Glanochthon from the Lower Permian Meisenheim Formation of Germany. Special Papers in Palaeontology 81, 121136.Google Scholar
Schoch, R. R. & Witzmann, F. 2012. Cranial morphology of the plagiosaurid Gerrothorax pulcherrimus as an extreme example of evolutionary stasis. Lethaia 45, 371385.10.1111/j.1502-3931.2011.00290.xGoogle Scholar
Sequeira, S. E. K. 1998. The cranial morphology and taxonomy of the saurerpetontid Isodectes obtusus comb. nov. (Amphibia: Temnospondyli) from the Lower Permian of Texas. Zoological Journal of the Linnean Society 122, 237259.Google Scholar
Sequeira, S. E. K. 2004. The skull of Cochleosaurus bohemicus Frič, a temnospondyl from the Czech Republic (Upper Carboniferous) and cochleosaurid interrelationships. Transactions of the Royal Society of Edinburgh: Earth Sciences 94, 2143.10.1017/S0263593300000511Google Scholar
Sequeira, S. E. K. & Milner, A. R. 1993. The temnospondyl amphibian Capetus from the Upper Carboniferous of Nýřany, Czech Republic. Palaeontology 36, 657680.Google Scholar
Shishkin, M. A. 1973. [The morphology of the early Amphibia and some problems of lower tetrapod evolution.] Trudy Paleontologicheskogo Instituta Akademia Nauk SSSR 137, 1257. [In Russian.]Google Scholar
Sigurdsen, T. & Bolt, J. R. 2010. The Lower Permian amphibamid Doleserpeton (temnospondyli: Dissorophoidea), the interrelationships of amphibamids, and the origin of modern amphibians. Journal of Vertebrate Paleontology 30, 13601377.10.1080/02724634.2010.501445Google Scholar
Sigurdsen, T. & Green, D. M. 2011. The origin of modern amphibians: a re-evaluation. Zoological Journal of the Linnean Society 162, 457469.Google Scholar
Smithson, T. R. 1982. The cranial morphology of Greererpeton burkemorani Romer (Amphibia: Temnospondyli). Zoological Journal of the Linnean Society 76, 2990.Google Scholar
Sokal, R. R. & Rohlf, F. J. 1995. Biometry. New York: Freeman.Google Scholar
Steyer, J. S., Damiani, R., Sidor, C. A., O'Keefe, F. R., Larsson, H. C., Maga, A. & Ide, O. 2006. The vertebrate fauna of the Upper Permian of Niger. IV. Nigerpeton ricqlesi (Temnospondyli: Cochleosauridae), and the edopoid colonization of Gondwana. Journal of Vertebrate Paleontology 26, 1828.Google Scholar
Sulej, T. 2007. Osteology, variability, and evolution of Metoposaurus, a temnospondyl from the Late Triassic of Poland. Palaeontologia Polonica 64, 29139.Google Scholar
Symonds, M. R. E. & Blomberg, S. P. 2014. A primer on phylogenetic generalised least squares (PGLS). In Garamszegi, L. Z. (ed.) Modern phylogenetic comparative methods and their application in evolutionary biology, 105130. New York: Springer.Google Scholar
Thomas, G. H. & Freckleton, R. P. 2012. MOTMOT: models of trait macroevolution on trees. Methods in Ecology and Evolution 3, 145151.Google Scholar
Vallin, G. & Laurin, M. 2004. Cranial morphology and affinities of Microbrachis, and a reappraisal of the phylogeny and lifestyle of the first amphibians. Journal of Vertebrate Paleontology 24, 5672.Google Scholar
Wake, M. H. 1993. The osteology of caecilians. In Heatwole, H. & Davies, M. (eds) Amphibian biology. Volume 5: osteology, 18091876. Chipping Norton: Surrey Beatty & Sons.Google Scholar
Wang, M. & Lloyd, G. T. 2016. Rates of morphological evolution are heterogeneous in early cretaceous birds. Proceedings B 283 , 19.Google Scholar
Warren, A. A. 1999. Karoo tupilakosaurid: a relict from Gondwana. Transactions of the Royal Society of Edinburgh: Earth Sciences 89, 145160.10.1017/S0263593300007094Google Scholar
Warren, A. A. & Marsicano, C. A. 2000. A phylogeny of Brachyopoidea (Temnospondyli, Stereospondyli). Journal of Vertebrate Paleontology 20, 462483.Google Scholar
Werneburg, R. 1991. Die Branchiosaurier aus dem Unterrotliegend des Döhlener Beckens bei Dresden. Veröffentlichungen Naturhistorisches Museum Schleusingen 6, 7599.Google Scholar
Werneburg, R. 1994. Dissorophoiden (Amphibia, Rhachitomi) aus dem Westfal D (Oberkarbon) von Böhmen – Limnogyrinus elegans (Fritsch 1881). Zeitschrift für geologische Wissenschaften 22, 457466.Google Scholar
Werneburg, R. 2012. Dissorophoide Amphibien aus dem Westphalian D (Ober-Karbon) von Nýřany in Böhmen (Tschechische Republik) – der Schlüssel zum Verständnis der frühen ‘Branchiosaurier'. Semana 27, 350.Google Scholar
Werneburg, R. & Berman, D. S. 2012. Revision of the aquatic eryopid temnospondyl Glaukerpeton avinoffi Romer, 1952, from the Upper Pennsylvanian of North America. Annals of the Carnegie Museum 81, 3360.10.2992/007.081.0103Google Scholar
Witzmann, F. 2006. Cranial morphology and ontogeny of the Permo-Carboniferous temnospondyl Archegosaurus decheni Goldfuss, 1847 from the Saar–Nahe Basin, Germany. Earth and Environmental Science Transactions of The Royal Society of Edinburgh 96, 131162.Google Scholar
Witzmann, F. & Werneburg, I. 2017. The palatal interpterygoid vacuities of temnospondyls and the implications for the associated eye- and jaw musculature. The Anatomical Record 300, 12401269.10.1002/ar.23582Google Scholar
Yates, A. M. 1999. The Lapillopsidae: a new family of small temnospondyls from the Early Triassic of Australia. Journal of Vertebrate Paleontology 19, 302320.Google Scholar
Supplementary material: File

Witzmann and Ruta supplementary material

Witzmann and Ruta supplementary material 1

Download Witzmann and Ruta supplementary material(File)
File 13.3 MB