Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-05T15:01:15.322Z Has data issue: false hasContentIssue false

Analogue and numerical modelling of shape fabrics: application to strain and flow determination in magmas

Published online by Cambridge University Press:  07 October 2019

Laurent Arbaret
Affiliation:
Geologisches Institut, ETH-Zentrum, Sonneggstrasse 5, CH-8092 Zurich, Switzerland
Angel Fernandez
Affiliation:
Université de Limoges, 123 Av. Albert Thomas, 87060 Limoges Cedex, France
Josef Ježek
Affiliation:
Faculty of Science, Charles University, Albertov 6, Praha 2, 12843, Czech Republic
Benoît Ildefonse
Affiliation:
Laboratoire de Tectonophysique, ISTEEM, Université de Montpellier II, 34095 Montpellier cedex 05, France
Patrick Launeau
Affiliation:
Université de Nantes, Planétologie et Géodynamique, 2 rue de la Houssinière BP 92208, 443322 Nantes, France
Hervé Diot
Affiliation:
Université de la Rochelle, Avenue Marillac, 17042 La Rochelle, France

Abstract

ABSTRACT:

We summarise numerical and analogue models of shape fabrics, and discuss their applicability to the shape preferred orientation of crystals in magmas. Analyses of flow direction and finite strain recorded during the emplacement of partially crystallised magmas often employ the analytical and numerical solutions of the Jeffery's model, which describe the movement of noninteracting ellipsoidal particles immersed in a Newtonian fluid. Crystallising magmas, however, are considered as dynamic fluid systems in which particles nucleate and grow. Crystallisation during magma deformation leads to mechanical interactions between crystals whose shape distribution is not necessarily homogeneous and constant during emplacement deformation. Experiments carried out in both monoparticle and multiparticle systems show that shape fabrics begin to develop early in the deformation history and evolve according to the theoretical models for low-strain regimes. At large strains and increasing crystal content, the heterogeneous size distribution of natural crystals and contact interactions tend to generate steady-state fabrics with a lineation closely parallel to the direction of the magmatic flow. This effect has been observed in all threedimensional experiments with particles of similar size and for strain regimes of high vorticity. On the other hand, studies of feldspar megacryst sub-fabrics in porphyritic granites suggest that these record a significant part of the strain history. Thus, the fabric ellipsoid for megacrysts evolves closer to the strain ellipsoid than for smaller markers. This behaviour results from the fact that the matrix forms of the melt and smaller crystals behave like a continuous medium relative to the megacrysts. Consequently, in the absence of these markers, and because the fabric intensities of smaller particles such as biotite are stable and lower than predicted by the theory, finite strain remains indeterminate. In that case, strain quantification and geometry of the flow requires the addition of external constraints based on other structural approaches.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arbaret, L. 1995. Orientation preferentielle de forme dans les magmas: modelisation analogique 3D en cisaillement simple (Unpublished Thesis, Universite Blaise-Pascal, Clermont-Ferrand).Google Scholar
Arbaret, L., Diot, H., Bouchez, J. L. & Launeau, P. 1995. Threedimensional shape preferred orientation of particles in experimental simple shear flow: AMS fabric and image analysis. Journal of the Czech Geological Society 40/3, B57.Google Scholar
Arbaret, L., Diot, H. & Bouchez, J. L. 1996. Shape fabrics of particles in low concentration suspensions: 2D analogue experiments and application to tiling in magma. Journal of Structural Geology 18, 94150.10.1016/0191-8141(96)00011-9Google Scholar
Arbaret, L., Diot, H., Bouchez, L., de Saint Blanquat, M. & Lespinasse, P. 1997. Analogue 3D simple shear experiments of magmatic biotite subfabric. In Bouchez, J.L. et al. (eds) Granites: from segregation of melt to emplacement fabric, 12943. Dordrecht: Kluwer.Google Scholar
Arbaret, L., Mancktelow, N. S. & Burg, J. P. 2001. Effect of shape and orientation on rigid particle rotation and matrix deformation in simple shear flow. Journal of Structural Geology 23, 11325.10.1016/S0191-8141(00)00067-5Google Scholar
Arbaret, L., Launeau, P. & Diot, H. in press. Shape and magnetic fabrics evolution of magnetite particles in analogue threedimensional simple shear flow. Tectonophysics. Bartok, W. & Mason, S. G. 1957. Particle motions in sheared suspensions. V. Rigid rods and collision doublets of spheres. Journal of Colloid and Interface Science 12, 24362.Google Scholar
Benn, K. & Allard, B. 1989. Preferred mineral orientations related to magmatic flow in ophiolite layered gabbros. Journal of Petrology 30, 9256.10.1093/petrology/30.4.925Google Scholar
Berthc, D., Choukroune, P. & Jegouzo, P. 1979. Orthogneiss, mylonite and non-coaxial deformation of granites: the example of the South Armorican Shear Zone. Journal of Structural Geology 1, 3142.10.1016/0191-8141(79)90019-1Google Scholar
Bhattacharyya, D. S. 1966. Orientation of mineral lineation along the flow direction in rocks. Tectonophysics 3, 2933.Google Scholar
Blanchard, J. P., Boyer, P. & Gagny, C. 1979. Un nouveau critere de sens de mise en place dans une caisse filonienne: Le ‘pincement' des mineraux aux epontes. Tectonophysics 53, 125.10.1016/0040-1951(79)90352-4Google Scholar
Blumenfeld, P. 1983. Le ‘tuilage des megacristaux', un critere d'ecoulement rotationnel pour les fluidalites des roches magmatiques. Application au granite de Barbey-Seroux (Vosges, France). Bulletin de la Societe Geologique de France 25, 30918.Google Scholar
Blumenfeld, P. & Bouchez, J. L. 1988. Shear criteria in granite and migmatite deformed in the magmatic and solid states. Journal of Structural Geology 4, 36172.10.1016/0191-8141(88)90014-4Google Scholar
Borradaile, G J. 1988. Magnetic susceptibility, petrofabrics and strain. Tectonophysics 156, 120.Google Scholar
Borradaile, G.J . & Henry, B. 1997. Tectonic applications of magnetic susceptibility and its anisotropy. Earth-Science Reviews 42, 4993.10.1016/S0012-8252(96)00044-XGoogle Scholar
Borradaile, G. J. & Werner, T. 1994. Magnetic anisotropy of some phyllosilicates. Tectonophysics 235, 22318.10.1016/0040-1951(94)90196-1Google Scholar
Bouchez, J. L., Delas, C , Gleizes, G. & Nedelec, A. 1992. Submagmatic microfractures in granites. Geology 20, 358.10.1130/0091-7613(1992)020<0035:SMIG>2.3.CO;22.3.CO;2>Google Scholar
Burgers, J. M. 1938. On the motion of small elongated form suspended in a viscous fluid. Verhandelingen der Konijkloke Nederlandse Akademie van Wetenschappen 16,11 384.Google Scholar
Cruden, A. 1990. Flow and Fabric development during the diapiric rise of magma. Journal of Geology 98, 68198.10.1086/629433Google Scholar
Curie, P. 1894. Sur la symetrie dans les phenomenes physiques, symetrie d'un champ electrique et d'un champ magnetique. Journal de Physique, Paris 3, 39315.Google Scholar
Debat, P, Sirieys, P., Deramond, J. & Soula, J. C. 1975. Paleodeformation d'un massif orthogneissique (massif des Cammazes, Montagne Noire Occidentale, France). Tectonophysics 28, 15983.Google Scholar
Eirich, F. & Mark, H. 1937. Uber losungsmittelbindung durch Immobilisierung. Papierfabrikant 27, 25158.Google Scholar
Ferguson, C. C. 1979. Rotations of elongate rigid particles in slow non-Newtonian flows. Tectonophysics 60, 24762.10.1016/0040-1951(79)90162-8Google Scholar
Fernandez, A. 1978. Fonction de distribution de 1'orientation de marqueurs lineaires lors de la deformation par aplatissement a deux dimensions. Comptes Rendus de I'Academie des Sciences de Paris 286, 185760.Google Scholar
Fernandez, A. 1981. Une Generalisation du modele de March applicable a l'analyse des orientations preferentielles de forme issues de la deformation coaxiale dans les roches eruptives. Comptes Rendus de I'Academie des Sciences de Paris 293, 1091—4.Google Scholar
Fernandez, A. 1982. Signification des symetries de fabrique monocliniques dans les roches magmatiques. Comptes Rendus de I'Academie des Sciences de Paris II, 9958.Google Scholar
Fernandez, A. 1983. Strain analysis of a typical granite of the lesser himalayan cordierite granite belt: the Manshera pluton, northern Pakistan. In Shams, F. A. (ed.) Granites of Himalayas, Karakorum and Hindukush, 18399. Lahore: Institute of Geology, Punjab University.Google Scholar
Fernandez, A. 1984. Etude theorique et experimentale du developpement de la fabrique dans les roches magmatiques. Application a l'etude structurale des granito'ides (Unpublished Thesis, University of Clermont-Ferrand).Google Scholar
Fernandez, A. 1987. Preferred orientation developed by rigid markers in two-dimensional simple shear strain: a theoretical and experimental study. Tectonophysics 136, 1518.10.1016/0040-1951(87)90337-4Google Scholar
Fernandez, A. 1988. Strain analysis from shape preferred orientation of magmatic rocks. In Talbot, C. J. (ed.) Geological Kinematics and Dynamics (in honour of the 70lh birthday of Hans Ramberg). Bulletin of the Geological Institute, University of Uppsala 14, 617.Google Scholar
Fernandez, A., Febesse, J. L. & Mezure, J. F. 1983. Theoretical and experimental study of fabrics developed by different shaped markers in two-dimensional simple shear. Bulletin de la Societe Geologique de France 7, 31926.10.2113/gssgfbull.S7-XXV.3.319Google Scholar
Fernandez, A., Machado da Silva, G. & Fernandez-Catuxo, J. 1995. Modelisation analogique du developpement de 1'orientation preferentielle 3D dans les roches magmatiques. Compte Rendus de I'Academie des Sciences de Paris 320, 1051—4.Google Scholar
Fernandez, A. & Barbarin, B. 1991. Relative rheology of coeval mafic and felsic magmas: nature of resulting interaction processes and shape and mineral fabrics of mafic microgranular enclaves. In Didier, J. & Barbarin, G. (eds) Enclaves and granite petrology, 26375. Amsterdam: Elsevier.Google Scholar
Fernandez, A. & Fernandez-Catuxo, J. 1997. 3D biotite shape fabric experiments under simple shear strain. In Bouchez, J.L. et al. (eds) Granites: from segregation of melt to emplacement fabric, 14558. Dordrecht: Kluwer.Google Scholar
Fernandez, A. & Laboue, M. 1983. Developpement de 1'orientation preferentielle de marqueurs rigides lors d'une deformation par aplatissement de revolution. Etude theorique et application aux structures de mise en place du granite de la Margeride au voisinage du bassin de Malzieu. Bulletin de la Societe Geologique de France 25, 32734.10.2113/gssgfbull.S7-XXV.3.327Google Scholar
Fernandez, A. & Laporte, D. 1991. Significance of low symmetry fabrics in magmatic rocks. Journal of Structural Geology 13, 33717.10.1016/0191-8141(91)90133-4Google Scholar
Flinn, D. 1965. On the symmetry principle and the deformation ellipsoid. Geological Magazine 102, 3645.10.1017/S0016756800053851Google Scholar
Freeman, B. 1985. The motion of rigid ellipsoidal particles in slow flows. Tectonophysics 113, 16383.10.1016/0040-1951(85)90115-5Google Scholar
Gay, N. C. 1966. Orientation of mineral lincation along the flow direction in rocks: a discussion. Tectonophysics 3, 55964.10.1016/0040-1951(66)90031-XGoogle Scholar
Gay, N. C. 1968a. The motion of rigid particles embedded in a viscous fluid during pure shear deformation of the fluid. Tectonophysics 5, 818.10.1016/0040-1951(68)90082-6Google Scholar
Gay, N. C. 1968b. Pure shear and simple shear deformation of inhomogeneous viscous fluid. 1. Theory. Tectonophysics 5, 21134.10.1016/0040-1951(68)90065-6Google Scholar
Ghosh, S. K. & Sengupta, S. 1973. Compression and Simple shear of test models with rigid and deformable inclusions. Tectonophysics 17, 13375.10.1016/0040-1951(73)90068-1Google Scholar
Ghosh, S. K. & Ramberg, H. 1976. Reorientation of inclusions by combination of pure shear and simple shear. Tectonophysics 17, 13375.Google Scholar
Goldsmith, H. L. & Mason, S. G. 1967. The microrheology of dispersions. In Eirich, F. R. (ed.) Rheology, Theory and Applications, Vol. 4, 85250. New York: Academic Press.Google Scholar
Harvey, P. K. & Ferguson, C. C. 1978. A computer simulation approach to textural interpretation in crystalline rocks. In Merriam, D. F. (ed.) Recent Advances in Geomathematics, 201-32. Oxford: Pergamon.10.1016/B978-0-08-022095-6.50019-8Google Scholar
Harvey, P. K. & Laxton, R. R. 1980. The estimation of finite strain from orientation distribution of passively deformed linear markers: eigenvalue relationship. Tectonophysics 70, 285307.10.1016/0040-1951(80)90283-8Google Scholar
Hinch, E. J. & Leal, L. G. 1979. Rotation of small non-axisymmetric particles in a simple shear flow. Journal of Fluid Mechanics 92, 591608.10.1017/S002211207900077XGoogle Scholar
Hassenforder, B. 1987. La tectonique panafricaine et varisque de l'anti-Atlas dans le massif du Kerdous, Maroc (Unpublished Thesis, University of Strasbourg).Google Scholar
Hrouda, F. 1982. Magnetic anisotropy of rocks and its application in geology and geophysics. Geophysical Survey 5, 3782.Google Scholar
Hrouda, D. & Jezek, J. 1999. Theoretical models of magnetic anisotropy to strain relationship: effect of triaxial magnetic grains. Tectonophysics 301, 18390.Google Scholar
Hutton, D. 1982. A method for the determination of the initial shapes of deformed xenoliths in granitoids. Tectonophysics 85, 4550.10.1016/0040-1951(82)90100-7Google Scholar
Ildefonse, B., Launeau, P., Bouchez, J. L. & Fernandez, A. 1992a. Effect of mechanical interactions on the development of shape preferred orientations: a two-dimensional experimental approach. Journal of Structural Geology 14, 7383.10.1016/0191-8141(92)90146-NGoogle Scholar
Ildefonse, B., Sokoutis, D. & Mancktelow, N. S. 1992b. Mechanical interactions between rigid particles in a deforming ductile matrix. Analogue experiments in simple shear flow. Journal of Structural Geology 10, 125366.Google Scholar
Ildefonse, B., Arbaret, L. & Diot, H. 1997. Rigid particles in simple shear flow: is their preferred orientation periodic or steady state? In Bouchez, J.-L. et al. (eds) Granites: from segregation of melt to emplacement fabric, 17785. Dordrecht: Kluwer.Google Scholar
Ildefonse, B. & Mancktelow, N. S. 1993. Deformation around rigid particles: the influence of slip at the particle/matrix interface. Tectonophysics 221, 34559.10.1016/0040-1951(93)90166-HGoogle Scholar
Jeffery, G.B. 1922. The motion of ellipsoidal particles immersed in a viscous fluid. Proceedings of the Royal Society of London 102, 20111.Google Scholar
Jelinek, V. 1981. Characterization of the magmatic fabric of rocks. Tectonophysics 79, 637.Google Scholar
Jezek, J. 1994. Software for modelling the motion of rigid triaxial ellipsoidal particles in viscous flow. Computers & Geosciences 20, 40924.10.1016/0098-3004(94)90049-3Google Scholar
Jezek, J., Melka, R., Schulmann, K. & Venera, Z. 1994. The behaviour of rigid triaxial particles in viscous flows-modelling of fabric evolution in a multiparticle system. Tectonophysics 229, 16580.10.1016/0040-1951(94)90027-2Google Scholar
Jezek, J., Schulmann, K. & Segeth, K. 1996. Fabric evolution of rigid inclusions during mixed coaxial and simple shear flows. Tectonophysics 257, 20321.10.1016/0040-1951(95)00133-6Google Scholar
Jezek, J., Ildefonse, B. & Fernandez, A. 1999. Directional behaviour of suspensions of low concentration. Application and limits of the Jeffery's model. Journal of Conference Abstracts 4, 617.Google Scholar
Kerr, C. K. & Lister, J. R. 1991 The effects of shape on crystal settling and on the Rheology of magmas. Journal of Geology 99, 45767.Google Scholar
Launeau, P., Bouchez, J. L. & Benn, K. 1990. Shape preferred orientation of object populations: automatic analysis of digitised images. Tectonophysics 180, 20111.Google Scholar
Launeau, P. & Cruden, A. R. 1998. Magmatic fabric acquisition mechanism in a syenite: Results of a combined anisotropy of magnetic susceptibility and image analysis study. Journal of Geophysical Research 103, 506789.10.1029/97JB02670Google Scholar
Lejeune, A. M. & Richet, P. 1995. Rheology of Crystal-bearing silicate melts: An experimental study at high viscosities. Journal of Geophysical Research 100, 421529.Google Scholar
Manson, S. G. & Manley, R. S. 1956. Particle motion in sheared suspension: orientations and interactions of rigid rods. Proceedings of the Royal Society of London 238, 11731.Google Scholar
March, A. 1932. Mathematische Theorie der Regelung nach der korngestallt bei affiner Deformation. Zeitschrift Kristallographie 81, 28597.Google Scholar
Marre, J. 1986. The Structural Analysis of Granitic Rocks. Amsterdam: Elsevier.Google Scholar
Mezure, J. F. & Negroni, J. M. 1983. Relations structurales, petrographiques et geochimiques de deux intrusions magmatiques a potentialite metallogenique: les granites de Gelles et de Meymac (Massif Central francais). Bulletin de la Societe Geologique de France 7, 7182.Google Scholar
Nicolas, A. 1992. Kinematics in magmatic rocks with special peference to gabbros. Journal of Petrology 33, 891915.10.1093/petrology/33.4.891Google Scholar
Panozzo, R. 1987. Two-dimensional strain determination by the inverse SURFOR method. Journal of Structural Geology 9, 11519.Google Scholar
Passchier, C. W. 1987. Stable positions of rigid objects in non-coaxial flow—a study in vorticity analysis. Journal of Structural Geology 9, 67990.Google Scholar
Passchier, C. W., ten Brink, C. E., Bons, P. D. & Sokoutis, D. 1993. (5-objects as a gauge for the stress sensitivity of strain-rate in mylonite. Earth and Planetary Science Letter 120, 23915.10.1016/0012-821X(93)90242-2Google Scholar
Paterson, M. S. & Weiss, L. E. 1961. Symmetry concepts in the structural analysis of deformed rocks. Geological Society of America Bulletin 72, 84182.Google Scholar
Paterson, S. R., Vernon, R. H. & Tobisch, O. T. 1989. A review of criteria for the identification of magmatic and tectonic foliations in granitoids. Journal of Structural Geology 11, 34963.Google Scholar
Ramberg, H. 1975. Particle paths, displacement and progressive strain applicable to rocks. Tectonophysics 28, 135.Google Scholar
Ramberg, H. & Ghosh, S. K. 1977. Rotation and strain of linear and planar structures in three-dimensional progressive deformation. Tectonophysics 40, 30937.Google Scholar
Ramsay, J. G. & Huber, M. I. 1983. The Techniques of Modern Structural Geology, Vol. 1: Strain Analysis. London: Academic Press.Google Scholar
Reed, L. J. & Tryggvason, E. 1974. Preferred orientation of rigid particles in a viscous matrix deformed by pure shear and simple shear. Tectonophysics 24, 8598.10.1016/0040-1951(74)90131-0Google Scholar
Rees, A. I. 1968. The production of preferred orientation in a concentrated dispersion of elongated and flattened grains. Journal of Geology 76, 45765.Google Scholar
Rees, A. I. 1979. The orientation of grains in a sheared dispersion. Tectonophysics 55, 27587.Google Scholar
Rochette, P., lackson, M. & Aubourg, C. 1992. Rock magnetism and the interpretation of anisotropy of magnetic susceptibility. Reviews of Geophysics 30, 20926.10.1029/92RG00733Google Scholar
Sanderson, D. J. & Manchini, W. R. D. 1984. Transpression. Journal of Structural Geology 6, 44958.Google Scholar
Shimamoto, T. & Ikeda, Y. 1976. A simple algebraic method for strain estimation from deformed ellipsoidal objects. 1. Basic theory. Tectonophysics 36, 31537.10.1016/0040-1951(76)90107-4Google Scholar
Tarling, D. H. & Hrouda, F. 1993. The magnetic anisotropy of rocks. New York: Chapman and Hall, ten Brink, C. E. & Passchier, C. W. 1995. Modelling of mantle porphyroclasts using non-Newtonian rock analogue materials. Journal of Structural Geology 17, 13146.Google Scholar
Tikoff, B. & Teyssier, C. 1994. Strain and fabric analyses based on porphyroclast interaction. Journal of Structural Geology 16, 477-91.Google Scholar
Tullis, T. E. 1976. Experiments on the origin of slaty cleavage and schistosity. Geological Society of America Bulletin 87, 74553. Van der Molen, I. & Paterson, M. S. 1979. Experimental deformation of partially-melted granite. Contributions to Mineralogy and Petrology 70, 299318.Google Scholar
Vernon, R. H., Etheridge, M. A. & Wall, V. J. 1988. Shape and microstructure of microgranitoid enclaves: indicators of magma mingling and flow. Lithos 22, 112.10.1016/0024-4937(88)90024-2Google Scholar
Wang, L. P., Wexler, A. S. & Zhou, Y. 1998. On the collision rate of small particles in isotropic turbulence. 1. Zero-inertia case. Physics of Fluids 10, 26676.Google Scholar
Ward, S. G. & Whitmore, R. L. 1950. Studies of the viscosity and sedimentation of suspension. Part 1: the viscosity of suspensions of spherical particles. British Journal of Applied Physics 1, 28690.10.1088/0508-3443/1/11/303Google Scholar
Willis, D. G. 1977. A kinematic model of preferred orientation. Geological Society of America Bulletin 88, 88394.10.1130/0016-7606(1977)88<883:AKMOPO>2.0.CO;22.0.CO;2>Google Scholar
Woodcock, N. H. 1977. Specification of fabric shapes using an eigenvalue method. Geological Society of America Bulletin 88, 123136.Google Scholar