Hostname: page-component-6bf8c574d5-685pp Total loading time: 0 Render date: 2025-03-07T16:14:36.427Z Has data issue: false hasContentIssue false

Effect of Inactivated Vaccines Against SARS-CoV-2 on Immunogenicity Outcome

Published online by Cambridge University Press:  04 March 2025

Yuke Ma
Affiliation:
School of Clinical Medicine, Henan University, Kaifeng, China
Yukuan Du
Affiliation:
Department of Clinical Laboratory, Huaihe Hospital of Henan University, Kaifeng, China
Jingnan Yang
Affiliation:
Department of Clinical Laboratory, Huaihe Hospital of Henan University, Kaifeng, China
Huichao Wang
Affiliation:
Department of Nephrology, The First Affiliated Hospital of Henan University, Kaifeng, China
Xuhong Lin*
Affiliation:
Department of Clinical Laboratory, Huaihe Hospital of Henan University, Kaifeng, China
*
Corresponding author: Xuhong Lin; Email: [email protected]

Abstract

Objectives

The purpose of this study was to measure and examine the levels of IgG, IgM, and Spike antibody induced by inactivated vaccines, including CoronaVac and BBIBP-CorV.

Methods

Two groups of healthy adults over 18 years old (50 participants per group), who had previously received 1 dose of either BBIBP-CorV or CoronaVac and receiving either a homologous booster of BBIBP-CorV or a heterologous booster of CoronaVac. Serum IgG, IgM, and Spike antibody levels against SARS-COV-2 were measured using magnetic particle chemiluminescence immunoassay and the ELISA method.

Results

The results showed that both spike antibody and IgG/IgM antibodies elicited by a CoronaVac booster following 1 dose of BBIBP-CorV were significantly higher than those elicited by either a homologous BBIBP-CorV booster or a heterologous BBIBP-CorV booster. The Spike antibody against SARS-COV-2 induced by the heterologous CoronaVac booster reached 200.3, which is substantially greater than that induced by the homologous BBIBP-CorV booster (127.5 pg/mL). Conversely, the Spike antibody against SARS-COV-2 induced by the heterologous BBIBP-CorV booster reached 53.93 pg/mL, which is substantially greater than that induced by the homologous CoronaVac booster (9.60 pg/mL).

Conclusions

In summary, CoronaVac is immunogenic as a booster dose following 1 dose of BBIBP-CorV and is immunogenically superior to both the homologous booster and the heterologous BBIBP-CorV booster.

Type
Original Research
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Society for Disaster Medicine and Public Health, Inc

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Deng, S-Q, Peng, H-J. Characteristics of and public health responses to the Coronavirus Disease 2019 outbreak in China. J Clin Med. 2020;9(2):575. doi: 10.3390/jcm9020575CrossRefGoogle Scholar
Huang, C, Wang, Y, Li, X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223):497506. doi: 10.1016/s0140-6736(20)30183-5CrossRefGoogle ScholarPubMed
WHO. (2020). WHO Coronavirus (COVID-19) Dashboard[J/OL]. Published December 2020. Accessed April 22, 2022. https://covid19.who.int/.Google Scholar
Rio, CD, Malani, PN, Omer, SB. Confronting the Delta Variant of SARS-CoV-2, Summer 2021. JAMA. 2021;326(11):10011002. doi: 10.1001/jama.2021.14811Google ScholarPubMed
Mallapaty, S. China’s COVID vaccines have been crucial - now immunity is waning. Nature. 2021;598(7881):398399. doi: 10.1038/d41586-021-02796-wCrossRefGoogle ScholarPubMed
Gao, Q, Bao, L, Mao, H, et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science (New York, N.Y.). 2020;369(6499):7781. doi: 10.1126/science.abc1932CrossRefGoogle ScholarPubMed
Wu, Z, Hu, Y, Xu, M, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults aged 60 years and older: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet. 2021;21(6):803812. doi: 10.1016/s1473-3099(20)30987-7CrossRefGoogle Scholar
Wang, H, Zhang, Y, Huang, B, et al. Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2. Cell. 2020;182(3):713721.e719. doi: 10.1016/j.cell.2020.06.008CrossRefGoogle ScholarPubMed
Noda, K, Matsuda, K, Yagishita, S, et al. A novel highly quantitative and reproducible assay for the detection of anti-SARS-CoV-2 IgG and IgM antibodies. Sci Rep. 2021;11(1):5198. doi: 10.1038/s41598-021-84387-3CrossRefGoogle ScholarPubMed
Al Kaabi, N, Zhang, Y, Xia, S, et al. Effect of 2 inactivated SARS-CoV-2 vaccines on symptomatic COVID-19 infection in adults: a randomized clinical trial. JAMA. 2021;326(1):3545. doi: 10.1001/jama.2021.8565CrossRefGoogle ScholarPubMed
Ismail AlHosani, F, Eduardo Stanciole, A, Aden, B, et al. Impact of the Sinopharm’s BBIBP-CorV vaccine in preventing hospital admissions and death in infected vaccinees: results from a retrospective study in the emirate of Abu Dhabi, United Arab Emirates (UAE). Vaccine. 2022;40(13):20032010. doi: 10.1016/j.vaccine.2022.02.039CrossRefGoogle ScholarPubMed
Jeewandara, C, Aberathna, IS, Pushpakumara, PD, et al. Persistence of immune responses to the Sinopharm/BBIBP-CorV vaccine. Immun Inflamm Dis. 2022;10(6):e621.CrossRefGoogle Scholar
Palacios, R, Patiño, EG, de Oliveira Piorelli, R, et al. Double-blind, randomized, placebo-controlled phase III clinical trial to evaluate the efficacy and safety of treating healthcare professionals with the adsorbed COVID-19 (inactivated) vaccine manufactured by Sinovac - PROFISCOV: a structured summary of a study protocol for a randomised controlled trial. Trials. 2020;21(1):853. doi: 10.1186/s13063-020-04775-4CrossRefGoogle ScholarPubMed
Chen, Y, Shen, H, Huang, R, et al. Serum neutralising activity against SARS-CoV-2 variants elicited by CoronaVac. Lancet Infect Dis. 2021;21(8):10711072. doi: 10.1016/s1473-3099(21)00287-5CrossRefGoogle ScholarPubMed
Wang, GL, Wang, ZY, Duan, LJ, et al. Susceptibility of circulating SARS-CoV-2 variants to neutralization. N Engl J Med. 2021;384(24):23542356. doi: 10.1056/NEJMc2103022CrossRefGoogle ScholarPubMed
Souza, WM, Amorim, MR, Sesti-Costa, R, et al. Neutralisation of SARS-CoV-2 lineage P.1 by antibodies elicited through natural SARS-CoV-2 infection or vaccination with an inactivated SARS-CoV-2 vaccine: an immunological study. Lancet. 2021;2(10):e527e535. doi: 10.1016/s2666-5247(21)00129-4Google ScholarPubMed
Li, X-N, Huang, Y, Wang, W, et al. Effectiveness of inactivated SARS-CoV-2 vaccines against the Delta variant infection in Guangzhou: a test-negative case-control real-world study. Emerg Microbes Infect. 2021;10(1):17511759. doi: 10.1080/22221751.2021.1969291CrossRefGoogle ScholarPubMed
Bar-On, YM, Goldberg, Y, Mandel, M, et al. Protection of BNT162b2 Vaccine Booster against Covid-19 in Israel. N Engl J Med. 2021;385(15):13931400. doi: 10.1056/NEJMoa2114255CrossRefGoogle ScholarPubMed
AlKaabi, N, Yang, YK, Zhang, J, et al. Safety and immunogenicity of a heterologous boost with a recombinant vaccine, NVSI-06-07, in the inactivated vaccine recipients from UAE: a phase 2 randomised, double-blinded, controlled clinical trial. MedRxiv. 2022; doi: 10.1101/2021.12.29.21268499CrossRefGoogle Scholar
Wanlapakorn, N, Suntronwong, N, Phowatthanasathian, H, et al. Safety and immunogenicity of heterologous and homologous inactivated and adenoviral-vectored COVID-19 vaccine regimens in healthy adults: a prospective cohort study. Hum Vaccin Immunother. 2022;18(1). doi: 10.1080/21645515.2022.2029111CrossRefGoogle ScholarPubMed
Zhang, J, He, Q, An C, et al. Boosting with heterologous vaccines effectively improves protective immune responses of the inactivated SARS-CoV-2 vaccine. Emerg Microbes Infect. 2021;10(1):15981608. doi: 10.1080/22221751.2021.1957401CrossRefGoogle ScholarPubMed
Chansaenroj, J, Suntronwong, N, Kanokudom, S, et al. Immunogenicity following two doses of the BBIBP-CorV vaccine and a third booster dose with a viral vector and mRNA COVID-19 vaccines against Delta and Omicron variants in prime immunized adults with two doses of the BBIBP-CorV vaccine. Vaccines. 2022;10(7):1071. doi: 10.3390/vaccines10071071CrossRefGoogle Scholar
Chemaitelly, H, Tang, P, Hasan, MR, et al. Waning of BNT162b2 vaccine protection against SARS-CoV-2 infection in Qatar. N Engl J Med. 2021;385(24).e83. doi: 10.1056/NEJMoa2114114CrossRefGoogle ScholarPubMed
Zeng, G, Wu, Q, Pan, H, et al. Immunogenicity and safety of a third dose of CoronaVac, and immune persistence of a two-dose schedule, in healthy adults: interim results from two single-centre, double-blind, randomised, placebo-controlled phase 2 clinical trials. Lancet. 2022;22(4):483495. doi: 10.1016/S1473-3099(21)00681-2CrossRefGoogle ScholarPubMed
Pilishvili, T, Gierke, R, Fleming-Dutra, KE, et al. Effectiveness of mRNA Covid-19 vaccine among U.S. health care personnel. New Engl J Med. 2021;385(25):e90. doi: 10.1056/NEJMoa2106599CrossRefGoogle ScholarPubMed
Kunal, S, Sakthivel, P, Gupta, N, et al. Mix and match COVID-19 vaccines: potential benefit and perspective from India. Postgrad Med J. 2022;98(e2):e99e101. doi: 10.1136/postgradmedj-2021-140648CrossRefGoogle ScholarPubMed
Du, S, Cao, Y, Zhu, Q, et al. Structurally resolved SARS-CoV-2 antibody shows high efficacy in severely infected hamsters and provides a potent cocktail pairing strategy. Cell. 2020;183(4):10131023 e1013. doi: 10.1016/j.cell.2020.09.035CrossRefGoogle ScholarPubMed
Legros, V, Denolly, S, Vogrig, M, et al. A longitudinal study of SARS-CoV-2-infected patients reveals a high correlation between neutralizing antibodies and COVID-19 severity. Cell Mol Immunol. 2021;18(2):318327. doi: 10.1038/s41423-020-00588-2CrossRefGoogle ScholarPubMed
Israel, A, Shenhar, Y, Green, I, et al. Large-scale study of antibody titer decay following BNT162b2 mRNA vaccine or SARS-CoV-2 infection. Vaccines (Basel). 2021;10(1):64. doi: 10.3390/vaccines10010064CrossRefGoogle ScholarPubMed
Wheatley, AK, Juno, JA, Wang, JJ, et al. Evolution of immune responses to SARS-CoV-2 in mild-moderate COVID-19. Nat Commun. 2021;12(1):1162. doi: 10.1038/s41467-021-21444-5CrossRefGoogle ScholarPubMed
Quast, I, Tarlinton, D. B cell memory: understanding COVID-19. Immunity. 2021;54(2):205210. doi: 10.1016/j.immuni.2021.01.014CrossRefGoogle ScholarPubMed
Zhao, J, Zhao, S, Ou, J, et al. COVID-19: Coronavirus vaccine development updates. Front Immunol. 2020;11:602256. doi: 10.3389/fimmu.2020.602256CrossRefGoogle ScholarPubMed
Shuangyan, L, Lin, W, Cheng, L, et al. Detection of antibodies against SARS-COV-2 as a serological maker of infection in patients with COVID-19. 2021;12:861864. doi:Google Scholar
Baumgarth, N, Nikolich-Zugich, J, Lee, FE, et al. Antibody responses to SARS-CoV-2: let’s stick to known knowns. J Immunol. 2020;205(9):23422350. doi: 10.4049/jimmunol.2000839CrossRefGoogle ScholarPubMed
Normark, J, Vikstrom, L, Gwon, YD, et al. Heterologous ChAdOx1 nCoV-19 and mRNA-1273 vaccination. N Engl J Med. 2021;385(11):10491051. doi: 10.1056/NEJMc2110716CrossRefGoogle ScholarPubMed
Ai, J, Zhang, H, Zhang, Q, et al. Recombinant protein subunit vaccine booster following two-dose inactivated vaccines dramatically enhanced anti-RBD responses and neutralizing titers against SARS-CoV-2 and variants of concern. Cell Res. 2021;32(1):103106. doi: 10.1038/s41422-021-00590-xCrossRefGoogle ScholarPubMed
Aksoyalp, ZS, Nemutlu-Samur, D. Sex-related susceptibility in coronavirus disease 2019 (COVID-19): proposed mechanisms. Eur J Pharmacol. 2021;912:174548. doi: 10.1016/j.ejphar.2021.174548CrossRefGoogle ScholarPubMed
Flanagan, KL, Fink, AL, Plebanski, M, et al. Sex and gender differences in the outcomes of vaccination over the life course. Annu Rev Cell Dev Biol. 2017;33:577599. doi: 10.1146/annurev-cellbio-100616-060718CrossRefGoogle ScholarPubMed
Klein, SL, Marriott, I, Fish, EN. Sex-based differences in immune function and responses to vaccination. Trans R Soc Trop Med Hyg. 2015;109(1):915. doi: 10.1093/trstmh/tru167CrossRefGoogle ScholarPubMed
McNeil, MM, Weintraub, ES, Duffy, J, et al. Risk of anaphylaxis after vaccination in children and adults. J Allergy Clin Immunol. 2016;137(3):868878. doi: 10.1016/j.jaci.2015.07.048CrossRefGoogle ScholarPubMed
Pellini, R, Venuti, A, Pimpinelli, F, et al. Initial observations on age, gender, BMI and hypertension in antibody responses to SARS-CoV-2 BNT162b2 vaccine. EClinicalMedicine. 2021;36:100928. doi: 10.1016/j.eclinm.2021.100928CrossRefGoogle ScholarPubMed
Müller, L, Andrée, M, Moskorz, W, et al. Age-dependent immune response to the Biontech/Pfizer BNT162b2 COVID-19 vaccination. Clin Infect Dis. 2021;73(11):20652072. doi: 10.1101/2021.03.03.21251066CrossRefGoogle Scholar
Pera, A, Campos, C, López, N, et al. Immunosenescence: implications for response to infection and vaccination in older people. Maturitas. 2015;82(1):5055. doi: 10.1016/j.maturitas.2015.05.004CrossRefGoogle ScholarPubMed
Collier, DA, Ferreira, I, Kotagiri, P, et al. Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2. Nature. 2021;596(7872):417422. doi: 10.1038/s41586-021-03739-1CrossRefGoogle ScholarPubMed