Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T15:06:34.446Z Has data issue: false hasContentIssue false

Croll, feedback mechanisms, climate change and the future

Published online by Cambridge University Press:  12 May 2021

Roy THOMPSON*
Affiliation:
GeoSciences, University of Edinburgh, Kings Buildings, Edinburgh, UK
*
Corresponding author. Email: [email protected]

Abstract

Our climate future depends on the delicate, fine balance of earth processes first elaborated on by James Croll, born 200 years ago in 1821. A childhood victim of the Scottish clearances, Croll, after following various indifferent occupations, managed to remove to the then rapidly industrialising city of Glasgow and eventually to Scotland's capital, Edinburgh. He blossomed as a most original, outside-the-box, thinker of great intellectual strength and modesty. He carried out scores of studies across a broad range of research topics, many related to the physical causes of climate change. He is well known for his astronomical theory of the ice ages, but should be much better regarded for his incisive physical insights into the central importance of feedbacks in the Earth system. Although humble, Croll was an ardent controversialist who strongly, perhaps over-strongly, always defended his corner. As well as his many accomplishments as a man of science, Croll was committed to exploring philosophical questions of theism and determinism, topics which occupied his earliest and last publications. A ‘top ten’ selection out of the varied subject areas that Croll tackled are explored herein, along with a brisk survey of their legacy to contemporary modelling studies and to Earth's climate future: (1) causes of climate change (1864); (2) ice-cap melt and sea-level rise (1865); (3) predicting future climates using eccentricity (1866); (4) combining orbital precession, eccentricity and obliquity (1867); (5) geological time and the date of the glacial epochs (1868); (6) geological time and denudation rates (1868); (7) ocean currents and the hemispherical temperature difference (1869); (8) feedbacks – a remarkable circumstance which led to changes of climate (1875); (9) temperature of space and its bearing on terrestrial physics (1880); (10) the causes of mild polar climates (1884).

Type
Articles
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

5. References

Abbott, R. J. 2008. History, evolution and future of Arctic and alpine flora: overview. Plant Ecology & Diversity 1, 129–33.CrossRefGoogle Scholar
Adhémar, J. A. 1842. Revolutions de la mer: déluges périodiques. Paris: Carilian-Goeury et V. Dalmont.Google Scholar
Agassiz, L. 1840. On glaciers, and the evidence of their having once existed in Scotland, Ireland, and England. Proceedings of the Geological Society of London 3(Pt. 2), 327–32.Google Scholar
Archer, D. & Pierrehumbert, R. (eds). 2011. The warming papers: the scientific foundation for the climate change forecast. Oxford: Wiley-Blackwell, 432 pp.Google Scholar
Arrhenius, S. 1896. On the influence of carbonic acid in the air upon the temperature of the ground. Philosophical Magazine 41, 237–76.Google Scholar
Arrhenius, S. A. 1906. Verldarnas Utveckling. Stockholm: Gebers (English translation by H. Berns: Worlds in the making: the evolution of the universe, Harpers, New York and London, 1908).Google Scholar
Assis, A. K. & Neves, M. C. 1995. History of the 2.7 K temperature prior to Penzias and Wilson. Apeiron (Clayton, Vic) 2, 7987.Google Scholar
Bassinot, F. C. 2009. SPECMAP. In Gornitz, V. (eds) Encyclopedia of paleoclimatology and ancient environments, 911–16. Dordrecht: Springer.CrossRefGoogle Scholar
Berger, A. 2012. A brief history of the astronomical theories of paleoclimates. In Berger, A., Mesinger, F. & Sijacki, D. (eds) Climate change: inferences from paleoclimate and regional aspects, 107–29. Vienna: Springer.CrossRefGoogle Scholar
Berner, R. A., Lasaga, A. C. & Garrels, R. M. 1983. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. American Journal of Science 283, 641–83.CrossRefGoogle Scholar
Bol'shakov, V. A. 2000. A new method of plotting paleoclimatic variations. Doklady Earth Sciences 375, 1280–82.Google Scholar
Bol'shakov, V. A. 2014. A link between global climate variability in the Pleistocene and variations in the earth's orbital parameters. Stratigraphy and Geological Correlation 22, 538–51.CrossRefGoogle Scholar
Bol'shakov, V. A., Kapitsa, A. P. & Rees, W. G. 2012. James Croll: a scientist ahead of his time. Polar Record 48, 201–05.CrossRefGoogle Scholar
Bol'shakov, V. & Kapitsa, A. 2010. James Croll – scientist, who left his time behind. Geography, Environment, Sustainability 3, 101–06.Google Scholar
Broecker, W. S. 1982. Glacial to interglacial changes in ocean chemistry. Progress in Oceanography 11, 151–97.CrossRefGoogle Scholar
Broecker, W. S. & Peng, T. H. 1982. Tracers in the sea. Palisades, NY: Lamont-Doherty Geological Observatory, 690 pp.Google Scholar
Burke, K. D., Williams, J. W., Chandler, M. A., Haywood, A. M., Lunt, D. J. & Otto-Bliesner, B. L. 2018. Pliocene and Eocene provide best analogs for near-future climates. Proceedings of the National Academy of Sciences 115, 13288–93.CrossRefGoogle ScholarPubMed
Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. 2018. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556, 191–96.CrossRefGoogle ScholarPubMed
Caesar, L., McCarthy, G. D., Thornalley, D. J. R., Cahill, N. & Rahmstorf, S. 2021. Current Atlantic meridional overturning circulation weakest in last millennium. Nature Geoscience 14, 118–20.CrossRefGoogle Scholar
Carle, J. 2015. Climate change seen as top global threat: Americans, Europeans, Middle Easterners focus on ISIS as greatest danger. Pew Research Centre, Report 14.Google Scholar
Chiang, J. C. & Friedman, A. R. 2012. Extratropical cooling, interhemispheric thermal gradients, and tropical climate change. Annual Review of Earth and Planetary Sciences 40, 383412.CrossRefGoogle Scholar
Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth, B., Mitrovica, J., Hostetler, S. W. & McCabe, A. M. 2009. The last glacial maximum. Science (New York, N.Y.) 325, 710–14.CrossRefGoogle ScholarPubMed
Clark, P. U., Shakun, J. D., Marcott, S. A., Mix, A. C., Eby, M., Kulp, S., Levermann, A., Milne, G. A., Pfister, P. L., Santer, B. D., Schrag, D. P., Solomon, S., Stocker, T. F., Strauss, B. H., Weaver, A. J., Winkelmann, R., Archer, D., Bard, E., Goldner, A., Lambeck, K., Pierrehumbert, R. T. & Plattner, G.-K. 2016. Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nature Climate Change 6, 360–69.CrossRefGoogle Scholar
Clark, R. M. & Thompson, R. 2010. Predicting the impact of global warming on the timing of spring flowering. International Journal of Climatology 30, 1599–613.CrossRefGoogle Scholar
Claussen, M., Berger, A. & Held, H. 2007. A survey of hypotheses for the 100-kyr cycle. In Sirocko, F., Claussen, M., Goni, M. & Litt, T. (eds) Developments in quaternary sciences (Vol. 7), 2935. Amsterdam: Elsevier.Google Scholar
Croll, J. 1864a. On the physical cause of the change of climate during geological epochs. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 28, 121–37.CrossRefGoogle Scholar
Croll, J. 1864b. On the physical cause of the change of climate during geological epochs. The Reader, 1863–1867 4, 331–32.Google Scholar
Croll, J. 1865a. On the physical cause of the submergence of the land during the glacial epoch. The Reader, 18631867 6, 270–71.Google Scholar
Croll, J. 1865b. On the physical cause of the submergence of the land during the glacial epoch. The Reader, 18631867 6, 435–36.Google Scholar
Croll, J. 1866a. On the excentricity of the earth's orbit. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 31, 2628.CrossRefGoogle Scholar
Croll, J. 1866b. On the reason why the change of climate in Canada since the glacial epoch has been less complete than in Scotland. Transactions of the Geological Society of Glasgow 2, 138–41.CrossRefGoogle Scholar
Croll, J. 1867a. On the excentricity of the earth's orbit, and its physical relations to the glacial epoch. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 33, 119–31.CrossRefGoogle Scholar
Croll, J. 1867b. On the change in the obliquity of the ecliptic, its influence on the climate of the polar regions and on the level of the sea. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 33, 426–45.CrossRefGoogle Scholar
Croll, J. 1867c. XXVIII. On the reason why the difference of reading between a thermometer exposed to direct sunshine and one shaded diminishes as we ascend in the atmosphere. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 33, 213–16.CrossRefGoogle Scholar
Croll, J. 1868a. On geological time, and the probable date of the glacial and the upper Miocene period. Part 1. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science XXXVL, 363–84.Google Scholar
Croll, J. 1868b. On geological time, part II. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science XXXVL, 141–54.Google Scholar
Croll, J. 1868c. On geological time, part III. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science XXXVL, 362–86.Google Scholar
Croll, J. 1869. On the influence of the gulf-stream. Geological Magazine 6, 157–62.CrossRefGoogle Scholar
Croll, J. 1870a. On ocean currents. Part 1. Ocean currents in relation to the distribution of heat over the globe. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science (Fourth Series) 39, 81106.CrossRefGoogle Scholar
Croll, J. 1870b. On ocean-currents: part II. Ocean-currents in relation to the physical theory of secular changes of climate. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 39, 180–94.CrossRefGoogle Scholar
Croll, J. 1875a. Climate and time in their geological relations; a theory of secular changes of the earth's climate. London: E. Stanford.Google Scholar
Croll, J. 1875b. The ‘Challenger's’ crucial test of the wind and gravitation theories of oceanic circulation. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 50, 242–50.CrossRefGoogle Scholar
Croll, J. 1878. Cataclysmic theories of geological climate. Geological Magazine 5, 390–98.CrossRefGoogle Scholar
Croll, J. 1879. On the thickness of the Antarctic ice, and its relations to that of the glacial epoch. The Quarterly Journal of Science 16, 1–34.Google Scholar
Croll, J. 1880. The temperature of space and its bearing on terrestrial physics. Nature 21, 521–22.CrossRefGoogle Scholar
Croll, J. 1884a. On the cause of mild polar climates. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 18, 268–88.CrossRefGoogle Scholar
Croll, J. 1884b. XLI. Examination of Mr. Alfred R. Wallace's modification of the physical theory of secular changes of climate. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 17, 367–76.CrossRefGoogle Scholar
Croll, J. 1885a. On Arctic interglacial periods. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 19, 3042.CrossRefGoogle Scholar
Croll, J. 1885b. Discussions on climate and cosmology. London: E. Stanford.Google Scholar
Croll, J. 1885c. On the cause of mild polar climates. American Journal of Science (1880–1910) 29, 138.Google Scholar
Croll, J. 1890. Former glacial periods. Nature 41, 441.CrossRefGoogle Scholar
Daiches, D., Jones, J. & Jones, P. & University of Edinburgh. Institute for Advanced Studies in the Humanities. 1986. A hotbed of genius: the Scottish enlightenment, 17301790. Edinburgh: Edinburgh University Press.Google Scholar
Dufresne, J. L. & Bony, S. 2008. An assessment of the primary sources of spread of global warming estimates from coupled atmosphere–ocean models. Journal of Climate 21, 5135–44.CrossRefGoogle Scholar
Eby, M., Zickfeld, K., Montenegro, A., Archer, D., Meissner, K. J. & Weaver, A. J. 2009. Lifetime of anthropogenic climate change: millennial time scales of potential CO2 and surface temperature perturbations. Journal of Climate 22, 2501–11.CrossRefGoogle Scholar
Emiliani, C. 1955. Pleistocene temperatures. The Journal of Geology 63, 538–78.CrossRefGoogle Scholar
Feulner, G., Rahmstorf, S., Levermann, A. & Volkwardt, S. 2013. On the origin of the surface air temperature difference between the hemispheres in Earth's present-day climate. Journal of Climate 26, 7136–50.CrossRefGoogle Scholar
Finnegan, D. A. 2012. James Croll, metaphysical geologist. Notes and Records of the Royal Society 66, 6988.CrossRefGoogle Scholar
Fischer, H., van den Broek, K. L., Ramisch, K. & Okan, Y. 2020. When IPCC graphs can foster or bias understanding: evidence among decision-makers from governmental and non-governmental institutions. Environmental Research Letters 15, 114041.CrossRefGoogle Scholar
Flynn, C. M. & Mauritsen, T. 2020. On the climate sensitivity and historical warming evolution in recent coupled model ensembles. Atmospheric Chemistry and Physics 20, 7829–42.CrossRefGoogle Scholar
Fourier, J. 1822. The analytical theory of heat. Translated, with notes, by A. Freeman. New York: Dover Publications (1955).Google Scholar
Friedman, A. R., Hwang, Y. T., Chiang, J. C. & Frierson, D. M. 2013. Interhemispheric temperature asymmetry over the twentieth century and in future projections. Journal of Climate 26, 5419–33.CrossRefGoogle Scholar
Gabet, E. J. & Mudd, S. M. 2009. A theoretical model coupling chemical weathering rates with denudation rates. Geology 37, 151–54.CrossRefGoogle Scholar
Ganapolski, A. 2019. Climate change models. In Fath, B. D. (ed.) Encyclopedia of ecology. 2nd edn, Vol. 4, 4856. Amsterdam: Elsevier.CrossRefGoogle Scholar
Garrels, R. M. & Berner, R. A. 1983. The global carbonate-silicate sedimentary system – some feedback relations. In Westbroek, P. & de Jong, E. W. (eds) Biomineralization and biological metal accumulation, 7387. Dordrecht: Springer.CrossRefGoogle Scholar
Gebbie, G. & Huybers, P. 2019. The little ice age and 20th-century deep Pacific cooling. Science (New York, N.Y.) 363, 7074.CrossRefGoogle ScholarPubMed
Geikie, J. 1894. The great Ice Age and its relation to the antiquity of man. 3rd edn. London: Edward Stanford.Google Scholar
Gibbard, P. L. & Head, M. J. 2020. The Quaternary period. In Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M. (eds) Vol. 2 The Geologic Time Scale 2020, 1217–55. Amsterdam: Elsevier.CrossRefGoogle Scholar
Hansen, J., Sato, M., Hearty, P., Ruedy, R., Kelley, M., Masson-Delmotte, V., Russell, G., Tselioudis, G., Cao, J., Rignot, E., Velicogna, I., Tormey, B., Donovan, B., Kandiano, E., von Schuckmann, K., Kharecha, P., Legrande, A. N., Bauer, M. & Lo, K.-W. 2016. Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming could be dangerous. Atmospheric Chemistry and Physics 16, 3761–812.Google Scholar
Hatzianastassiou, N., Matsoukas, C., Fotiadi, A., Pavlakis, K. G., Drakakis, E., Hatzidimitriou, D. & Vardavas, I. 2005. Global distribution of earth's surface shortwave radiation budget. Atmospheric Chemistry and Physics 5, 2847–67.CrossRefGoogle Scholar
Hays, J. D., Imbrie, J. & Shackleton, N. J. 1976. Variations in the earth's orbit: pacemaker of the ice ages. Science (New York, N.Y.) 194, 1121–32.CrossRefGoogle ScholarPubMed
Heinze, C., Eyring, V., Friedlingstein, P., Jones, C., Balkanski, Y., Collins, W., Fichefet, T., Gao, S., Hall, A., Ivanova, D., Knorr, W., Knutti, R., Löw, A., Ponater, M., Schultz, M., Schulz, M., Siebesma, P., Teixeira, J., Tselioudis, G., & Vancoppenolle, M. 2019. ESD Reviews: climate feedbacks in the earth system and prospects for their evaluation. Earth System Dynamics 10, 379452.CrossRefGoogle Scholar
Hilgen, F. J. 2010. Astronomical dating in the 19th century. Earth-Science Reviews 98, 6580.CrossRefGoogle Scholar
Högbom, A. 1894. Om Sannolikheten För Sekulära Förändringar I Atmosfärens Kolsyrehalt. Svensk kemisk Tidskrift 5, 169–76 (partially reproduced in Arrhenius, Note 2, 269–273).Google Scholar
Howarth, C. & Painter, J. 2016. Exploring the science–policy interface on climate change: the role of the IPCC in informing local decision-making in the UK. Palgrave Communications 2, 112.CrossRefGoogle Scholar
Hoyle, F. 1981. Ice. London: Hutchinson.Google Scholar
Hoyle, F. & Wickramasinghe, C. 2001. Cometary impacts and ice-ages. Astrophysics and Space Science 275, 367–76.CrossRefGoogle Scholar
Hutton, J. 1788. Theory of the earth or an investigation of the laws observable in the composition, dissolution, and restoration of land upon the globe. Transactions of the Royal Society of Edinburgh 1, 209304.CrossRefGoogle Scholar
Huybers, P. 2006. Early Pleistocene glacial cycles and the integrated summer insolation forcing. Science (New York, N.Y.) 313, 508–11.CrossRefGoogle ScholarPubMed
Imbrie, J., Hays, J. D., Martinson, D. G., McIntyre, A., Mix, A. C., Morley, J. J., Pisias, N. G., Prell, W. L. & Shackleton, N. J. 1984. The orbital theory of Pleistocene climate: support from revised chronology of the marine δ18O record. In Berger, A. L., Imbrie, J., Hays, J., Kukla, G. & Saltzman, B. (eds) Milankovitch and climate (Vol. 1), 269305. Dordrecht: D. Reidel Publishing Company.Google Scholar
Imbrie, J. & Imbrie, J. Z. 1980. Modeling the climatic response to orbital variations. Science (New York, N.Y.) 207, 943–53.CrossRefGoogle ScholarPubMed
Imbrie, J. & Imbrie, K. P. 1979. Ice ages: solving the mystery. London: Macmillan, 224 pp.CrossRefGoogle Scholar
Jouzel, J. 2013. A brief history of ice core science over the last 50 yr. Climate of the Past Discussions 9, 3711–67.Google Scholar
Kang, S. M., Seager, R., Frierson, D. M. & Liu, X. 2015. Croll revisited: why is the northern hemisphere warmer than the southern hemisphere? Climate Dynamics 44, 1457–72.CrossRefGoogle Scholar
Kasting, J. F. 1989. Long-term stability of the earth's climate. Global and Planetary Change 1, 8395.CrossRefGoogle Scholar
Kasting, J. F. 2014. The Gaia Hypothesis is still giving us feedback: revisiting James Lovelock's theory as it approaches 50. Nautilus. http://nautil.us/issue/12/feedback/the-gaia-hypothesis-is-still-giving-us-feedback (accessed 30 March 2021).Google Scholar
Kasting, J. F. 2019. The Goldilocks planet? How silicate weathering maintains earth “just right” elements: an international magazine of mineralogy. Geochemistry, and Petrology 15, 235–40.Google Scholar
Köhler, P., Bintanja, R., Fischer, H., Joos, F., Knutti, R., Lohmann, G. & Masson-Delmotte, V. 2010. What caused earth's temperature variations during the last 800,000 years? Data-based evidence on radiative forcing and constraints on climate sensitivity. Quaternary Science Reviews 29, 129–45.CrossRefGoogle Scholar
Köhler, P. & van de Wal, R. S. 2020. Interglacials of the quaternary defined by northern hemispheric land ice distribution outside of Greenland. Nature Communications 11, 110.CrossRefGoogle ScholarPubMed
Köppen, W. & Wegener, A. 1924. The climates of the geological past (Die Klimate der geologischen Vorzeit). In Thiede, J., Lochte, K. & Dummermuth, A. (eds) 2015. Reprint of the original German edition and complete English translation. Stuttgart: Borntraeger Scientific Publishers, 657 pp.Google Scholar
Kragh, H. 2016. The source of solar energy, ca. 1840–1910: from meteoric hypothesis to radioactive speculations. The European Physical Journal H 41, 365–94.Google Scholar
Kullenberg, B. 1947. The piston core sampler. Svenska Hydrografisk. Biologiska Kommissionffens Shrifter 3, 14.Google Scholar
Larsen, J. C. & Smith, F. T. 1992. Transport and heat flux of the Florida current at 27 N derived from cross-stream voltages and profiling data: theory and observations. Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences 338, 169236.CrossRefGoogle Scholar
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M. & Levrard, B. 2004. A long-term numerical solution for the insolation quantities of the earth. Astronomy & Astrophysics 428, 261–85.CrossRefGoogle Scholar
Laskar, J., Fienga, A., Gastineau, M. & Manche, H. 2011. La2010: a new orbital solution for the long-term motion of the earth. Astronomy & Astrophysics 532, A89.CrossRefGoogle Scholar
Le Verrier, U. J. J. 1839. Sur les variations séculaires des orbites des planetes. CRAS 9, 370.Google Scholar
Liang, S., Wang, D., He, T. & Yu, Y. 2019. Remote sensing of earth's energy budget: synthesis and review. International Journal of Digital Earth 12, 737–80.CrossRefGoogle Scholar
Lisiecki, L. E. & Raymo, M. E. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003, 117.Google Scholar
Littler, K., Westerhold, T., Drury, A. J., Liebrand, D., Lisiecki, L. & Pälike, H. 2019. Astronomical time keeping of earth history. Oceanography 32, 7276.CrossRefGoogle Scholar
Loutre, M. F. 2002. Ice ages (Milankovitch theory). In Curry, J. A. & Pyle, J. A. (eds) Encyclopedia of atmospheric sciences, 9951003. Amsterdam, The Netherlands: Elsevier Academic Press.Google Scholar
Lovelock, J. E. 1972. Gaia as seen through the atmosphere. Atmospheric Environment 6, 579–80.CrossRefGoogle Scholar
Lovelock, J. E. 1989. Geophysiology, the science of Gaia. Reviews of Geophysics 27, 215–22.CrossRefGoogle Scholar
Lyell, C. 1830–1833. Principles of geology, being an attempt to explain the former changes of the earth's surface, by reference to causes now in operation. 3 vols. London: Murray.Google Scholar
Lyell, C. 1854. Principles of geology. New and revised 9th edn. Project Gutenberg. https://www.gutenberg.org/files/33224/33224-h/33224-h.htm (accessed 5 March 2021).Google Scholar
Lynch-Stieglitz, J. 2017. The Atlantic meridional overturning circulation and abrupt climate change. Annual Review of Marine Science 9, 83104.CrossRefGoogle ScholarPubMed
Manabe, S. & Broccoli, A. J. 1985. The influence of continental ice sheets on the climate of an ice age. Journal of Geophysical Research: Atmospheres 90, 2167–90.CrossRefGoogle Scholar
Manabe, S. & Wetherald, R. T. 1967. Thermal equilibrium of the atmosphere with a given distribution of relative humidity. Journal of the Atmospheric Sciences 24, 241–59.2.0.CO;2>CrossRefGoogle Scholar
Meadows, D., Randers, J. & Meadows, D. 2004. A synopsis: limits to growth: the 30-year update. Estados Unidos: Chelsea Green Publishing Company.Google Scholar
Meehl, G. A., Senior, C. A., Eyring, V., Flato, G., Lamarque, J. F., Stouffer, R. J., Taylor, K.E. & Schlund, M. 2020. Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 earth system models. Science Advances 6, eaba1981.CrossRefGoogle ScholarPubMed
Milankovitch, M. K. 1941. Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem. Royal Serbian Academy Special Publication 133, 1633. Reprinted in English: Canon of Insolation and the Ice-Age Problem. Zavod za udzbenikb i nastavna sredstva, Beograd (1998), 634 pp.Google Scholar
Milne, G. A., Gehrels, W. R., Hughes, C. W. & Tamisiea, M. E. 2009. Identifying the causes of sea-level change. Nature Geoscience 2, 471–78.CrossRefGoogle Scholar
Minasny, B., McBratney, A. B. & Salvador-Blanes, S. 2008. Quantitative models for pedogenesis – a review. Geoderma 144, 140–57.CrossRefGoogle Scholar
Murphy, J. J. 1876. The glacial climate and the polar ice-cap. Quarterly Journal of the Geological Society 32, 400–06.CrossRefGoogle Scholar
National Research Council (US). Ad Hoc Study Group on Carbon Dioxide. 1979. Carbon dioxide and climate: a scientific assessment: report of an ad hoc study group on carbon dioxide and climate, Woods Hole, Massachusetts, July 23–27, 1979 to the Climate Research Board, Assembly of Mathematical and Physical Sciences, National Research Council. National Academies.Google Scholar
Neftel, A., Oeschger, H., Schwander, J., Stauffer, B. & Zumbrunn, R. 1982. Ice core sample measurements give atmospheric CO2 content during the past 40,000 yr. Nature 295, 220–23.CrossRefGoogle Scholar
Nijsse, F. J., Cox, P. M. & Williamson, M. S. 2020. Emergent constraints on transient climate response (TCR) and equilibrium climate sensitivity (ECS) from historical warming in CMIP5 and CMIP6 models. Earth System Dynamics 11, 737–50.CrossRefGoogle Scholar
Paige, D. A., Siegler, M. A., Zhang, J. A., Hayne, P. O., Foote, E. J., Bennett, K. A., Vasavada, A. R., Greenhagen, B. T., Schofield, J. T., McCleese, D. J., Foote, M. C., DeJong, E., Bills, B. G., Hartford, W., Murray, B. C., Allen, C. C., Snook, K., Soderblom, L. A., Calcutt, S., Taylor, F. W., Bowles, N. E., Bandfield, J. L., Elphic, R., Ghent, R., Glotch, T. D., Wyatt, M. B. & Lucey, P. G. 2010. Diviner lunar radiometer observations of cold traps in the Moon's south polar region. Science (New York, N.Y.) 330, 479–82.CrossRefGoogle ScholarPubMed
Paillard, D. 2001. Glacial cycles: toward a new paradigm. Reviews of Geophysics 39, 325–46.CrossRefGoogle Scholar
Palmer, T. & Stevens, B. 2019. The scientific challenge of understanding and estimating climate change. Proceedings of the National Academy of Sciences 116, 24390–95.CrossRefGoogle ScholarPubMed
Penman, D. E., Rugenstein, J. K. C., Ibarra, D. E. & Winnick, M. J. 2020. Silicate weathering as a feedback and forcing in earth's climate and carbon cycle. Earth-Science Reviews 209, 103298.CrossRefGoogle Scholar
Penzias, A. A. & Wilson, R. W. 1965. A measurement of excess antenna temperature at 4080 Mc/s. The Astrophysical Journal 142, 419–21.CrossRefGoogle Scholar
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. -M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin, L., Ritz, C., Saltzman, E. & Stievenard, M. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–36.CrossRefGoogle Scholar
Philander, S. G. 2000. Is the temperature rising? The uncertain science of global warming. Princeton, NJ: Princeton University Press, 262 pp.Google Scholar
Pierrehumbert, R. T. 2004. Warming the world. Nature 432, 677.CrossRefGoogle ScholarPubMed
Plass, G. N. 1956. The carbon dioxide theory of climatic change. Tellus 8, 140–54.CrossRefGoogle Scholar
Pride, D. 1910. A history of the parish of Neilston. Paisley: Alexander Gardner.Google Scholar
Raven, J. A. & Falkowski, P. G. 1999. Oceanic sinks for atmospheric CO2. Plant, Cell & Environment 22, 741–55.CrossRefGoogle Scholar
Riser, S. C., Freeland, H. J., Roemmich, D., Wijffels, S., Troisi, A., Belbéoch, M., Gilbert, D., Xu, J., Pouliquen, S., Thresher, A., Le Traon, P. Y., Maze, G., Klein, B., Ravichandran, M., Grant, F., Poulain, P. M., Suga, T., Lim, B., Sterl, A., Sutton, P., Mork, K. A., Vélez-Belchí, P. J., Ansorge, I., King, B., Turton, J., Baringer, M. & Jayne, S. R. 2016. Fifteen years of ocean observations with the global Argo array. Nature Climate Change 6, 145–53.CrossRefGoogle Scholar
Ritchie, J. & Dowlatabadi, H. 2017. The 1000 GtC coal question: are cases of vastly expanded future coal combustion still plausible? Energy Economics 65, 1631.CrossRefGoogle Scholar
Rosengren, A. J. & Scheeres, D. J. 2014. On the Milankovitch orbital elements for perturbed Keplerian motion. Celestial Mechanics and Dynamical Astronomy 118, 197220.CrossRefGoogle Scholar
Ruzmaikin, A., Aumann, H. H. & Jiang, J. H. 2015. Interhemispheric variability of earth's radiation. Journal of the Atmospheric Sciences 72, 4615–28.CrossRefGoogle Scholar
Saltzman, B. 2002. Dynamical paleoclimatology. San Diego: Harcourt–Academic Press, 354 pp.Google Scholar
Sellers, W. D. 1969. A global climatic model based on the energy balance of the earth-atmosphere system. Journal of Applied Meteorology 8, 392400.2.0.CO;2>CrossRefGoogle Scholar
Shackleton, N. J. & Opdyke, N. D. 1973. Oxygen isotope and palaeomagnetic stratigraphy of equatorial Pacific core V28–238: oxygen isotope temperatures and ice volumes on a 105 year and 106-year scale. Quaternary Research 3, 3955.CrossRefGoogle Scholar
Sherwood, S. C., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. M., Hargreaves, J. C., Hegerl, G., Klein, S. A., Marvel, K. D., Rohling, E. J., Watanabe, M., Andrews, T., Braconnot, P., Bretherton, C. S., Foster, G. L., Hausfather, Z., von der Heydt, A. S., Knutti, R., Mauritsen, T., Norris, J. R., Proitosescu, C., Rugenstein, M., Schmidt, G. A., Tokarska, K. B. & Zelinka, M. D. 2020. An assessment of earth's climate sensitivity using multiple lines of evidence. Reviews of Geophysics 58, e2019RG000678.CrossRefGoogle ScholarPubMed
Spencer, J. 2019. The faint young sun problem revisited. GSA Today, doi: 10.1130/GSATG403A.1, 1. 1–7.CrossRefGoogle Scholar
Spicer, R. A. & Chapman, J. L. 1990. Climate change and the evolution of high-latitude terrestrial vegetation and floras. Trends in Ecology & Evolution 5, 279–84.CrossRefGoogle ScholarPubMed
Stephens, G. L., O'Brien, D., Webster, P. J., Pilewski, P., Kato, S. & Li, J. L. 2015. The albedo of earth. Reviews of Geophysics 53, 141–63.CrossRefGoogle Scholar
Sugden, D. E. 2014. James Croll (1821–1890): ice, ice ages and the Antarctic connection. Antarctic Science 26, 604–13.CrossRefGoogle Scholar
Thiede, J. 2018. Wladimir Köppen, Alfred Wegener, and Milutin Milankovitch: their impact on modern paleoclimate research and the revival of the Milankovitch hypothesis. Vestnik of Saint Petersburg University. Earth Sciences 63, 230–50.Google Scholar
Thompson, R. 2015. Climate sensitivity. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 106, 110.CrossRefGoogle Scholar
Thompson, R. 2017. Whither climate change post-Paris? The Anthropocene Review 4, 6269.CrossRefGoogle Scholar
Thompson, R. 2020. Peak oil, flowering curves and the COVID-19 pandemic, Edinburgh Geologist, issue no. 68, Autumn, 11–18.Google Scholar
Thompson, R., Kamenik, C. & Schmidt, R. 2005. Ultra-sensitive Alpine lakes and climate change. Journal of Limnology 64, 139–52.CrossRefGoogle Scholar
Thornalley, D. J. R., Oppo, D. W., Ortega, P., Robson, J. I., Brierley, C. M., Davis, R., Hall, I. R., Moffa-Sanchez, P., Rose, N. L., Spooner, P. T., Yashayaev, I. & Keigwin, L. D. 2018. Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature 556, 227–30.CrossRefGoogle ScholarPubMed
Tokarska, K. B., Stolpe, M. B., Sippel, S., Fischer, E. M., Smith, C. J., Lehner, F. & Knutti, R. 2020. Past warming trend constrains future warming in CMIP6 models. Science advances 6, eaaz9549.CrossRefGoogle ScholarPubMed
Touzé-Peiffer, L., Barberousse, A. & Le Treut, H. 2020. The coupled model intercomparison project: history, uses, and structural effects on climate research. Wiley Interdisciplinary Reviews. Climate Change 11, e648.Google Scholar
Tyndall, J. 1861. The Bakerian Lecture. On the absorption and radiation of heat by gases and vapours, and on the physical connexion of radiation, absorption, and conduction. Philosophical Transactions of the Royal Society of London 151, 136.Google Scholar
Tzedakis, P., Crucifix, M., Mitsui, T. & Wolff, E. W. 2017. A simple rule to determine which insolation cycles lead to interglacials. Nature 542, 427–32.CrossRefGoogle ScholarPubMed
Urey, H. C. 1952. The planets: their origin and development. New Haven: Yale University Press.Google Scholar
Vautard, R., Yiou, P. & Ghil, M. 1992. Singular-spectrum analysis: a toolkit for short, noisy chaotic signals. Physica D 58, 95126.CrossRefGoogle Scholar
Walker, J. C., Hays, P. B. & Kasting, J. F. 1981. A negative feedback mechanism for the long-term stabilization of earth's surface temperature. Journal of Geophysical Research: Oceans 86, 9776–82.CrossRefGoogle Scholar
Wardekker, A. & Lorenz, S. 2019. The visual framing of climate change impacts and adaptation in the IPCC assessment reports. Climatic Change 156, 273–92.CrossRefGoogle Scholar
Watson, E. B. & Harrison, T. M. 2005. Zircon thermometer reveals minimum melting conditions on earliest. Science (New York, N.Y.) 308, 841–44.CrossRefGoogle ScholarPubMed
Wegg-Prosser, F. R. 1891. ART. VII. Evolution and determinism. The Dublin Review, 18361910 26, 353–73.Google Scholar
Weijer, W., Cheng, W., Drijfhout, S. S., Fedorov, A. V., Hu, A., Jackson, L. C., Liu, W., McDonagh, E. L., Mecking, J. V. & Zhang, J. 2019. Stability of the Atlantic meridional overturning circulation: a review and synthesis. Journal of Geophysical Research: Oceans 124, 5336–75.CrossRefGoogle Scholar
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., De Vleeschouwer, D., Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D., Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Pälike, H., Röhl, U., Tian, J., Wilkens, R. H., Wilson, P. A. & Zachos, J. C. 2020. An astronomically dated record of earth's climate and its predictability over the last 66 million years. Science (New York, N.Y.) 369, 1383–87.CrossRefGoogle ScholarPubMed
Wittmann, H., Oelze, M., Gaillardet, J., Garzanti, E. & von Blanckenburg, F. 2020. A global rate of denudation from cosmogenic nuclides in the earth's largest rivers. Earth-Science Reviews 204, 103147.CrossRefGoogle Scholar
Wunsch, C. & Ferrari, R. 2018. 100 years of the ocean general circulation. Meteorological Monographs 59, 7.17.27.CrossRefGoogle Scholar
Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M., Ceppi, P., Klein, S. A. & Taylor, K. E. 2020. Causes of higher climate sensitivity in CMIP6 models. Geophysical Research Letters 47, e2019GL085782.CrossRefGoogle Scholar
Zeuner, F. E. 1945. The Pleistocene period: its climate. Chronology and faunal successions. 1st edn. Publication no. 130. London: Ray Society, 322.Google Scholar