Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T20:13:07.453Z Has data issue: false hasContentIssue false

Volcanic Ash as a Precursor for SARS-CoV-2 Infection Among Susceptible Populations in Ecuador: A Satellite Imaging and Excess Mortality-Based Analysis

Published online by Cambridge University Press:  19 May 2021

Theofilos Toulkeridis*
Affiliation:
Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador Universidad de Especialidades Turísticas, Quito, Ecuador
Rachid Seqqat
Affiliation:
Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
Marbel Torres Arias
Affiliation:
Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
Rodolfo Salazar-Martinez
Affiliation:
Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
Esteban Ortiz-Prado
Affiliation:
OneHealth Global Research Group, Universidad de las Américas, Quito, Ecuador
Scarlet Chunga
Affiliation:
Universita degli studi dell’Insubria, Italia
Karla Vizuete
Affiliation:
Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
Marco Heredia-R
Affiliation:
Centro de Innovación en Tecnología para el Desarrollo, Universidad Politécnica de Madrid (UPM), Madrid, Spain
Alexis Debut
Affiliation:
Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
*
Corresponding author: Theofilos Toulkeridis, Email: [email protected].

Abstract

The global coronavirus disease 2019 (COVID-19) pandemic has altered entire nations and their health systems. The greatest impact of the pandemic has been seen among vulnerable populations, such as those with comorbidities like heart diseases, kidney failure, obesity, or those with worse health determinants such as unemployment and poverty. In the current study, we are proposing previous exposure to fine-grained volcanic ashes as a risk factor for developing COVID-19. Based on several previous studies it has been known since the mid 1980s of the past century that volcanic ash is most likely an accelerating factor to suffer from different types of cancer, including lung or thyroid cancer. Our study postulates, that people who are most likely to be infected during a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) widespread wave will be those with comorbidities that are related to previous exposure to volcanic ashes. We have explored 8703 satellite images from the past 21 y of available data from the National Oceanic and Atmospheric Administration (NOAA) database and correlated them with the data from the national institute of health statistics in Ecuador. Additionally, we provide more realistic numbers of fatalities due to the virus based on excess mortality data of 2020-2021, when compared with previous years. This study would be a very first of its kind combining social and spatial distribution of COVID-19 infections and volcanic ash distribution. The results and implications of our study will also help countries to identify such aforementioned vulnerable parts of the society, if the given geodynamic and volcanic settings are similar.

Type
Original Research
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of Society for Disaster Medicine and Public Health, Inc

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

John Hopkins Coronavirus Research Center. COVID-19 data in motion. 2021. https://coronavirus.jhu.edu/. Accessed May 27, 2021.Google Scholar
Worldometer. 2021. Coronavirus cases. https://www.worldometers.info/coronavirus/. Accessed May 27, 2021.Google Scholar
Adams, ML, Katz, DL, Grandpre, J. Population-based estimates of chronic conditions affecting risk for complications from coronavirus disease, United States. Emerg Infect Dis. 2020;26(8):1831.CrossRefGoogle Scholar
Ong, SWX, Tan, YK, Chia, PY, et al. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA. 2020;323(16):1610-1612.CrossRefGoogle ScholarPubMed
OMS (Organización Mundial de la Salud). Prevención y control de las infecciones respiratorias agudas con tendencia epidémica y pandémica durante la atención sanitaria. Ginebra: Organización Mundial de la Salud. 2014. https://www.paho.org/hq/dmdocuments/2014/2014-cha-prevencion-control-atencion-sanitaria.pdf. Accessed May 27, 2021.Google Scholar
Smieszek, T, Lazzari, G, Salathé, M. Assessing the dynamics and control of droplet- and aerosol-transmitted influenza using an indoor positioning system. Sci Rep. 2019;9(1):2185. doi: 10.1038/s41598-019-38825-y CrossRefGoogle ScholarPubMed
Schneider, E, Bermingham, A, Pebody, R, et al. SRAS, MERS, and other coronavirus infections. In: Heymann DL, ed. Control of Communicable Diseases Manual. 20th ed. Washington, DC: American Public Health Association; 2016.Google Scholar
Guo, ZD, Wang, ZY, Zhang, SF, et al. Aerosol and surface distribution of severe acute respiratory syndrome coronavirus 2 in hospital wards, Wuhan, China, 2020. Emerg Infect Dis. 2020;26(7):1583-1591.CrossRefGoogle Scholar
Bahl, P, Doolan, C, de Silva, C, et al. Airborne or droplet precautions for health workers treating COVID-19? J Infect Dis. 2020:jiaa189.Google Scholar
Schuit, M, Ratnesar-Shumate, S, Yolitz, J, et al. Airborne SRAS-CoV-2 is rapidly inactivated by simulated sunlight. J Infect Dis. 2020;222(4):564-571.CrossRefGoogle Scholar
Bi, Q, Wu, Y, Mei, S, et al. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study. Lancet Infect Dis. 2020;20(8):911-919.CrossRefGoogle ScholarPubMed
Cheng, HY, Jian, SW, Liu, DP, et al. Contact tracing assessment of COVID-19 transmission dynamics in Taiwan and risk at different exposure periods before and after symptom onset. JAMA Intern Med. 2020;180(9):1156-1163.CrossRefGoogle ScholarPubMed
Wang, Y, Tian, H, Zhang, L, et al. Reduction of secondary transmission of SRASCoV-2 in households by face mask use, disinfection and social distancing: a cohort study in Beijing, China. BMJ Glob Health. 2020;5(5):e002794.CrossRefGoogle ScholarPubMed
Guerra, FM, Bolotin, S, Lim, G, et al. The basic reproduction number (R0) of measles: a systematic review. Lancet Infect Dis. 2017;17(12):e420-e428.CrossRefGoogle ScholarPubMed
Park, M, Cook, AR, Lim, JT, et al. A systematic review of COVID-19 epidemiology based on current evidence. J Clin Med. 2020;9(4):967.CrossRefGoogle ScholarPubMed
Anderson, A. Dollarization: a case study of Ecuador. J Econ Dev Studies. 2016;4(2):56-60.Google Scholar
Jin, S-J, Lim, S-Y, Yoo, S-H. Causal relationship between oil consumption and economic growth in Ecuador. Energy Sources B: Econ Plan Policy. 2016;11(9):782-787.CrossRefGoogle Scholar
Toulkeridis, T, Chunga, K, Rentería, W, et al. The 7.8 Mw earthquake and tsunami of the 16th April 2016 in Ecuador - Seismic evaluation, geological field survey and economic implications. Sci Tsunami Hazards. 2017;36:197-242 Google Scholar
Wolff, J. Ecuador after Correa: the struggle over the “Citizens’ Revolution”. Rev Cien Política. 2018;38(2):281-302.Google Scholar
Hidrobo, JA. Power and Industrialization in Ecuador. London: Routledge; 2019.CrossRefGoogle Scholar
Schodt, DW. Ecuador: An Andean Enigma. London: Routledge; 2019.CrossRefGoogle Scholar
Heuveline, P, Tzen, M. Three CoViD-19 mortality indicators for temporal and international comparisons. medRxiv. 2020.04.29.20085506.Google Scholar
Sornette, D, Mearns, E, Schatz, M, et al. Interpreting, analysing and modelling COVID-19 mortality data. Nonlinear Dyn. 2020;1-26.CrossRefGoogle Scholar
Cepaluni, G, Dorsch, M, Branyiczki, R. Political regimes and deaths in the early stages of the COVID-19 pandemic. SSRN. 2020. doi: 10.2139/ssrn.3586767 CrossRefGoogle Scholar
El COMERCIO. Ecuador registra 25 519 muertes inusuales en cinco meses de pandemia. 2020. https://www.elcomercio.com/actualidad/ecuador-muertes-exceso-covid19-provincias.html?fbclid=IwAR1xS64gsz2plQtTlfZ5ukJDslyebsTCreSezWC8N0QiighyoahlBYA-6Mo. Accessed May 28, 2021.Google Scholar
Instituto Nacional de Estadistica y Censos. Población y Demografía. 2021. https://www.ecuadorencifras.gob.ec/censo-de-poblacion-y-vivienda/. Accessed May 28, 2021.Google Scholar
Cronin, SJ, Stewart, C, Zernack, AV, et al. Volcanic ash leachate compositions and assessment of health and agricultural hazards from 2012 hydrothermal eruptions, Tongariro, New Zealand. J Volcanol Geotherm Res. 2014;286:233-247.CrossRefGoogle Scholar
Jenkins, SF, Wilson, TM, Magill, C, et al. Volcanic ash fall hazard and risk. Glob Volcanic Hazards Risk. 2015;173-222.CrossRefGoogle Scholar
Bourne, AJ, Abbott, PM, Albert, PG, et al. Underestimated risks of recurrent long-range ash dispersal from northern Pacific Arc volcanoes. Sci Rep. 2016;6(1):1-8.Google ScholarPubMed
Beck, BD, Brain, JD, Bohannon, DE. The pulmonary toxicity of an ash sample from the Mt. St. Helens volcano. Exp Lung Res. 1981;2(4):289-301.CrossRefGoogle Scholar
Yano, E, Yokoyama, Y, Nishii, S. Chronic pulmonary effects of volcanic ash: an epidemiologic study. Arch Environ Health. 1986;41(2):94-99.CrossRefGoogle ScholarPubMed
Buist, AS, Vollmer, WM, Johnson, LR, et al. A four-year prospective study of the respiratory effects of volcanic ash from Mount St. Helens. Am Rev Respir Dis. 1986;133:526-534.Google Scholar
Baxter, PJ, Ing, R, Falk, H, et al. Mount St. Helens eruptions: the acute respiratory effects of volcanic ash in a North American community. Arch Environ Health. 198338(3):138-143.CrossRefGoogle Scholar
Kraemer, MJ, McCarthy, MM. Childhood asthma hospitalization rates in Spokane County, Washington: impact of volcanic ash air pollution. J Asthma. 1985;22(1):37-43.CrossRefGoogle ScholarPubMed
Yano, E, Yokoyama, Y, Higashi, H, et al. Health effects of volcanic ash: a repeat study. Arch Environ Health. 1990;45(6):367-373.CrossRefGoogle ScholarPubMed
Gudmundsson, G. Respiratory health effects of volcanic ash with special reference to Iceland. A review. Clin Respir J. 2011;5(1):2-9.CrossRefGoogle ScholarPubMed
Arnbjörnsson, E, Arnbjörnsson, A, Ólafsson, A. Thyroid cancer incidence in relation to volcanic activity. Arch Environ Health. 1986;41(1):36-40.CrossRefGoogle ScholarPubMed
Buist, AS. Evaluation of the short and long term effects of exposure to inhaled volcanic ash from Mt. St. Helens. In: Kagoshima International Conference on Volcanoes Proceedings. Tokyo: National Institute for Research Advancement; 1988;709-712.Google Scholar
Russo, M, Malandrino, P, Addario, WP, et al. Several site-specific cancers are increased in the volcanic area in Sicily. Anticancer Res. 2015;35(7):3995-4001.Google ScholarPubMed
Sierra, MS, Soerjomataram, I, Forman, D. Thyroid cancer burden in Central and South America. Cancer Epidemiol. 2016;44:S150-S157.CrossRefGoogle ScholarPubMed
Salazar-Vega, J, Ortiz-Prado, E, Solis-Pazmino, P, et al. Thyroid cancer in Ecuador, a 16 years population-based analysis (2001-2016). BMC Cancer. 2019;19(1):294.CrossRefGoogle ScholarPubMed
Cucinotta, D, Vanelli, M. WHO declares COVID-19 a pandemic. Acta Biomed. 2020;91(1):157-160. doi: 10.23750/abm.v91i1.9397 Google ScholarPubMed
Zheng, YY, Ma, YT, Zhang, JY, et al. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020;17(5):259-260. doi: 10.1038/s41569-020-0360-5 CrossRefGoogle ScholarPubMed
Driggin, E, Madhavan, MV, Bikdeli, B, et al. Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. J Am Coll Cardiol. 2020;75(18):2352-2371. https://doi.org/10.1016/j.jacc.2020.03.031 CrossRefGoogle ScholarPubMed
Lina, B. Grippe. EMC - AKOS (Traité de Médecine). 2016;12(1):1-11. [Article 4-1200].Google Scholar
Ruan, Q, Yang, K, Wang, W, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(5):846-848.CrossRefGoogle Scholar
Hoffmann, M, Kleine-Weber, H, Schroeder, S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271-280.e8. doi: 10.1016/j.cell.2020.02.052 CrossRefGoogle ScholarPubMed
South, AM, Shaltout, HA, Washburn, LK, et al. Fetal programming and the angiotensin-(1–7) axis: a review of the experimental and clinical data. Clin Sci (Lond). 2019;133:55-74.CrossRefGoogle Scholar
Sparks, MA, Crowley, SD, Gurley, SB, et al. Classical renin-angiotensin system in kidney physiology. Compr. Physiol. 2014;4:1201-1228.CrossRefGoogle ScholarPubMed
Alhogbani, T. Acute myocarditis associated with novel Middle East respiratory syndrome coronavirus. Ann Saudi Med. 2016;36(1):78-80.CrossRefGoogle ScholarPubMed
Wu, Q, Zhou, L, Sun, X, et al. Altered lipid metabolism in recovered SARS patients twelve years after infection. Sci Rep. 2017;7(1):9110.CrossRefGoogle ScholarPubMed
Ferlita, S, Yegiazaryan, A, Noori, N, et al. Type 2 diabetes mellitus and altered immune system leading to susceptibility to pathogens, especially mycobacterium tuberculosis. J Clin Med. 2019;8(12):2219.CrossRefGoogle ScholarPubMed
Critchley, JA, Carey, IM, Harris, T, et al. Glycemic control and risk of infections among people with type 1 or type 2 diabetes in a large primary care cohort study. Diabetes Care. 2018;41:2127-2135.CrossRefGoogle ScholarPubMed
Huttunen, R, Syrjänen, J. Obesity and the risk and outcome of infection. Int J Obes (Lond). 2013;37:333-340.CrossRefGoogle ScholarPubMed
Honce, R, Schultz-Cherry, S. Impact of obesity on influenza a virus pathogenesis, immune response, and evolution. Front Immunol. 2019;10:1071.CrossRefGoogle ScholarPubMed
Dixon, AE, Peters, U. The effect of obesity on lung function. Expert Rev Respir Med. 2018;12:755-767.CrossRefGoogle ScholarPubMed
Li, B, Yang, J, Zhao, F, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol. 2020;109(5) doi: 10.1007/s00392-020-01626-9 CrossRefGoogle Scholar
Mossman, BT, Glenn, RE. Bioreactivity of the crystalline silica polymorphs, quartz and cristobalite, and implications for occupational exposure limits (OELs). Crit Rev Toxicol. 2013;43(8):632-660. doi: 10.3109/10408444.2013.818617 CrossRefGoogle ScholarPubMed
Dostert, C, Petrilli, V, Van Bruggen, R, et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science. 2008;320:674-677. doi: 10.1126/science.1156995 CrossRefGoogle ScholarPubMed
Hornung, V, Bauernfeind, F, Halle, A, et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol. 2008;9:847-856. doi: 10.1038/ni.1631 CrossRefGoogle ScholarPubMed
Driscoll, KE, Maurer, JK. Cytokine and growth factor release by alveolar macrophages: potential biomarkers of pulmonary toxicity. Toxicol Pathol. 1991;19:398-405. doi: 10.1177/0192623391019004-108 CrossRefGoogle ScholarPubMed
Huaux, F. New developments in the understanding of immunology in silicosis. Curr Opin Allergy Clin Immunol. 2007;7:168-173. doi: 10.1097/ACI.0b013e32802bf8a5 CrossRefGoogle ScholarPubMed
Damby, DE, Horwell, CJ, Baxter, PJ, et al. (2018) Volcanic ash activates the NLRP3 inflammasome in murine and human macrophages. Front Immunol. 2018;8:2000. doi: 10.3389/fimmu.2017.02000 CrossRefGoogle ScholarPubMed
Yang, M. Cell pyroptosis, a potential pathogenic mechanism of 2019-nCoV infection. SSRN. 2020:1-7. doi: 10.2139/ssrn.3527420 CrossRefGoogle Scholar
Cookson, BT, Brennan, MA. Pro-inflammatory programmed cell death. Trends Microbiol. 2001;9(3):113-114. doi: 10.1016/S0966-842X(00)01936-3 CrossRefGoogle Scholar
Panesar, NS. Lymphopenia in SARS. Lancet. 2003;361(9373):1985. doi: 10.1016/S0140-6736(03)13557-X CrossRefGoogle ScholarPubMed
Shi, C-S, Nabar, NR, Huang, N-N, et al. SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes. Cell Death Discov. 2019;5:101. doi: 10.1038/s41420-019-0181-7 CrossRefGoogle ScholarPubMed
Man, SM, Karki, R, Kanneganti, T-D. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 2017;277(1):61-75. doi: 10.1111/%20imr.12534 CrossRefGoogle ScholarPubMed
Zahid, A, Li, B, Kombe, AJK, et al. Pharmacological Inhibitors of the NLRP3 Inflammasome. Front Immunol. 2019;10:2538. doi: 10.3389/fimmu.2019.02538 CrossRefGoogle ScholarPubMed
Ma, S, Chen, J, Feng, J, et al. Melatonin ameliorates the progression of atherosclerosis via mitophagy activation and NLRP3 inflammasome inhibition. Oxid Med Cell Longev. 2018;2018:9286458. doi: 10.1155/2018/9286458 CrossRefGoogle ScholarPubMed
Zhang, Y, Li, X, Grailer, JJ, et al. Melatonin alleviates acute lung injury through inhibiting the NLRP3 inflammasome. J Pineal Res. 2016;60(4):405-414. doi: 10.1111/jpi.12322 CrossRefGoogle ScholarPubMed
Wang, X, Bian, Y, Zhang, R, et al. Melatonin alleviates cigarette smoke-induced endothelial cell pyroptosis through inhibiting ROS/NLRP3 axis. Biochem Biophys Res Commun. 2019;519(2):402-408. doi: 10.1016/j.bbrc.2019.09.005 CrossRefGoogle ScholarPubMed
Shi, C-S, Nabar, NR, Huang, N-N, et al. SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes. Cell Death Discov. 2019;5:101. doi: 10.1038/s41420-019-0181-7 CrossRefGoogle ScholarPubMed
Liu, J, Liao, X, Qian, S, et al. Community transmission of severe acute respiratory syndrome coronavirus 2, Shenzhen, China. 2020. Emerg Infect Dis. 2020;26(6):1320-1323. doi: 10.3201/eid2606.200239 Google ScholarPubMed
Ng, MY, Lee, EY, Yang, J, et al. Imaging profile of the COVID-19 infection: radiologic findings and literature review. Radiology: Cardiothoracic Imaging. 2019;2(1):e200034.Google Scholar
Zhang, Y, Chen, C, Zhu, S, et al. Isolation of 2019-nCoV from a stool specimen of a laboratory-confirmed case of the coronavirus disease 2019 (COVID-19). China CDC Weekly. 2020;2(8):123-124 CrossRefGoogle ScholarPubMed
Korber, B, Fischer, WM, Gnanakaran, S, et al. Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell. 2020;182(4):812-827.CrossRefGoogle ScholarPubMed
Zhang, L, Jackson, CB, Mou, H, et al. The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. BioRxiv 2020. doi: 10.1101/2020.06.12.148726.CrossRefGoogle Scholar
Zhou, B, Thao, TTN, Hoffmann, D, et al. SARS-CoV-2 spike D614G variant confers enhanced replication and transmissibility. bioRxiv. 2020.10.27. 357558. doi: 10.11/2020.10.27.357558Google Scholar
Volz, E, Hill, V, McCrone, J, et al. Evaluating the effects of SARS-CoV-2 spike mutation D614G on transmissibility and pathogenicity. Cell. 2021;184:64-75. doi: 10.1/j.cell.2020.11.020 CrossRefGoogle ScholarPubMed
Hartley, PD, Tillett, RL, AuCoin, DP, et al. Genomic surveillance revealed prevalence of unique SARS-CoV-2 variants bearing mutation in the RdRp gene among Nevada patients. medRxiv. 2020;2020.08.21.20178863.CrossRefGoogle Scholar
Galloway, SE, Paul, P, MacCannell, DR, et al. Emergence of SARS-CoV-2 b. 1.1.7 lineage—United States, December 29, 2020–January 12, 2021. MMWR Morb Mortal Wkly Rep. 2011;70(3):95-99.CrossRefGoogle Scholar
Quéromès, G, Destras, G, Bal, A, et al. Characterization of SARS-CoV-2 ORF6 deletion variants detected in a nosocomial cluster during routine genomic surveillance, Lyon, France. Emerg Microbes Infect. 2021;10(1):167-177.CrossRefGoogle Scholar
Toulkeridis, T. Volcanic Galápagos Volcánico. (bilingual Spanish-English). Quito, Ecuador: Ediecuatorial; 2011. 364 pp.Google Scholar
Toulkeridis, T. Volcanes Activos Ecuador. Quito, Ecuador: Santa Rita; 2013. 152 ppGoogle Scholar
Toulkeridis, T, Angermeyer, H. Volcanoes of the Galapagos. 2nd ed. Guayaquil, Ecuador: Abad Offest; 2019. 324 pp.Google Scholar
Lonsdale, P. Ecuadorian subduction system. AAPG Bull. 1978;62(12):2454-2477.Google Scholar
Pennington, WD. Subduction of the eastern Panama Basin and seismotectonics of northwestern South America. J Geophys Res Solid Earth. 1981;86(B11):10753-10770.CrossRefGoogle Scholar
Coltorti, M, Ollier, CD. Geomorphic and tectonic evolution of the Ecuadorian Andes. Geomorphology. 2000;32(1-2):1-19.CrossRefGoogle Scholar
Toulkeridis, T, Buchwald, R, Addison, A. when volcanoes threaten, scientists warn. Geotimes. 2007;52:36-39.Google Scholar
Padrón, E, Hernández, PA, Marrero, R, et al. Diffuse CO2 emission rate from the lake-filled Cuicocha and Pululagua calderas, Ecuador. J Volcanol Geothermal Res. 2008;176:163-169.CrossRefGoogle Scholar
Ridolfi, F, Puerini, M, Renzulli, A, et al. The magmatic feeding system of El Reventador volcano (Sub-Andean zone, Ecuador) constrained by mineralogy, textures and geothermobarometry of the 2002 erupted products. J Volcanol Geothermal Res. 2008;176:94-106.CrossRefGoogle Scholar
Padrón, E, Hernández, PA, Pérez, NM, et al. Fumarole/plume and diffuse CO2 emission from Sierra Negra volcano, Galapagos archipelago. Bull Volcanol. 2012;74:1509-1519.CrossRefGoogle Scholar
Toulkeridis, T, Arroyo, CR, Cruz D’Howitt, M, et al. Evaluation of the initial stage of the reactivated Cotopaxi volcano - analysis of the first ejected fine-grained material. Nat Hazards Earth Syst Sci. 2015;3(11):6947-6976.Google Scholar
Toulkeridis, T. Unexpected results of a seismic hazard evaluation applied to a modern hydroelectric plant in central Ecuador. J Struct Eng. 2016;43(4):373-380.Google Scholar
Vaca Mora, A, Arroyo Rodriguez, C, Debut, A, et al. Characterization of fine-grained material ejected by the Cotopaxi volcano employing x-ray diffraction and electron diffraction scattering techniques. Biol Med. 2016;8(3):280.Google Scholar
Toulkeridis, T, Zach, I. Wind directions of volcanic ash-charged clouds in Ecuador – implications for the public and flight safety. Geomatics Nat Hazards Risks. 2017;8(2):242-256.CrossRefGoogle Scholar
Rodriguez, F, Toulkeridis, T, Padilla, O, et al. Economic risk assessment of Cotopaxi volcano Ecuador in case of a future lahar emplacement. Nat Hazards (Dordr). 2017;85(1):605-618.CrossRefGoogle Scholar
Parra, R. Influence of spatial resolution in modeling the dispersion of volcanic ash in Ecuador. WIT Trans Ecol Environ. 2019;236:67-68.CrossRefGoogle Scholar
Echegaray-Aveiga, RC, Rodríguez, F, Toulkeridis, T, et al. 2019. Effects of potential lahars of the Cotopaxi volcano on housing market prices. J Appl Volcanol. 2019;9:1-11.Google Scholar
Smithsonian Institution Global Volcanism Program. 2021. https://volcano.si.edu/. Accessed May 28, 2021.Google Scholar
Global Volcanism Program. Report on Sangay (Ecuador). In: Sennert SK, ed. Weekly Volcanic Activity Report, 20 January – 26 January 2021. Smithsonian Institution and US Geological Survey.Google Scholar
Global Volcanism Program. Report on Cotopaxi (Ecuador). In: Sennert SK ed. Weekly Volcanic Activity Report, 24 August – 30 August 2016. Smithsonian Institution and US Geological Survey.Google Scholar
Global Volcanism Program. Report on Guagua Pichincha (Ecuador). In: Sennert SK, ed. Weekly Volcanic Activity Report, 8 June – 14 June 2016. Smithsonian Institution and US Geological Survey.Google Scholar
Global Volcanism Program. Report on Tungurahua (Ecuador). In: Sennert SK, ed. Weekly Volcanic Activity Report, 28 September – 4 October 2016. Smithsonian Institution and US Geological Survey.Google Scholar
Global Volcanism Program. Report on Reventador (Ecuador). In: Sennert SK, ed. Weekly Volcanic Activity Report, 20 January – 26 January 2021. Smithsonian Institution and US Geological Survey.Google Scholar
Toulkeridis, T, Seqqat, R, Torres, M, et al. COVID-19 Pandemic in Ecuador: a health disparities perspective. Rev Salud Publica Colombia. 2021;22(3):1-5.Google Scholar
Aviles-Campoverde, D, Chunga, K, Ortiz-Hernández, E, et al. Seismically induced soil liquefaction and geological conditions in the city of Jama due to the Mw7.8 Pedernales earthquake in 2016, NW Ecuador. Geosciences. 2021;11:20.CrossRefGoogle Scholar
Aguilera, C, Viteri, M, Seqqat, R, et al. Biological impact of exposure to extremely fine-grained volcanic ash. J Nanotechnol. 2018. doi: 10.1155/2018/7543859 CrossRefGoogle Scholar
Eichelberger, JC. Silicic volcanism: ascent of viscous magmas from crustal reservoirs. Annu Rev Earth Planet Sci. 1995;23(1):41-63.CrossRefGoogle Scholar
Németh, K, White, JD, Reay, A, et al. Compositional variation during monogenetic volcano growth and its implications for magma supply to continental volcanic fields. J Geol Soc London. 2003;160(4):523-530.CrossRefGoogle Scholar
Karbowska, B, Zembrzuski, W. Fractionation and mobility of thallium in volcanic ashes after eruption of Eyjafjallajökull (2010) in Iceland. Bull Environ Contam Toxicol. 2016;97(1):37-43.CrossRefGoogle ScholarPubMed
Ortiz-Prado, E, Simbaña-Rivera, K, Gomez-Barreno, L, et al. Clinical, molecular and epidemiological characterization of the SARS-CoV2 virus and the coronavirus Disease 2019 (COVID-19): a comprehensive literature review. Diagn Microbiol Infect Dis. 2020;98(1):115094.CrossRefGoogle Scholar
Adams-Prassl, A, Boneva, T, Golin, M, et al. (2020). The Impact of the Coronavirus Lockdown on Mental Health: Evidence from the US. Cambridge Working Papers in Economics 2037, Faculty of Economics, University of Cambridge.Google Scholar
Friedman, E, Friedman, J, Johnson, S, et al. Transitioning out of the coronavirus lockdown: a framework for zone-based social distancing. Front Public Health. 2020;8:266.CrossRefGoogle ScholarPubMed
Dubey, S, Biswas, P, Ghosh, R, et al. Psychosocial impact of COVID-19. Diabetes Metab Syndr. 2020;14(5):779-788.CrossRefGoogle ScholarPubMed
Heitzman, J. Impact of COVID-19 pandemic on mental health. Psychiatr Pol. 2020;54(2):187-198.CrossRefGoogle ScholarPubMed
Islam, SMD, Bodrud-Doza, M, Khan, RM, et al. Exploring COVID-19 stress and its factors in Bangladesh: a perception-based study. Heliyon. 2020;6(7):e04399.CrossRefGoogle ScholarPubMed
Remuzzi, A, Remuzzi, G. COVID-19 and Italy: what next?. Lancet. 2020;395(10231):1225-1228.CrossRefGoogle ScholarPubMed
Rello, J, Belliato, M, Dimopoulos, MA, et al. Update in COVID-19 in the intensive care unit from the 2020 HELLENIC Athens International symposium. Anaesth Crit Care Pain Med. 2020;39(6):723-730.CrossRefGoogle ScholarPubMed
Sasangohar, F, Jones, SL, Masud, FN, et al. Provider burnout and fatigue during the COVID-19 pandemic: lessons learned from a high-volume intensive care unit. Anesth Analg. 2020;131(1):106-111.CrossRefGoogle ScholarPubMed
Wu, X, Nethery, RC, Sabath, BM, et al. Exposure to air pollution and COVID-19 mortality in the United States. MedRxiv. 2020;2020.04.05.20054502.CrossRefGoogle Scholar
Bontempi, E. First data analysis about possible COVID-19 virus airborne diffusion due to air particulate matter (PM): the case of Lombardy (Italy). Environ Res. 2020;186:109639.CrossRefGoogle ScholarPubMed
Urrutia-Pereira, M, Mello-da-Silva, CA, Solé, D. COVID-19 and air pollution: a dangerous association? Allergol Immunopathol (Madr). 2020;48(5):496-499.CrossRefGoogle ScholarPubMed
Ban-Nai, T, & Muramatsu, Y. (2003). Transfer factors of radioiodine from volcanic-ash soil (Andosol) to crops. Journal of radiation research, 44(1), 23-30.CrossRefGoogle ScholarPubMed