Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T06:32:13.419Z Has data issue: false hasContentIssue false

The anatomy and seed plant affinities of Rhacopteris and Spathulopteris foliage from the Dinantian (Lower Carboniferous) of Scotland

Published online by Cambridge University Press:  03 November 2011

Jean Galtier
Affiliation:
Laboratoire de Paléobotanique, Institut des Sciences de l'Evolution, UMR 5554 CNRS, Université de Montpellier II, Place Bataillon, 34095 Montpellier, France
Brigitte Meyer-Berthaud
Affiliation:
Laboratoire de Paléobotanique, Institut des Sciences de l'Evolution, UMR 5554 CNRS, Université de Montpellier II, Place Bataillon, 34095 Montpellier, France
Rachel Brown
Affiliation:
Geology Department, Royal Holloway, University of London

Abstract

Permineralised material of Rhacopteris lindseaeformis (Bunbury) Kidston and Spathulopteris obovata (Lindley & Hutton) Kidston, showing both external morphology and excellent anatomical preservation, is described from the Lower Carboniferous (?Asbian, Upper Viséan) tuffs and dolomitic ashes outcropping at Weaklaw–Gullane, East Lothian, Scotland. These specimens provide the first anatomical information on these two well-known plant compression genera. The rachises have Lyginorachis-type anatomy with distinctive characters in the two species. Spathulopteris rachises correspond to Lyginorachis kingswoodense Meyer-Berthaud, previously described from the localities of Kingswood and East Kirkton, whereas Rhacopteris shows similarities with the petiole attributed to Bilignea from Oxroad Bay. Both foliage types conform to seed-fern frond organisation. This new evidence contradicts previous interpretations of Rhacopteris as a fern or a progymnosperm. We suggest that Rhacopteris lindseaeformis and Spathulopteris obovata represent the foliage of some of the arborescent gymnosperms which are found associated in several contemporaneous localities.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Archangelsky, S. 1983. Nothorhacopteris, a new generic name for some Carboniferous monopinnate fronds of Gondwanaland (= Rhacopteris ovata auet. and Pseudorhacopteris Rigby 1973). Review of Palaeobotany and Palynology 38, 157–72.Google Scholar
Bateman, R. M. 1991. Palaeoecology. In Cleal, C. J. (ed.) Plant fossils in geological investigation: the Palaeozoic, 34 116. London: Ellis Horwood.Google Scholar
Bateman, R. M. & Rothwell, G. W. 1990. A reappraisal of the Dinantian floras at Oxroad Bay. East Lothian, Scotland. I. Floristics and the development of whole-plant concepts. Transactions of the Royal Society of Edinburgh: Earth Sciences 81, 127–59.CrossRefGoogle Scholar
Beck, C. B. 1981. Archaeopteris and its role in vascular plant evolution. In Niklas, K. J. (ed.) Palaeobotany, Paleoecology and Evolution, vol. 1. 193230. New York: Praeger.Google Scholar
Brown, R. E. 1994. Palaeobotany and Plant Taphonomy of Visean volcanic sequences from Northern Britain. Ph.D. University of London.Google Scholar
Brown, R. E. & Meyer-Berthaud, B. 1993. Permineralized frond remains of gymnosperms from the Upper Visean of East Kirkton. Scotland. Special Papers in Palaeontology, 49, 4355.Google Scholar
Bunbury, C. J. F. 1861. On some fossil plants of the Jurassic strata of the Yorkshire coast. Quarterly Journal of the Geological Society of London 7, 179–94.CrossRefGoogle Scholar
Chisholm, J. I. & Brand, P. J. 1994. Revision of the late Dinantian sequence in Edinburgh and West Lothian. Scottish Journal of Geology, 30, 97104.CrossRefGoogle Scholar
Cleal, C. J. & Thomas, B. A. 1995. Palaeozoic Palaeobotany of Great Britain. 1st edn. London: Chapman & Hall.Google Scholar
Day, T. C. 1916. The breccias of Cheese bay and the yellow conglomerates of Weaklaw. Transactions of the Edinburgh Geological Society, 10, 261–75.CrossRefGoogle Scholar
Day, T. C. 1923. A new volcanic vent and other geological features on the shore, Weaklaw. near Gullane. Transactions of the Edinburgh Geological Society 11, 185–92.CrossRefGoogle Scholar
Galtier, J. & Scott, A. C. 1990. On Eristophyton and other gymnosperms from the Lower Carboniferous of Castelton Bay. East Lothian, Scotland. Geobios 23, 519.Google Scholar
Galtier, J. & Scott, A. C. 1994. Arborescent gymnosperms from the Viséan of East Kirkton, West Lothian, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 84, 261–6.CrossRefGoogle Scholar
Galtier, J., Brown, R. E., Scott, A. C.Rex, G. M. & Rowe, N. P. 1993a. A Late Dinantian Flora from Weaklaw, East Lothian. Scotland. Special Papers in Palaeontology 49, 5774.Google Scholar
Galtier, J., Meyer-Berthaud, B. & Beck, C. B. 1993b. Large Calamopitys stems from the Tournaisian of France. Palaeontographica B 230, 5979.Google Scholar
Gordon, W. T. 1927. The coastal strip between North Berwick and Cheese Bay. Gullane. Proceedings of the Geologists' Association, 38, 441–51.Google Scholar
Gordon, W. T. 1935. The genus Pitys Witham emend. Transactions of the Royal Society of Edinburgh 58, 279311.CrossRefGoogle Scholar
Hirmer, M. 1927. Handbuch der Paläobotanik, I: Thallophyta, Bryophyta, Pteridophyta. München & Berlin: Oldenbourg.CrossRefGoogle Scholar
Kidston, R. 1923a. Fossil plants of the Carboniferous rocks of Great Britain. Part 1. Memoir of the Geological Survey of Great Britain (Palaeontology) 2, 1110.Google Scholar
Kidston, R. 1923b. Fossil plants of the Carboniferous rocks of Great Britain. Part 2. Memoir of the Geological Survey of Great Britain (Palaeontology) 2, 111–98.Google Scholar
Kidston, R. 1923c. Fossil plants of the Carboniferous rocks of Great Britain. Part 3. Memoir of the Geological Survey of Great Britain (Palaeontology) 2, 199274.Google Scholar
Klavins, S. D. & Matten, L. C. 1996. Reconstruction of the frond of Laceya hibernica, a Lyginopterid pteridosperm from the uppermost Devonian of Ireland. Review of Palaeobotany and Palynology 93, 253268.CrossRefGoogle Scholar
Lacey, W. S. 1953. Scottish Lower Carboniferous plants: Eristophyton waltoni sp. nov. and Endoxylon zonatum (Kidston) Scott from Dumbartonshire. Annals of Botany (NS) 17, 579–96.Google Scholar
Long, A. G. 1976. Calathopteris heterophylla gen.et sp. nov., a Lower Carboniferous Pteridosperm bearing two kinds of petioles. Transactions of the Royal Society of Edinburgh 69, 327–36.CrossRefGoogle Scholar
Long, A. G. 1979. Observations on the Lower Carboniferous genus Pitus Witham. Transactions of the Royal Society of Edinburgh, 70, 111–27.CrossRefGoogle Scholar
McAdam, A. D. & Tulloch, W. 1985. Geology of the Haddington District. Memoir of the British Geological Survey. London: HMSO.Google Scholar
Meyer-Berthaud, B. 1990. Studies on the Lower Carboniferous flora from Kingswood near Pettycur. Scotland. III. Lyginorachis. Review of Palaeobotany and Palynology 63, 7790.CrossRefGoogle Scholar
Remy, W. & Remy, R. 1977. Die Floren des Erdaltertums. Essen: Glückauf.Google Scholar
Retallack, G. J. 1980. Late Carboniferous to Middle Triassic megafossil floras from the Sydney Basin. In Herbert, C. & Helby, R. (eds) A Guide to the Sydney Basin. Geol. Surv. NSW Bull. 26, 384430.Google Scholar
Rothwell, G. W. & Serbet, R. 1994. Lignophyte Phylogeny and the Evolution of Spermatophytes: A Numerical Cladistic Analysis. Systematic Botany 19, 443–82.CrossRefGoogle Scholar
Rowe, N. P. 1988. New observations on the Lower Carboniferous pteridosperm Diplopteridium Walton and an associated synangiate organ. Botanical Journal of the Linnean Society 97, 125–38.CrossRefGoogle Scholar
Rowe, N. P., Speck, T. & Galtier, J. 1993. Biomechanical analysis of a Palaeozoic gymnosperm stem. Proceedings of the Royal Society of London 252, 1928.Google Scholar
Scott, A. C., Galtier, J. & Clayton, G. 1984. Distribution of anatomically preserved floras in the Lower Carboniferous of Western Europe. Transactions of the Royal Society of Edinburgh: Earth Sciences 75, 311–40.CrossRefGoogle Scholar
Scott, A. C., Meyer-Berthaud, B., Galtier, J., Rex, G. M., Brindley, S. A. & Clayton, G. 1986. Studies on a new Lower Carboniferous flora from Kingswood. near Pettycur, Scotland. I. Preliminary report. Review of Palaeobotany and Palynology 48, 161–80.CrossRefGoogle Scholar
C., Scott. A., Brown, R., Galtier, J. & Meyer-Berthaud, B. 1994. The distribution of fossil plants from the Dinantian of East Kirkton, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 84, 249–60.Google Scholar
Speck, T. & Rowe, N.P. 1994. Biomechanical analysis of Pitus dayi: Early seed plant vegetative morphology and its implications on growth habit. Journal of Plant Research 107, 443–60.CrossRefGoogle Scholar
Stur, D. 1875. Beiträge zur Kenntniss der Flora der Vorwelt-Die Culm Flora. Teil 1. Die Culm-Flora des mährisch-schlesischen Dachschiefers. Abhandlungen der kaiserlich—konigtichen geologischen Reichsanstalt (Wien) 8, 1106.Google Scholar
Vega, J. C. & Archangelsky, S. 1996. Austrocalyx jejenensis Vega & Archangelsky, gen. et sp. nov., a cupulate rhacopteroid pteridosperm from the Carboniferous of Argentina. Review of Palaeobotany and Palynology 91, 107–19.CrossRefGoogle Scholar
Walton, J. 1926. Contributions to the knowledge of Lower Carboniferous plants. IV. Philosophical Transactions of the Royal Society, London, 215, 210–19.Google Scholar