Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T10:53:42.583Z Has data issue: false hasContentIssue false

A discussion of the Jahns–Burnham proposal for the formation of zoned granitic pegmatites using solid-liquid-vapour inclusions from the Tanco Pegmatite, S.E. Manitoba, Canada

Published online by Cambridge University Press:  03 November 2011

Anne V. Thomas
Affiliation:
Department of Geology,University of Toronto, Toronto, Ontario, Canada, M5S 1A1.
Colin J. Bray
Affiliation:
Department of Geology,University of Toronto, Toronto, Ontario, Canada, M5S 1A1.
Edward T. C. Spooner
Affiliation:
Department of Geology,University of Toronto, Toronto, Ontario, Canada, M5S 1A1.

Abstract

Jahns and Burnham (1969) proposed that the internal evolution of zoned granitic pegmatites could be explained by crystallisation from water-saturated melts which evolved to produce systems with a melt plus a separate aqueous fluid. Examination of microthermometric properties, chemical compositions and gas contents of solid-liquid-vapour inclusions from a number of the zones of the Tanco rare element granitic pegmatite places constraints on fluid evolution within the framework of the crystallisation history of the pegmatite, and contributes to an examination of the Jahns–Burnham proposal.

Initial crystallisation at Tanco was from the wall rock inwards, producing the relatively unfractionated wall zone (potassium feldspar–quartz-albite-muscovite). Textural evidence, and an upward increase in the level of geochemical fractionation, indicate that much, but not all, of the subsequent crystallisation of the pegmatite was from the base upwards. Inclusions trapped by wall zone and metasomatic wall rock tourmaline indicate that the pegmatite was intruded as a 2 phase alumino-silicate melt/fluid mixture at ∼720°C, with an initial fluid composition of ∼98mol.% H2O (containing 2 equiv. mo1% NaCl) and <2mol% CO2 (containing <5 equiv. mo1% CH4). These observations indicate that both melt and fluid were present from the start of crystallisation (Jahns & Burnham 1969), but show that CO2 and dissolved salts were important additional components of the fluid phase. The bulk of the pegmatite then crystallised in the range 600-470°C from melts and fluids with continued low levels of CO2 (2-3mol.%) and approximately constant salinity (∼7 equiv. wt.% NaCl dissolved in the aqueous phase). Crystal-rich inclusions, which may represent trapped alumino-silicate melts, are present throughout pegmatite crystallisation down to temperatures as low as ∼262°C. The final stages of crystallisation resulted in the formation of the beryl fringe at 291 ± 33°C and the lower part of the quartz zone at 262 ± 29°C. By the later stages the fluid had cooled through an H2O-CO2– dissolved salt solvus resulting in H2O-CO2 phase separation. Gas chromatographic analysis of the fluid components in the vug quartz, beryl fringe and lower part of the quartz zone shows that the inclusions contain H2O, CO2, CH4, N2, CO, Ar, and trace C2H6 in the beryl fringe. Measured CH4:CO2 ratios of 0·0060 (±0·0015) for the beryl fringe (twenty crushes on five samples) and 0·0042 (±0.0021) for the quartz zone (thirty crushes on six samples) yield fO2 estimates of 1×10−36 and 2 × 10−38, respectively, which are just above QFM at these temperatures.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrawes, F. F. and Gibson, E. K. Jr. 1979. Release and analysis of gases from geological samples. AM MINERAL 64, 453463.Google Scholar
Barker, C. & Torkelson, B. E. 1975. Gas adsorption on crushed quartz and basalt. GEOCHIM COSMOCHIM ACTA 39, 212218.CrossRefGoogle Scholar
Bowers, T. S. & Helgeson, H. C. 1983. Calculation of the thermodynamic and geochemical consequences of non-ideal mixing in the system H2O–CO2–NaCl on phase relations in geologic systems: Metamorphic equilibria at high pressures and temperatures. AM MINERAL 68, 10591075.Google Scholar
Bozzo, A. T., Chen, J. R. & Barduhu, A. J. 1973. The properties of the hydrates of chlorine and carbon dioxide. In Delyannis, A. & Delyannis, E. (eds) 4th International Symposium on Fresh Waterfront the Sea 3, 437451.Google Scholar
Bray, C. J., 1980. Mineralisation, griesenisation and kaolinisation at Goonbarrow china clay pit, Cornwall, U.K. Unpublished D. Phil. Thesis, University of Oxford.Google Scholar
Bray, C. J., Thomas, A. V. & Spooner, E. T. C. 1987. Fluid inclusion gas geochemistry of the beryl fringe and quartz zone, Tanco granitic pegmatite, S. E. Manitoba (abstract). GEOL SOC AM ABSTR PROG 19, 599.Google Scholar
Brisbin, W. C. 1986. Mechanics of pegmatite intrusion. AM MINERAL 71, 644651.Google Scholar
Brisbin, W. C. & Trueman, D. L. 1982. Dilational mechanics of fracture during pegmatite emplacement. GEOL ASSOC CAN PROG ABSTR 7, 40.Google Scholar
Burnham, C. W. 1967. Hydrothermal fluids at the magmatic stage. In Barnes, H. L. (ed.) Geochemistry of Hydrothermal Ore Deposits, 3476, New York: Holt, Reinhart and Winston.Google Scholar
Burnham, C. W. & Jahns, R. H. 1961. Experimental studies of pegmatite genesis: The composition of pegmatite fluids (abstract). GEOL SOC AM SPEC PAP 68, 143144.Google Scholar
Burnham, C. W. & Jahns, R. H. 1962. A method for determining the solubility of water in silicate melts. AM J SCI 260, 721745.CrossRefGoogle Scholar
Burnham, C. W. & Nekvasil, H. 1986. Equilibrium properties of granite pegmatite magmas. AM MINERAL 71, 239263.Google Scholar
Burruss, R. C. 1981. Analysis of phase equilibria in C–O–H–S fluid inclusions. In Hollister, L. S. & Crawford, M. L. (eds) Fluid Inclusions Applications To Petrology. MIN ASSOC CAN SHORTCOURSE HANDBOOK 6, 3974.Google Scholar
Cameron, E. N., Jahns, R. H., McNair, A. H. & Page, L. R. 1949. Internal structure of granitic pegmatites. ECON GEOL MONOGR 2.Google Scholar
Cameron, E. N., Rowe, R. B. & Weis, P. L. 1953. Fluid inclusions in beryl and quartz from pegmatites in the Middleton district Connecticut. AM MINERAL 38, 218262.Google Scholar
Černý, P. 1982a. The Tanco pegmatite at Bernic Lake, Manitoba. In Černý, P. (ed.) Granitic Pegmatites in Science and Industry. MIN ASSOC CAN SHORTCOURSE HANDBOOK 8, 527543.Google Scholar
Černý, P. 1982b. Anatomy and classification of granitic pegmatites. In Černý, P. (ed.) Granitic pegmatites in Science and Industry. MIN ASSOC CAN SHORTCOURSE HANDBOOK 8, 139.Google Scholar
Černý, P. & Simpson, F. M. 1978. The Tanco Pegmatite at Bernic Lake Manitoba. X, Pollucite. CAN MINERAL 16, 325333.Google Scholar
Černý, P. & Ferguson, R. B. 1972. The Tanco pegmatite at Bernic Lake, Manitoba. IV Petalite and spodumene relations. CAN MINERAL 11, 660678.Google Scholar
Černý, P., Trueman, D. L., Ziehlke, D. V., Goad, B. E. & Paul, B. J. 1981. The Cat Lake-Winnipeg River and Wekusko Lake pegmatite fields, Manitoba. MANITOBA DEP ENERGY MINES MIN RES DIV ECON GEOL REP ER80–1.Google Scholar
Černý, P., Meintzer, R. E. & Anderson, A. J. 1985. Extreme fractionation in rare-element pegmatites: Selected examples of data and mechanisms. CAN MINERAL 23, 381421.Google Scholar
Chakoumakos, B. C. & Lumpkin, G. R., 1987. Constraints on the crystallisation of the Harding pegmatite, Taos County, New Mexico. GEOL MINERAL ASSOC CAN PROG ABSTR 12, 30.Google Scholar
Collins, P. L. F. 1979. Gas hydrates in CO2–bearing fluid inclusions and the use of freezing data for estimation of salinity. ECON GEOL 74, 14351444.CrossRefGoogle Scholar
Cook, C. W. 1979. Fluid inclusions and petrogenesis of the Harding pegmatite, Taos County, New Mexico. Unpublished M.Sc. Thesis, University of New Mexico.Google Scholar
Crawford, M. L. 1981a. Phase equilibria in aqueous fluid inclusions. In Hollister, L. S. & Crawford, M. L. (eds) Fluid Inclusions Applications To Petrology. MIN ASSOC CAN SHORTCOURSE HANDBOOK 6, 75100.Google Scholar
Crawford, M. L. 1981b. Fluid inclusions in metamorphic rocks—low and medium grade. In Hollister, L. S. & Crawford, M. L. (eds) Fluid Inclusions Applications To Petrology. MIN ASSOC CAN SHORTCOURSE HANDBOOK 6, 157181.Google Scholar
Crouse, R. A. & Černý, P. 1972. The Tanco pegmatite at Bernic lake, Manitoba. I Geology and paragenesis. CAN MINERAL 11, 591608.Google Scholar
Crouse, R. A., Černý, P., Trueman, D. L. & Burt, R. O. 1979. The Tanco pegmatite, S. E. Manitoba. CAN INST MIN METAL BULL 72, 142151.Google Scholar
Donelly, H. G. & Katz, D. L. 1954. Phase equilibria in the carbon dioxide methane system. IND ENG CHEM 46, 511517.CrossRefGoogle Scholar
Drummond, S. E. & Ohmoto, H. 1985. Chemical evolution and mineral deposition in boiling hydrothermal systems. ECON GEOL 80, 126147.CrossRefGoogle Scholar
French, B. M. 1966. Some geological implications of equilibrium between graphite and C–H–O gas phase at high temperatures and pressures. REV GEOPHYS 4, 223253.CrossRefGoogle Scholar
Hedenquist, J. W. & Henley, R. W. 1985. The importance of CO2 freezing point measurements of fluid inclusions: Evidence from active geothermal systems and implications for epithermal ore deposition. ECON GEOL 80, 13791406.CrossRefGoogle Scholar
Holland, H. D. 1967. Gangue minerals in hydrothermal deposits. In Barnes, H.L. (ed.) Geochemistry of Hydrothermal Ore Deposits, 382436. New York: Holt, Reinhart and Winston.Google Scholar
Holland, R. A. G., Bray, C. J. & Spooner, E. T. C. 1978. A method for preparing doubly polished thin sections suitable for microthermometric examination of fluid inclusions. MINERAL MAG 42, 407408.CrossRefGoogle Scholar
Huppert, H. E. & Sparks, R. S. J. 1984. Double diffusive convection due to crystallisation in magmas. ANN REV EARTH PLANET SCI 12, 1137.CrossRefGoogle Scholar
Huppert, H. E. & Worster, M. G. 1985. Dynamic solidification of a binary melt. NATURE 314, 703707.CrossRefGoogle Scholar
Jahns, R. H. 1955. The study of pegmatites. ECON GEOL 50TH ANNIVERSARY VOLUME, 10251130.Google Scholar
Jahns, R. H. 1982. Internal evolution of pegmatite bodies. In Černý, P. (ed.) Granitic Pegmatites in Science and Industry. MIN SOC CAN SHORTCOURSE HANDBOOK 8, 293327.Google Scholar
Jahns, R. H. & Burnham, C. W. 1957. Preliminary results from the experimental melting and crystallisation of the Harding pegmatite, New Mexico (abstract). BULL GEOL SOC AM 68, 17511752.Google Scholar
Jahns, R. H. & Tuttle, O. F. 1963. Layered pegmatite-aplite intrusives. MINERAL SOC AM SPEC PAP 1, 7892.Google Scholar
Jahns, R. H. & Burnham, C. W. 1969. Experimental studies of pegmatite genesis: I. A model for the derivation and crystallisation of granitic pegmatites. ECON GEOL 64 843864.CrossRefGoogle Scholar
Kerrich, R. 1976. Some effects of tectonic recrystallisation on fluid inclusions in vein quartz. CONTRIB MINERAL PETROL 59, 195202.CrossRefGoogle Scholar
Kerrick, D. M. & Jacobs, G. K. 1981. A modified Redlich-Kwong equation for H2O, CO2 and H2O–CO2 mixtures at elevated pressures and temperatures. AM J SCI 281, 735767.CrossRefGoogle Scholar
Kilinc, I. A. & Burnham, C. W. 1972. Partitioning of chloride between a silicate melt and co-existing aqueous phase from 2 to 8 kilobars. ECON GEOL 67, 231235.CrossRefGoogle Scholar
Koshukhin, O. N. 1977. Low temperature melt inclusions in the quartz of chambered pegmatites. GEOL GEOFIZ (ACAD NAUK SSSR, SIB OTD) 18(10) 66–72 (in Russian). Translated in SOVIET GEOL GEOPHYS 18(10), 5661 (1978).Google Scholar
Krogh, T. E., Davis, G. L., Ermanovics, I. & Harris, N. B. W. 1976. U–Pb isotopic ages of zircons from the Berens Block and English River gneiss belt. PROC 1976 GEOTRAVRSE CONF, UNIV TORONTO (abstract) 12–1, 46.Google Scholar
London, D. 1985. Origin and significance of inclusions in quartz: A cautionary example from the Tanco pegmatite, Manitoba. ECON GEOL 80, 19881995.CrossRefGoogle Scholar
London, D. 1986a. Magmatic hydrothermal transition in the Tanco rare metal pegmatite: Evidence from fluid inclusions and phase equilibrium experiments. AM MINERAL 71, 376395.Google Scholar
London, D. 1986b. Formation of tourmaline-rich gem pockets in miarolitic pegmatites. AM MINERAL 71, 396405.Google Scholar
London, D. 1986c. Holmquistite as a guide to pegmatitic rare metal deposits. ECON GEOL 81, 704712.CrossRefGoogle Scholar
London, D. & Morgan, G. B. VI 1985. Wall rock alteration around the Tanco rare element pegmatite, Manitoba. Abstr. TRANS AM GEOPHYS UNION, EOS 66, 1154.Google Scholar
London, D., Spooner, E. T. C. & Roedder, E. 1982. Fluid-solid inclusions in spodumene from the Tanco pegmatite, Manitoba. CARNEGIE INST WASHINGTON YEARB 81, 334339.Google Scholar
London, D., Zolensky, M. E. & Roedder, E. 1987. Diomignite: natural Li2B4O7 from the Tanco pegmatite, Bernic Lake, Manitoba. CAN MINERAL 25, 173180.Google Scholar
Macdonald, A. J. 1983. Boss Mountain molybdenite deposit: Fluid geochemistry and hydrodynamic considerations. Unpublished Ph.D. Thesis, University of Toronto.Google Scholar
Macdonald, A. J. & Spooner, E. T. C. 1981. Calibration of a Linkam TH600 programmable heating-cooling stage for microthermometric examination of fluid inclusions. ECON GEOL 76, 12481258.CrossRefGoogle Scholar
Manning, D. M. C. & Pichavant, M. 1983. The role of fluorine and boron in the generation of granitic melts. In Atherton, M. P. & Gribble, C. D. (eds) Migmatites, Melting and Metamorphism, 94109. Nantwich: Shiva.Google Scholar
Morgan, G. B. VI & London, D. 1985. Wallrock alteration around the Tanco rare element pegmatite, Manitoba: Petrology of alteration halos. TRANS AM GEOPHYS UNION, EOS 66, 11531154.Google Scholar
Morgan, G. B. VI & London, D. 1987. Alteration of amphibolitic wall rocks around the Tanco rare-element pegmatite, Bernic Lake, Manitoba. AM MINERAL 72, 10971121.Google Scholar
Mysen, B. O. 1977. The solubility of H2O and CO2 under predicted magma genesis conditions and some petrological and geophysical implications. REV GEOPHYS SPACE PHYS 15, 351361.CrossRefGoogle Scholar
Noble, S. R. 1982. Petrology and Fluid Inclusion Study of W–Mo Mineralisation at the Logtung deposit, South Central Yukon Territory. Unpublished MASc. Thesis. University of Toronto.Google Scholar
Norton, J. J. 1983. Sequence of mineral assemblages in differentiated granitic pegmatites. ECON GEOL 78, 854874.CrossRefGoogle Scholar
Ohmoto, H. & Kerrick, D. M. 1977. Devolatalization equilibria in graphitic systems. AM J SCI 277, 10131044.CrossRefGoogle Scholar
Pichavant, M. 1981. An experimental study of the effect of boron on a water saturated haplogranite at 1Kbar pressure: Geological Applications. CONTRIB MINERAL PETROL 76, 430439.CrossRefGoogle Scholar
Pichavant, M. 1983. Melt-fluid interaction deduced from studies of silicate—B2O3—H2O systems at 1 kbar. BULL MINERAL 106, 201211.Google Scholar
Pichavant, M. 1987. Effects of B and H2O on liquidus phase relations in the haplogranite system at 1 kbar. AM MINERAL 72, 10561070.Google Scholar
Potter, R. W., Clyne, M. A. & Brown, D. C. 1978. Freezing point depression of aqueous sodium chloride solutions. ECON GEOL 73, 284285.CrossRefGoogle Scholar
Ramboz, C., Schnapper, D. & Dubessy, J. 1985. The P–V–T–X– evolution of H2O–CO2–CH4 bearing fluid in a wolframite vein: Reconstruction from fluid inclusion studies. GEOCHIM COSMICHIM ACTA 49, 205219.CrossRefGoogle Scholar
Renders, P. J. 1985. Aqueous phase compositions in equilibrium with the assemblage quartz-kaolinite-beryl at elevated temperatures. Unpublished M.Sc. Thesis, University of Toronto.Google Scholar
Roedder, E. 1984. Fluid Inclusions. Reviews in Mineralogy (ed. Ribbe, P. H.). MINERAL SOC AM 12.Google Scholar
Rumble, D. III & Hoering, T. C. 1986. Carbon isotope geochemistry of graphite vein deposits from New Hampshire U.S.A. GEOCHIM COSMOCHIM ACTA 50, 12391247.CrossRefGoogle Scholar
Shepherd, T. J. 1981. Temperature programmable heating-freezing stage for microthermometric analysis of fluid inclusions. ECON GEOL 76, 12441247.CrossRefGoogle Scholar
Smith, F. G. 1948. Transport and deposition of the non-sulphide vein minerals. III, Phase relations at the pegmatitic stage. ECON GEOL 43, 535546.CrossRefGoogle Scholar
Smith, F. G. 1953a. Historical Development of Inclusion Thermometry. Toronto: University of Toronto Press.Google Scholar
Smith, F. G. 1953b. Complex inclusions in pegmatitic minerals. AM MINERAL 38, 559560.Google Scholar
Sorby, H. C. 1858. On the microscopic structure of crystals indicating the origin of minerals and rocks. J GEOL SOC LONDON 14, 453500.CrossRefGoogle Scholar
Taylor, B. E., Foord, E. E. & Friedrichsen, H. 1979. Stable isotope and fluid inclusion studies of gem bearing granitic pegmatiteaplite dykes San Diego Co., California. CONTRIB MINERAL PETROL 68, 187205.CrossRefGoogle Scholar
Thomas, A. V. & Spooner, E. T. C. 1984. Petrological evidence for inward and upward non-replacive crystallisation in the growth sequence lower wall zone, Ta(–Sn) bearing banded aplite, beryl fringe to quartz core, Tanco pegmatite, Manitoba. GEOL ASSOC CAN PROG ABSTR 9, 111.Google Scholar
Thomas, A. V. & Spooner, E. T. C. 1987a. Fluid inclusions in the system H2O-CH4–NaCl–CO2 from the border unit Tanco granitic pegmatite S. E. Manitoba. GEOL ASSOC CAN MINERAL ASSOC CAN PROG ABSTR 12, 95.Google Scholar
Thomas, A. V. & Spooner, E. T. C. 1987b. Textural, mineralogical and geochemical evidence for the geometry of crystallisation of the Tanco granitic pegmatite, S.E. Manitoba. GEOL ASSOC CAN MINERAL ASSOC CAN PROG ABSTR 12, 95.Google Scholar
Thomas, A. V. & Spooner, E. T. C. 1988a. Fluid inclusions in the system H2O–CH4–NaCl–CO2 from metasomatic tourmaline within the border unit of the Tanco zoned granitic pegmatite, S. E. Manitoba. GEOCHIM COSMOCHIM ACTA.CrossRefGoogle Scholar
Thomas, A. V. & Spooner, E. T. C. 1988b. Occurrence petrology and fluid inclusion characteristics of tantalum mineralisation in the Tanco granitic pegmatite, S. E. Manitoba. In Taylor, R. P. & Strong, D. F. (eds) Recent Advances in the Geology of Granite-Related Mineral Deposits. CAN INST MINING METALL SPEC VOL 39, 208222.Google Scholar
Trueman, D. L. 1978. Exploration methods in the Tanco mine area of southeastern Manitoba, Canada. ENERGY 3, 293297.CrossRefGoogle Scholar
Trueman, D. L. & Černý, p.1982. Exploration for rare-element granitic pegmatites. In Černý, P. (ed.) Granitic Pegmatites in Science and Industry. MINERAL SOC CAN SHORTCOURSE HANDBOOK 8, 463493.Google Scholar
Trueman, D. L. & Turnock, A. C. 1982. Bird River greenstone belt, S.E. Manitoba: Geology and Mineral deposits. MINERAL SOC CAN FIELD TRIP GUIDE.Google Scholar
Tuttle, O. F. & England, J. L. 1955. Preliminary report on the system SiO2–H2O. BULL GEOL SOC AM 66, 149152.CrossRefGoogle Scholar
Weisbrod, A. & Poty, B. 1975. Thermodynamics and geochemistry of the evolution of the Mayres pegmatite. PETROLOGIE 1, 89102.Google Scholar
Whitney, J. A. 1984. Volatiles in magmatic systems. In Henley, R. W., Truesdell, A. H. & Barton, P. B. (eds) Fluid-Mineral Equilibria in Hydrothermal Systems. REV ECON GEOL 1, 155176.Google Scholar
Wilkins, R. W. T. & Barkas, J. P. 1978. Fluid inclusions, deformation and recrystallisation in granite tectonites. CONTRIB MINERAL PETROL 65, 293299.CrossRefGoogle Scholar
Wright, C. M. 1963. Geology and origin of the pollucite-bearing Montgary pegmatite, Manitoba. BULL GEOL SOC AM 74, 919946.CrossRefGoogle Scholar
Zakharenko, A. I. 1976. Transition of melt into fluid solutions, the evolution of their composition, nature and metal content (on inclusions in minerals of granites and chambered pegmatites). ABSTR 5th INT COFFI SYMP FLUID INCLUSIONS 8, 200201.Google Scholar