Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T21:24:54.624Z Has data issue: false hasContentIssue false

Dolomites, a review of origins, geometry and textures

Published online by Cambridge University Press:  03 November 2011

C. J. R. Braithwaite
Affiliation:
C. J. R. Braithwaite, Department of Geology and Applied Geology, The University, Glasgow G12 8QQ, U.K.

Abstract

Dolomites form in a range of environments by processes able to drive large volumes of magnesium-rich waters through existing carbonate sediments or rocks. These fluids need not be of unusual composition but there are kinetic barriers to crystallisation which is influenced by factors such as the Mg/Ca ratio, salinity, temperature, the /Ca2+ ratio and time. Dolomite is able to form at near-surface temperatures and pressures within a few thousand years.

Textures in dolomitic rocks are controlled by their conditions of formation. A large proportion are replacive but few of these are mimetic, preserving primary structures. Crystals vary from euhedral to anhedral with boundaries ranging from planar to consertal. Solution chemistry and temperatures influence the density and distribution of nuclei together with growth rates and crystal morphology. There is still doubt whether irregular crystal faces are products of high or low temperatures or saturation. Dolomite cements are more important than has previously been realised in massively dolomitised rocks. Differential dissolution of aragonite, calcite, or evaporite minerals leaves space for these cements to occupy. Dolomitisation may also be allied to compaction, generating stylolitic rocks which are progressively enriched in dolomite. Dolomite may be replaced by calcite or it may be dissolved and the resulting pores filled with a calcite cement.

There is no general correlation between any set of petrographic features and particular geological models for dolomitisation. Similar physicochemical conditions are reproduced in a range of environments and the most effective guides to origin are in the geometry and regional petrographic variation of dolomite bodies.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. E. & Rhodes, M. L. 1960. Dolomitization by seepage refluxion. AMER ASSOC PETROLEUM GEOL 44, 1912–20.Google Scholar
Aharon, P., Socki, R. A. & Chan, L. 1987. Dolomitization of atolls by seawater convection flow: test of a hypothesis at Ninue, South Pacific. J GEOL 87, 187203.CrossRefGoogle Scholar
Althoff, P. L. 1977. Structural refinements of dolomite and a magnesium calcite and implications for dolomite formation in the marine environment. AMER MINERALOGIST 62, 772–83.Google Scholar
Badiozamani, K. 1973. The Dorag dolomitization model-application to the Middle Ordovician of Wisconsin. J. SEDIMENT PETROL 43, 965–84.Google Scholar
Baker, P. A. & Kastner, M. 1981. Constraints on the formation of sedimentary dolomite. SCIENCE 213, 214–6.CrossRefGoogle ScholarPubMed
Barnaby, R. J. & Rimstidt, J. D. 1989. Redox conditions of calcite cementation interpreted from Mn and Fe contents of authigenic calcites. GEOL SOC AMER BULL 101, 795804.2.3.CO;2>CrossRefGoogle Scholar
Barnes, I. & O'Neil, J. R. 1971. Calcium-magnesium carbonate solid solutions from Holocene conglomerate cements and travertine in the Coast Range of California. GEOCHIM ET COSMOCHIM ACTA 35, 699718.CrossRefGoogle Scholar
Bathurst, R. G. C. 1958. Diagenetic fabrics in some British Dinantian Limestones. LIVERPOOL AND MANCHESTER GEOL J 2, 1136.CrossRefGoogle Scholar
Beales, F. W. & Hardy, J. L. 1980. Criteria for the recognition of diverse dolomite types with an emphasis on studies on host rocks for Mississippi valley-type dolomitization. In Zenger, D. H., Dunham, J. B. & Ethington, R. L. (eds) Concepts and Models of Dolomitization. S.E.P.M. SPEC PUBL 28, 197213.CrossRefGoogle Scholar
Berner, R. A. 1971. Principles of Chemical Sedimentology. New York: McGraw-Hill.Google Scholar
Braithwaite, C. J. R. 1986. Mechanically induced stylolites and loss of porosity in dolomites. J PETROLEUM GEOL 9, 343–8.CrossRefGoogle Scholar
Butler, G. P. 1969. Modern evaporite deposition and geochemistry of coexisting brines, the sebkha, Trucial coast, Arabian Gulf. J SEDIMENT PETROL 39, 7089.Google Scholar
Buxton, T. M. & Sibley, D. F. 1981. Pressure solution features in a shallow buried limestone. J SEDIMENT PETROL 51, 1926.CrossRefGoogle Scholar
Coniglio, M., James, N. P. & Aissaoui, D. M. 1988. Dolomitization of Miocene carbonates, Gulf of Suez, Egypt. J SEDIMENT PETROL 58, 100–19.Google Scholar
Davies, P. J., Bubela, B. & Ferguson, J. 1978. The formation of ooids. SEDIMENTOLOGY 25, 703–30.CrossRefGoogle Scholar
Deelman, J. C. 1981. Dolomite formation: why thermodynamics failed. NEU JB MINER ABH 141, 3058.Google Scholar
Dickson, J. A. D. 1983. Graphical modelling of crystal aggregates and its relevance to cement diagnosis. PHIL TRANS R SOC LONDON A309, 465502.Google Scholar
De Groot, K. 1967. Experimental dolomitization. J SEDIMENT PETROL 37, 1216–20.CrossRefGoogle Scholar
Dunnington, H. V. 1967. Aspects of diagenesis and shape change in stylolitic limestone reservoirs. PROC SEVENTH WORLD PETROL CONGR MEXICO 2, 337–52.Google Scholar
Eugster, H. P. & Hardie, L. A. 1978. Saline lakes. In Lerman, A. (ed.) Lakes: Chemistry, Geology, Physics, 237–93. New York: Springer-Verlag.Google Scholar
Evamy, B. D. 1967. Dedolomitization and the development of rhombohedral pores in limestones. J SEDIMENT PETROL 37, 1204–15.CrossRefGoogle Scholar
Fairchild, I. 1983. Chemical controls of cathodoluminescence of natural dolomites and calcites: new data and review. SEDIMENTOLOGY 30, 579–83.CrossRefGoogle Scholar
Folk, R. L. & Assereto, R. 1974. Giant aragonite rays and baroque white dolomite in tepees, Triassic and Lombardy. AMER ASSN PETROLEUM GEOL PROG ANN MEET SAN ANTONIO, Texas. Abstract, 34–5.Google Scholar
Freeman, T. 1966. Post lithification dolomite in the Joachim and Plattin Formations (Ordovician), northern Arkansas (Astract). GEOL SOC AMER SPEC PAPER 87, 59.Google Scholar
Freeman, T., Rothbard, D. & Obrador, A. 1983. Terrigenous dolomite in the Miocene of Minorca (Spain): provenance and diagenesis. J SEDIMENT PETROL 53, 543–8.Google Scholar
Friedman, G. M. 1964. Early diagenesis and lithification in carbonate sediments. J SEDIMENT PETROL 34, 777813.Google Scholar
Friedman, G. M. 1965. Terminology of crystallization textures and fabrics in sedimentary rocks. J SEDIMENT PETROL 35, 643–55.Google Scholar
Friedman, G. M. 1989. Characteristics of deep marine dolomite— discussion. J SEDIMENT PETROL 59, 879–80.CrossRefGoogle Scholar
Gaines, A. M. 1974. Protodolomite synthesis at 100°C and atmospheric pressure SCIENCE 183, 518–20.CrossRefGoogle Scholar
Gaines, A. M. 1980. Dolomitization kinetics. In Zenger, D. H., Dunham, J. B. & Ethington, R. L. (eds) Concepts and models of dolomitization. S.E.P.M. SPEC PUBL 28, 81–6.CrossRefGoogle Scholar
Garrells, R. M., Thompson, M. E. & Siever, R. 1960. Stability of some carbonates at 25°C and one atmosphere total pressure. AMER J SCI 258, 402–18.CrossRefGoogle Scholar
Gebelein, C. D., Steinen, R. P., Garrett, P., Hoffman, E. J., Queen, J. M. & Plummer, L. N. 1980. Subsurface dolomitization beneath the tital flats of central West Andros Island, Bahamas. In Zenger, D. H., Dunham, J. B. & Ethington, R. L. (eds) Concepts and models of dolomitization. S.E.P.M. SPEC PUBL 28, 3149.CrossRefGoogle Scholar
Given, R. K. & Wilkinson, B. H. 1987. Dolomite abundance and stratigraphic age: constraints on rates and mechanisms of Phanerozoic dolostone formation. J SEDIMENT PETROL 57, 1068–78.CrossRefGoogle Scholar
Graf, D. L. & Goldsmith, J. R. 1956. Some hydrothermal syntheses of dolomite and protodolomite. J GEOL 64, 173–86.CrossRefGoogle Scholar
Gregg, J. M. & Sibley, D. F. 1984. Epigenetic dolomitization and the origin of xenotopic dolomite texture. J SEDIMENT PETROL 54, 908–31.Google Scholar
Gregg, J. M. & Sibley, D. F. 1986. Epigenetic dolomitization and the origin of xenotopic dolomite texture—reply. J SEDIMENT PETROL 56, 735–6.Google Scholar
Gunatilaka, A. 1989. Spheroidal dolomites—origin by hydrocarbon seepage. SEDIMENTOLOGY 36, 701–10.CrossRefGoogle Scholar
Hanshaw, B. B. & Back, W. 1980. Chemical mass wasting of the northern Yucatan peninsula by groundwater dissolution. GEOLOGY 8, 222–4.2.0.CO;2>CrossRefGoogle Scholar
Hanshaw, B. B., Back, W. & Deike, R. G. 1971. A geochemical hypothesis for dolomitization by groundwater. ECON GEOL 66, 710–24.CrossRefGoogle Scholar
Hardie, L. A. 1987. Perspectives: dolomitization, a critical review of some current views. J SEDIMENT PETROL 57, 166–83.CrossRefGoogle Scholar
Harms, J. C. & Choquette, P. W. 1965. Geologic evaluation of a gamma-ray porosity device. Trans. Society of Professional Well Log Analysts Sixth Annual Symposium Dallas, C, 137.Google Scholar
Hitchon, B. & Friedman, I. 1969. Geochemistry and origin of formation waters in the western Canada sedimentary basin I: stable isotopes of hydrogen and oxygen. GEOCHIM ET COSMOCHIM ACTA 33, 1321–47.CrossRefGoogle Scholar
Hitzman, M. W. 1986. Geology of the Abbeytown mine, Co. Sligo, Ireland. In Andrew, C. J., Crowe, R. W. A., Finlay, S., Pennel, W. M. & Pine, J. J. (eds) Geology and Genesis of mineral deposits in Ireland, Dublin: Irish Association for Economic Geology. 243–59.Google Scholar
Home, R. A. 1969. Marine chemistry. New York: Wiley Interscience.Google Scholar
Hsu, K. J. & Siegenthaler, C. 1969. Preliminary experiments on hydrodynamic movement induced by evaporation and their bearing on the dolomite problem. SEDIMENTOLOGY 12, 1125.CrossRefGoogle Scholar
Human, H. J., Van der Eerden, J. P., Jetten, L. A. M. J. & Oderkerken, J. G. M. 1981. On the roughening transition of biphenyl: from different organic solvents and the melt. J CRYSTAL GROWTH 51, 589600.CrossRefGoogle Scholar
Jackson, K. A. 1958. Mechanisms of growth. In Liquids, Metals and Solidification, 174–86. Cleveland, Ohio: American Society of Metals.Google Scholar
Jones, B. 1989. Syntaxial overgrowths on dolomite crystals in the Bluff canyon, Grand Cayman, British West Indies. J SEDIMENT PETROL 59, 839–47.Google Scholar
Jørgensen, N. O. 1983. Dolomitization in chalk from the North Sea central graben. J SEDIMENT PETROL 53, 557–64.Google Scholar
Jørgensen, N. O. 1989. Holocene methane-derived dolomitecemented sandstone pillars from the Kattegat, Denmark. MARINE GEOL 88, 7181.CrossRefGoogle Scholar
Kaldi, J. & Gidman, J. 1982. Early diagenetic dolomite cements: examples from the Permian Lower Magnesian Limestone of England and the Pleistocene carbonates of the Bahamas. J SEDIMENT PETROL 52, 1073–85.Google Scholar
Kastner, M. 1984. Control of dolomite formation. NATURE 311, 410–1.CrossRefGoogle Scholar
Katz, A. & Matthews, A. 1977. The dolomitization of CaCO3: an experimental study at 252°C–295°C. GEOCHIM ET COSMOCHIM ACTA 41, 297308.CrossRefGoogle Scholar
Kinsman, D. J. J. 1969. Interpretation of Sr2+ concentrations in carbonate minerals and rocks. J SEDIMENT PETROL 39, 486508.Google Scholar
Kramer, J. R. 1959. Correction of some earlier data on calcite and dolomite in seawater. SEDIMENT PETROL 29, 465–7.Google Scholar
Krauskopf, K. B. 1967. Introduction to Geochemistry. New York: McGraw-Hill.Google Scholar
Land, L. S. 1973. Holocene meteoric dolomitization of Pleistocene limestones, north Jamaica. SEDIMENTOLOGY 20, 411–24.CrossRefGoogle Scholar
Land, L. S. 1985. The origin of massive dolomite. J GEOL EDUCATION 33, 112–25.Google Scholar
Land, L. S. & Goreau, T. F. 1970. Submarine lithification of Jamaican reefs. J SEDIMENT PETROL 40, 457–62.CrossRefGoogle Scholar
Laudise, R. A. 1970. The growth of single crystals. New Jersey: Prentice-Hall.Google Scholar
Lippmann, F. 1973. Sedimentary carbonate minerals. New York: Springer-Verlag.CrossRefGoogle Scholar
Lippmann, F. 1982. Stable and metastable solubility diagrams for the system CaCO3–MgCO3–H2O at ordinary temperatures. BULL MINERAL 105, 273–9.Google Scholar
Lumsden, D. N. 1988. Characteristics of deep marine dolomite. J SEDIMENT PETROL 58, 10231031.Google Scholar
Machel, H. G. & Anderson, J. H. 1989. Pervasive subsurface dolomitization of the Nisku Formation in central Alberta. J SEDIMENT PETROL 59, 891911.Google Scholar
Machel, H. G. & Mountjoy, E. W. 1986. Chemistry and environments of dolomitization—a reappraisal. EARTH SCIENCE REV 23, 175222.CrossRefGoogle Scholar
Matsumoto, R., Iijima, A. & Katayama, T. 1988. Mixed water and hydrothermal dolomitization of the Pliocene Shirahama Limestone, Izu Peninsula, central Japan. SEDIMENTOLOGY 35, 979–98.CrossRefGoogle Scholar
Mattes, B. W. & Mountjoy, E. W. 1980. Burial dolomitization of the Upper Devonian Miette buildup, Jasper National Park, Alberta. In Zenger, D. H., Dunham, J. B. & Ethington, R. L. (eds) Concepts and Models of Dolomitization. S.E.P.M. SPEC PUBL 28, 259–97.CrossRefGoogle Scholar
McKenzie, J. 1981. Holocene dolomitization of calcium carbonate sediments from the coastal sabkhas of Abu Dhabi U.A.E.: a stable isotope study. J GEOL. 89, 185–98.CrossRefGoogle Scholar
Morrow, D. W. 1982. Diagenesis 1, dolomite: part 1, dolomitization and dolomite precipitation. GEOSCIENCE CANADA 9, 513.Google Scholar
Murray, R. C. 1964. Preservation of primary structures and fabrics in dolomite. In Imbrie, J. & Newell, N. (eds) Approaches to Palaeoecology, 388403. New York: Wiley.Google Scholar
Naiman, E. R., Bein, A. & Folk, R. L. 1983. Complex polyhedral crystals of limpid dolomite associated with halite, Permian Upper Clear Fork and Glorieta Formations, Texas. J SEDIMENT PETROL 53, 549–55.Google Scholar
Nesbitt, H. W. 1974. The study of some mineral-aqueous solution interactions. Unpublished Ph.D. dissertation, The Johns Hopkins University, Baltimore.Google Scholar
Patterson, R. J. & Kinsman, D. J. 1982. Formation of diagenetic dolomite in coastal sebkha along Arabian (Persian) Gulf. AMER ASSOC PETROL GEOL BULL 66, 2843.Google Scholar
Pierson, B. J. 1981. The control of cathodoluminescence in dolomite by iron and manganese. SEDIMENTOLOGY 28, 601–10.CrossRefGoogle Scholar
Pingitore, N. E. Jr. 1976. Vadose and phreatic diagenesis: processes, products and their recognition in corals. J SEDIMENT PETROL 46, 2843.Google Scholar
Qing, H. & Mountjoy, E. W. 1989. Multistage dolomitization in Rainbow buildups, Middle Devonian Keg River Formation, Alberta, Canada. J SEDIMENT PETROL 59, 114–26.Google Scholar
Radke, B. M. & Mathis, R. L. 1980. On the formation and occurrence of saddle dolomite. J SEDIMENT PETROL 50, 1149–68.Google Scholar
Reeder, R. J. 1981. Electron optical investigation of sedimentary dolomites. CONTRIB MINER AND PETROL 76, 148–57.CrossRefGoogle Scholar
Reeder, R. J. 1982. Crystal growth defects in sedimentary carbonate minerals. ESTUDIOS GEOL 38, 179183.Google Scholar
Reeder, R. J. & Wenk, H. R. 1979. Microstructures in low temperature dolomites. GEOPHYS RES LETTERS 6, 7780.CrossRefGoogle Scholar
Rosen, M. R. & Holdren, G. R. Jr. 1986. Origin of dolomite cement in Chesapeake Group (Miocene) siliciclastic sediments: an alternative model to burial dolomitization. J SEDIMENT PETROL 56, 788–98.Google Scholar
Samoilov, O. Y. 1965. Structure of aqueous-electrolyte solutions and hydration of ions. New York: Consultants Bureau.Google Scholar
Sass, E. 1965. Dolomite-calcite relationships in seawater: theoretical considerations and preliminary experimental results. J SEDIMENT PETROL 35, 339–47.Google Scholar
Sass, E. & Katz, A. 1982. The origin of platform dolomites: new evidence. AMER J SCI 282, 1184–213.CrossRefGoogle Scholar
Schroeder, J. H. 1972. Fabrics and sequences of submarine carbonate cements in Holocene Bermuda cup reefs. GEOL RUNDSCH 61, 708–30.CrossRefGoogle Scholar
Shearman, D. J., Khouri, J. & Taha, S. 1961. On the replacement of dolomites by calcite in some Mesozoic limestones from the French Jura. PROC GEOL ASSN 72, 112.CrossRefGoogle Scholar
Shinn, E. A. 1969. Submarine lithification of Holocene carbonate sediments in the Persian Gulf. Sedimentology 12, 109–44.CrossRefGoogle Scholar
Shukla, V. 1986. Epigenetic dolomitization and the origin of xenotopic dolomite texture—discussion. J SEDIMENT PETROL 56, 733–6.CrossRefGoogle Scholar
Sibley, D. F. 1980. Climatic control of dolomitization, Sero Domi Formation (Pliocene) Bonaire N. A. In Zenger, D. H., Dunham, J. B. & Ethington, R. L. (eds) Concepts and models of dolomitization. S.E.P.M. SPEC. PUBL. 28, 247–58.CrossRefGoogle Scholar
Sibley, D. F. 1982. The origin of common dolomite fabrics, clues from the Pliocene. J SEDIMENT PETROL 52, 1087–100.Google Scholar
Sibley, D. F. & Gregg, J. M. 1987. Classification of dolomite rock textures. J SEDIMENT PETROL 57, 967–75.Google Scholar
Siegel, F. R. 1961. Factors influencing the precipitation of dolomitic carbonates. KANSAS GEOL SURV BULL 152, 127–58.Google Scholar
Sperber, C. M., Wilkinson, B. H. & Peacor, D. R. 1984. Rock composition, dolomite stoichiometry and rock/water interactions in dolomite carbonate rocks. J GEOL 92, 609–22.CrossRefGoogle Scholar
Suess, E. 1970. Interaction of organic compounds with calcium carbonate I. Association phenomena and geochemical implications. GEOCHIM ET COSMOCHIM ACTA 34, 157–68.CrossRefGoogle Scholar
Sunagawa, I. 1977. Natural crystallization. J CRYSTAL GROWTH 42, 214–23.CrossRefGoogle Scholar
Sunagawa, I. 1982. Morphology of crystals in relation to growth conditions. In Rodrigues, C. R. T. & Sunagawa, I. (eds) Crystal growth conditions in sedimentary environments. ESTUD GEOL 38, 127–34.Google Scholar
Theriault, F. & Hutcheon, I. 1987. Dolomitization and calcitization of the Devonian Grosmont Formation, northern Alberta. J SEDIMENT PETROL 57, 955–66.Google Scholar
Tucker, M. E. 1983. Diagenesis, geochemistry and origin of a Precambrian dolomite: the Beck Spring Dolomite of eastern California. J SEDIMENT PETROL 53, 1097–119.Google Scholar
Usiglio, J. 1849. Analyse de l'eau de la Mediterrane sur la cote de France. ANN CHIM PHYS Ser. 3, 27, 92, 172.Google Scholar
Von der Borch, C. C. 1976. Stratigraphy and formation of Holocene dolomitic carbonate deposits of the Coorong area, South Australia. J SEDIMENT PETROL 46, 952–66.CrossRefGoogle Scholar
Von der Borch, C. C. & Jones, J. B. 1976. Spherular modern dolomite from the Coorong area, South Australia. SEDIMENTOLOGY 23, 587–91.CrossRefGoogle Scholar
Von Morlot, A. 1848. In Cayeux, L. 1935, Etude Petrographique des roches sedimentaires de France. Roches Carbonats. Paris.Google Scholar
Ward, W. C. & Halley, R. B. 1985. Dolomitization in a mixing zone of near-seawater composition, Late Pleistocene, northeastern Yucatan peninsula. J SEDIMENT PETROL 55, 407–20.Google Scholar
Wigley, T. M. L. & Plummer, L. N. 1976. Mixing of carbonate waters. GEOCHIM ET COSMOCHIM ACTA 40, 989–95.CrossRefGoogle Scholar
Wollast, R. & Reinhard-Derie, D. 1977. Equilibrium and mechanism of dissolution of Mg-calcites. In Anderson, N. R. & Malakoff, A. (eds) The fate of fossil fuel CO2 in the Oceans, pp. 479–93. New York: Plenum Press.CrossRefGoogle Scholar