Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-08T02:48:18.919Z Has data issue: false hasContentIssue false

De A et B, de leur indépendance logique, et de ce qu'ils n'ont aucun contenu factuel commun*

Published online by Cambridge University Press:  13 April 2010

Abstract

The logical independence of two statements is tantamount to their probabilistic independence, the latter understood in a sense that derives from stochastic independence. And analogous logical and probabilistic senses of having the same factual content similarly coincide. These results are extended to notions of non-symmetrical independence and independence among more than two statements.

Type
Articles and Interventions/Articles et Discussions
Copyright
Copyright © Canadian Philosophical Association 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références bibliographiques

Carnap, R. 1950 Logical Foundations of Probability, Chicago, IL, University of Chicago Press.Google Scholar
Dorn, G. J. W. 1991 «Inductive Support», dans G. Schurg et G. J. W. Dorn, dir., Advances in Scientific Philosophy: Essays in Honour of Paul Weingartner on the Occasion of the 60th Anniversary of his Birthday, Amsterdam, Rodopi, p. 345362.CrossRefGoogle Scholar
Dorn, G. J. W. 1993 On Deductive, Probabilistic, and Inductive Dependence in Two Axiomatic Systems of Probability Semantics, thèse d'habilitation, Salzbourg.Google Scholar
Kolmogorov, A. N. 1950 «Grundbegriffe der Wahrscheinlichkeitsrechnung», Ergebnisse der Mathematik, vol. 2 (1933), p. 161, traduit par N. Morrison sous le titre Foundations of the Theory of Probability, New York, Chelsea.Google Scholar
Leblanc, H. 1983 «Alternatives to Standard First-Order Semantics», dans D. M. Gabbay et F. Guenthner, dir., Handbook of Philosophical Logic, vol. 1, Dordrecht, Reidel, p. 189274.CrossRefGoogle Scholar
Leblanc, H. 1988 «The Autonomy of Probability Theory (Notes on Kolmogorov, Rényi, and Popper)», The British Journal for the Philosophy of Science, vol. 39, p. 167181.Google Scholar
Miller, D. 1977 «The Uniqueness of Atomic Facts in Wittgenstein's Tractatus», Theoria, vol. 8, p. 174185.CrossRefGoogle Scholar
Miller, D. et Popper, K. 1986 «Deductive Dependences dans les Actes du IVe Congrès Catalan de logique. Université polytechnique de la Catalogne et Université de Barcelone, p. 2129, révisé le 27 Janvier 1989.Google Scholar
Moore, E. H. 1910 «Introduction to a Form of General Analysis», The New Haven Mathematical Colloquium, New Haven, Yale University Press, p. 150.Google Scholar
Popper, K. R. 1955 «Two Autonomous Axiom Systems for the Calculus of Probabilities», The British Journal for the Philosophy of Science, vol. 6, p. 5157.CrossRefGoogle Scholar
Popper, K. R. 1959 The Logic of Scientific Discovery, New York, Basic books.Google Scholar
Roeper, R. et Leblanc, H. 1991 «Indiscernibility and Identity in Probability Theory», Notre Dame Journal of Formal Logic, vol. 32, no1, p. 146.Google Scholar
Schilpp, P. A. 1974 The Philosophy of Karl Popper, La Salle, IL, Open Court.Google Scholar
Sheffer, H. M. 1927 «The General Theory of Notational Relativity», Proceedings of the Sixth International Congress of Philosophy, Harvard University, Cambridge, MA, 1926, New York, Longmans, Green, p. 348351, diffusion restreinte en 1921.Google Scholar
Wittgenstein, L. 1922 Tractatus logico-philosophicus, Londres, Routledge and Kegan Paul.Google Scholar