Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T17:07:54.992Z Has data issue: false hasContentIssue false

Creation and delivery of a complex 3D geological survey for the Glasgow area and its application to urban geology

Published online by Cambridge University Press:  13 November 2018

T. I. Kearsey*
Affiliation:
British Geological Survey, The Lyell Centre, Research Avenue South, Edinburgh EH14 4AP, UK. Email: [email protected]
K. Whitbread
Affiliation:
British Geological Survey, The Lyell Centre, Research Avenue South, Edinburgh EH14 4AP, UK. Email: [email protected]
S. L. B. Arkley
Affiliation:
British Geological Survey, The Lyell Centre, Research Avenue South, Edinburgh EH14 4AP, UK. Email: [email protected]
A. Finlayson
Affiliation:
British Geological Survey, The Lyell Centre, Research Avenue South, Edinburgh EH14 4AP, UK. Email: [email protected]
A. A. Monaghan
Affiliation:
British Geological Survey, The Lyell Centre, Research Avenue South, Edinburgh EH14 4AP, UK. Email: [email protected]
W. S. McLean
Affiliation:
British Geological Survey, The Lyell Centre, Research Avenue South, Edinburgh EH14 4AP, UK. Email: [email protected]
R. L. Terrington
Affiliation:
British Geological Survey, Keyworth, Nottingham NG12 5GG, UK.
E. A. Callaghan
Affiliation:
British Geological Survey, The Lyell Centre, Research Avenue South, Edinburgh EH14 4AP, UK. Email: [email protected]
D. Millward
Affiliation:
British Geological Survey, The Lyell Centre, Research Avenue South, Edinburgh EH14 4AP, UK. Email: [email protected]
S. D. G. Campbell
Affiliation:
British Geological Survey, The Lyell Centre, Research Avenue South, Edinburgh EH14 4AP, UK. Email: [email protected]
*
*Corresponding author

Abstract

The Glasgow area has a combination of highly variable superficial deposits and a legacy of heavy industry, quarrying and mining. These factors create complex foundation and hydrological conditions, influencing the movement of contaminants through the subsurface and giving rise locally to unstable ground conditions. Digital geological three-dimensional models developed by the British Geological Survey are helping to resolve the complex geology underlying Glasgow, providing a key tool for planning and environmental management. The models, covering an area of 3200km2 to a depth of 1.2km, include glacial and post-glacial deposits and the underlying, faulted Carboniferous igneous and sedimentary rocks. Control data, including 95,000 boreholes, digital mine plans and published geological maps, were used in model development. Digital outputs from the models include maps of depth to key horizons, such as rockhead or depth to mine workings. The models have formed the basis for the development of site-scale high-resolution geological models and provide input data for a wide range of other applications from groundwater modelling to stochastic lithological modelling.

Type
Articles
Copyright
Copyright © British Geological Survey UKRI 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

8. References

Bianchi, M., Kearsey, T. & Kingdon, A. 2015. Integrating deterministic lithostratigraphic models in stochastic realizations of subsurface heterogeneity. Impact on predictions of lithology, hydraulic heads and groundwater fluxes. Journal of Hydrology 531, 557573.Google Scholar
Bonsor, H. C., Entwisle, D. C., Watson, S., Lawrie, K., Bricker, S., Campbell, S., Lawrence, D., Barron, H., Hall, I. & Ó Dochartaigh, B. E. 2013. Maximising past investment in subsurface data in urban areas for sustainable resource management: a pilot in Glasgow, UK. Technical note. Ground Engineering 46, 2528.Google Scholar
British Geological Survey. 1970. Greenock. Scotland Sheet 30W. Solid Geology 1:50 000. Keyworth, Nottingham: British Geological Survey.Google Scholar
British Geological Survey. 1971. Stirling. Scotland Sheet 39E. Solid Geology 1:50 000. Keyworth, Nottingham: British Geological Survey.Google Scholar
British Geological Survey. 1992. Airdrie. Scotland Sheet 31W. Solid Geology 1:50 000. Keyworth, Nottingham: British Geological Survey.Google Scholar
British Geological Survey. 1993. Glasgow. Scotland Sheet 30E. Solid Geology 1:50 000. Keyworth, Nottingham: British Geological Survey.Google Scholar
British Geological Survey. 1995. Hamilton. Scotland Sheet 23W. Solid Geology 1:5000. Keyworth, Nottingham: British Geological Survey.Google Scholar
British Geological Survey. 1998. Irvine. Scotland Sheet 22W. Solid Geology 1:50 000. Keyworth, Nottingham: British Geological Survey.Google Scholar
British Geological Survey. 2002. Kilmarnock. Scotland Sheet 22E. Solid Geology 1:50 000. Keyworth, Nottingham: British Geological Survey.Google Scholar
Browne, M. A. E., Forsyth, I. H. & McMillan, A. A. 1986. Glasgow, a case study in urban geology. Journal of the Geological Society of London 143, 509520.Google Scholar
Browne, M. A. E., Dean, M. T., Hall, I. H. S., McAdam, A. D., Monro, S. K. & Chisholm, J. I. 1999. A lithostratigraphical framework for the Carboniferous rocks of the Midland Valley of Scotland. Version 2, Research Report RR\99\07. Keyworth, Nottingham: British Geological Survey.Google Scholar
Browne, M. A. E. & McMillan, A. A. 1989. Quaternary geology of the Clyde valley. Research Report SA\89\1. Keyworth, Nottingham: British Geological Survey.Google Scholar
Burke, H. F., Price, S. J., Crofts, D. & Thorpe, S. 2009. Applied 3D geological modelling in the Mersey Basin, NW England [extended abstract]. In EUREGEO 2009: European congress on Regional Geoscientific Cartography and Information Systems, Munich, Germany, 9–12 June 2009. Augsburg, Bayerisches Landesamt für Umwelt, 3436.Google Scholar
Campbell, D., Bonsor, H., Lawrence, D., Monaghan, A., Whitbread, K., Kearsey, T., Finlayson, A., Entwisle, D., Kingdon, A., Bricker, S., Fordyce, F., Barron, H., Dick, G. & Hay, D. 2015. Datos del subsuelo y su conocimiento para las Ciudades del Mañana: lecciones aprendidas de Glasgow y su aplicabilidad en otros lugares. Ciudad y territorio estudios territoriales 47, 745758.Google Scholar
Campbell, S. D. G., Merritt, J. E., O Dochartaigh, B. E., Mansour, M., Hughes, A. G., Fordyce, F. M., Entwisle, D. C., Monaghan, A. A. & Loughlin, S. C. 2010. 3D geological models and their hydrogeological applications: supporting urban development: a case study in Glasgow-Clyde, UK. Zeitschrift der Deutschen Gesellschaft fur Geowissenschaften 161, 251262.Google Scholar
Craig, P. M. 1980. The volcanic geology of the Campsie Fells area, Stirlingshire. Unpublished PhD Thesis, University of Lancaster, UK.Google Scholar
Culshaw, M. G., Nathanail, C. P., Leeks, G. J. L., Alker, S., Bridge, D., Duffy, T., Fowler, D., Packman, J. C., Swetnam, R., Wadsworth, R. & Wyatt, B. 2006. The role of web-based environmental information in urban planning - the environmental information system for planners. Science of the Total Environment 360, 233245.Google Scholar
Culshaw, M. G. & Price, S. J. 2011. The 2010 Hans Cloos lecture: the contribution of urban geology to the development, regeneration and conservation of cities. Bulletin of Engineering Geology and Environment 70, 333376.Google Scholar
De Beer, J. 2005. Hydrogeologisk modellering Bryggen, Bergen. NGU rapport 2005.080 (in Norwegian).Google Scholar
De Beer, J. 2008. Statusrapport grunnvannsovervåking og hydrogeologisk modellering ved Bryggen i Bergen. NGU rapport 2008.069 (in Norwegian).Google Scholar
De Beer, J., Price, S. J. & Ford, J. R. 2012. 3D modelling of geological and anthropogenic deposits at the World Heritage Site of Bryggen in Bergen, Norway. Quaternary International 251. DOI: 10.1016/j.quaint.2011.06.015.Google Scholar
Finlayson, A. G. 2012. Ice dynamics and sediment movement: last glacial cycle, Clyde basin, Scotland. Journal of Glaciology 58, 487500.Google Scholar
Finlayson, A. 2013. Digital surface models are not always representative of former glacier beds: palaeoglaciological and geomorphological implications. Geomorphology 194, 2533.Google Scholar
Finlayson, A., Merritt, J., Browne, M., Merritt, J., McMillan, A. & Whitbread, K. 2010. Ice sheet advance, dynamics, and decay configurations: evidence from west central Scotland. Quaternary Science Reviews 29, 969988.Google Scholar
Ford, J., Burke, H., Royse, K. & Mathers, S. 2008. The 3D geology of London and the Thames Gateway: a modern approach to geological surveying and its relevance in the urban environment. In Cities and their underground environment: 2nd European conference of International Association of engineering geology: Euroengeo 2008, Madrid, Spain, 15–20 September 2008. http://nora.nerc.ac.uk/3717/1/FORT3D.pdf.Google Scholar
Ford, J. R., Mathers, S. J., Royse, K. R., Aldiss, D. T. & Morgan, D. J. R. 2010. Geological 3D modelling: scientific discovery and enhanced understanding of the subsurface, with examples from the UK. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 161, 205218.Google Scholar
Forsyth, I. H., Hall, I. H. S. & McMillan, A. A. 1996. Geology of the Airdrie district. Memoir of the British Geological Survey. Sheet 31 W (Scotland). Keyworth, Nottingham: British Geological Survey.Google Scholar
Francis, E. H., Forsythe, I. H., Read, W. A. & Armstrong, M. A. 1970. Geology of the Stirling district. Memoir of the British Geological Survey, Sheet 39 (Scotland). Keyworth, Nottingham: British Geological Survey.Google Scholar
Guyonnet-Benaize, C., Lamarche, J., Masse, J., Villeneuve, M. & Viseur, S. 2010. 3D structural modelling of small-deformations in poly-phase faults pattern. Application to the Mid-Cretaceous Durance uplift, Provence (SE France). Journal of Geodynamics 50, 8193.Google Scholar
Hall, I. H. S., Browne, M. A. E. & Forsyth, I. H. 1998. Geology of the Glasgow District: Memoir for 1:50 000 Geological Sheet 30E (Scotland): 117 S. Keyworth, Nottingham: British Geological Survey.Google Scholar
Jackson, I. & Green, C. A. 2003. The digital geological map of Great Britain. Geoscientist 13, 47.Google Scholar
Jones, R. R., McCaffrey, K. J. W., Clegg, P., Wilson, R. W., Holliman, N. S., Holdsworth, R. E., Imber, J. & Waggott, S. 2009. Integration of regional to outcrop digital data: 3D visualisation of multi-scale geological models. Computers & Geosciences 35, 418.Google Scholar
Kaufmann, O. & Martin, T. 2009. 3D geological modelling from boreholes, cross-sections and geological maps, application over former natural gas storages in coal mines. Computers & Geosciences 35, 7082.Google Scholar
Kearsey, T., Williams, J., Finlayson, A., Williamson, P., Dobbs, M., Marchant, B., Kingdom, A. & Campbell, D. 2015. Testing the application and limitation of stochastic simulations to predict the lithology of glacial and fluvial deposits in Central Glasgow, UK. Engineering Geology 187, 98112.Google Scholar
Kessler, H., Mathers, S. J. & Sobisch, H. G. 2009. The capture and dissemination of integrated 3D geospatial knowledge at the British Geological Survey using GSI3D software and methodology. Computers & Geosciences 35, 13111321.Google Scholar
Lawley, R. & Garcia-Bajo, M. 2009. The National Superficial Deposit Thickness Model. (Version 5). Keyworth, Nottingham: British Geological Survey. OR/09/049 (unpublished).Google Scholar
Mathers, S. J., Burke, H. F., Terrington, R. L., Thorpe, S., Dearden, R. A., Williamson, J. P. & Ford, J. R. 2014. A geological model of London and the Thames Valley, southeast England. Proceedings of the Geologists' Association 125, 373382.Google Scholar
Merritt, J. E., Entwisle, D. C. & Monaghan, A. A. 2006. Integrated geosciences data, maps and 3D models for the City of Glasgow, UK. IAEG2006 paper number 394.Google Scholar
Merritt, J. E., Monaghan, A. A., Entwisle, D. C., Hughes, A. G., Campbell, S. D. G. & Browne, M. A. E. 2007. 3D attributed models for addressing environmental and engineering geoscience problems in areas of urban regeneration: a case study in Glasgow, UK. First Break 25, 7984.Google Scholar
Millward, D. & Stephenson, D. 2011. Bedrock GS13D models from interpreted data in geologically complex carboniferous terrains: a work in progress from the Clyde Catchment Area, Midland Valley of Scotland. Nottingham, UK: British Geological Survey. (IR/11/052)Google Scholar
Monaghan, A. A., Arkley, S. L. B., Whitbread, K. & McCormac, M. 2014. Clyde superficial deposits and bedrock models released to the ASK Network 2014: a guide for users. Version 3. Nottingham, UK: British Geological Survey, 31pp. (OR/14/013)Google Scholar
Monaghan, A. A. & Parrish, R. R. 2006. Geochronology of Carboniferous-Permian magmatism in the Midland Valley of Scotland: implications for regional tectonomagmatic evolution and the numerical time scale. Journal of the Geological Society of London 163, 1528.Google Scholar
Monro, S. K. 1999. Geology of the Irvine District. Memoir of the British Geological Survey, Sheet 22W and part of 21E (Scotland). Keyworth, Nottingham: British Geological Survey.Google Scholar
Ó Dochartaigh, B., Helen Bonsor, H. Bricker, S. 2018. Improving understanding of shallow urban groundwater: the Quaternary groundwater system in Glasgow, UK. Earth and Environmental Science Transactions of the Royal Society of Edinburgh. DOI: 10.1017/S1755691018000385.Google Scholar
Paterson, I. B., Hall, I. H. S. & Stephenson, D. 1990. Geology of the Greenock district: Memoir for 1:50,000 geological sheet 30W and part of sheet 29E (Scotland). Keyworth, Nottingham: British Geological Survey.Google Scholar
Paterson, I. B., McAdam, A. D. & MacPherson, K. A. T. 1998. Geology of the Hamilton district. Memoir of the British Geological Survey, Sheet 23W (Scotland). Keyworth, Nottingham: British Geological Survey.Google Scholar
Price, S. J., Burke, H. F., Terrington, R. L., Reeves, H., Boon, D. & Scheib, A. 2010. The 3D characterisation of the zone of human interaction and the sustainable use of underground space in urban and peri-urban environments: case studies from the UK. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 161, 219235.Google Scholar
Price, S. J., Ford, J. R., Cooper, A. H. & Neal, C. 2011. Humans as major geological and geomorphological agents in the Anthropocene: the significance of artificial ground in Great Britain. Philosophical Transactions of the Royal Society A 369, 10561084.Google Scholar
Royse, K., Rutter, H. & Entwisle, D. 2009. Property attribution of 3D geological models in the Thames Gateway, London: new ways of visualising geoscientific information. Bulletin of Engineering Geology and the Environment 68, 116.Google Scholar
Sandersen, P., Kristensen, M. & Mielby, S. 2015. Udvikling af en 3D geologisk/hydrogeologisk model som basis for det urbane vandkredsløb. Delrapport 4–3D geologisk/hydrostratigrafisk modellering i Odense. Preliminary report about the Odense modelling project, September 2015. Prepared for the VTU-fund. Denmark: Geological Survey of Denmark and Greenland (in Danish).Google Scholar
Schokker, J., Bakker, M. A. J., Dubelaar, C. W., Dambrink, R. M. & Harting, R. 2015. 3D subsurface modelling reveals the shallow geology of Amsterdam. Netherlands Journal of Geosciences 94, 399417. DOI: 10.1017/njg.2015.22.Google Scholar
Shelley, W., Marchant, A., Bell, P. & Westhead, K. 2011. BGS serves up data-to-go. Geoconnexion UK, 7071.Google Scholar
Smith, A. 2009. A new edition of the bedrock geology map of the United Kingdom. Journal of Maps 5(1), 232252.Google Scholar
Smith, I. F. (ed.) 2005. Digital geoscience spatial model project final report, British Geological Survey Occasional Publication No. 9, British Geological Survey. Keyworth, Nottingham: British Geological Survey.Google Scholar
Smith, M. & Howard, A. 2012. The end of the map? Geoscientist 22, 1921.Google Scholar
Thierry, P., Prunier-Leparmentier, A. M., Lembezat, C., Vanoudheusden, E. & Vernoux, J. F. 2009. 3D geological modelling at urban scale and mapping of ground movement susceptibility from gypsum dissolution: The Paris example (France). Engineering Geology 105, 5164.Google Scholar
Underhill, J. R., Monaghan, A. A. & Browne, M. A. E. 2008. Controls on structural styles, Basin Development and Petroleum Prospectively in the Midland Valley of Scotland. Marine and Petroleum Geology 25, 10001022.Google Scholar
Upton, B. G. J., Stephenson, D., Smedley, P. M., Wallis, S. M. & Fitton, J. G. 2004. Carboniferous and Permian magmatism in Scotland. In: Wilson, W., Neumann, E.-R., Davies, G. R., Timmerman, M. J., Heeremans, M. & Larsen, B. T. (eds) Permo-Carboniferous magmatism and rifting in Europe, 195218. London, UK: Geological Society London. (Special Publication, 223)Google Scholar
Van der Meulen, M. J., Doornenbal, J. C., Gunnink, J. L., Stafleu, J., Schokker, J., Vernes, R. W., Van Geer, F. C., Van Gessel, S. F., Van Heteren, S., Van Leeuwen, R. J. W., Bakker, M. A. J., Bogaard, P. J. F., Busschers, F. S., Griffioen, J., Gruijters, S. H. L. L., Kiden, P., Schroot, B. M., Simmelink, H. J., Van Berkel, W. O., Van der Krogt, R. A. A., Westerhoff, W. E. & Van Daalen, T. M. 2013. 3D geology in a 2D country: perspectives for geological surveying in the Netherlands. Netherlands Journal of Geosciences 92, 217241.Google Scholar
Williams, J. D. O., Dobbs, M. R., Kingdon, A., Lark, R. M., Williamson, J. P., MacDonald, A. M. & Ó Dochartaigh, B. É. 2018. Stochastic modelling of hydraulic conductivity derived from geotechnical data; an example applied to Central Glasgow. Earth and Environmental Science Transactions of the Royal Society of Edinburgh. DOI: 10.1017/S1755691018000312.Google Scholar
Westhead, R. K. 2010. BGS opengeoscience. Geoscientist 20, 11.Google Scholar
Wood, B., Richmond, T., Rinchardson, J. & Howcroft, J. 2015. BGS Groundhog® desktop Geoscientific Information System external user manual. Nottingham, UK: British Geological Survey. (OR/15/046)Google Scholar
Wycisk, P., Hubert, T., Gossel, W. & Neumann, C. 2009. High-resolution 3D spatial modelling of complex geological structures for an environmental risk assessment of abundant mining and industrial megasites. Computers & Geosciences 35, 165182.Google Scholar
Zanchi, A., Francesca, S., Stefano, Z., Simone, S. & Graziano, G. 2009. 3D reconstruction of complex geological bodies: Examples from the Alps. Computers & Geosciences 35, 4969.Google Scholar
Zu, X. F., Hou, W. S., Zhang, B. Y., Hua, W. H. & Luo, J. 2012. Overview of three-dimensional geological modelling technology. IERI Procedia 2, 921927.Google Scholar