Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T06:59:02.576Z Has data issue: false hasContentIssue false

Berkeley and Proof in Geometry

Published online by Cambridge University Press:  28 September 2012

RICHARD J. BROOK*
Affiliation:
Bloomsburg University

Abstract

Berkeley in his Introduction to the Principles of Human knowledge uses geometrical examples to illustrate a way of generating “universal ideas,” which allegedly account for the existence of general terms. In doing proofs we might, for example, selectively attend to the triangular shape of a diagram. Presumably what we prove using just that property applies to all triangles.

I contend, rather, that given Berkeley’s view of extension, no Euclidean triangles exist to attend to. Rather proof, as Berkeley would normally assume, requires idealizing diagrams; treating them as if they obeyed Euclidean constraints. This convention solves the problem of representative generalization.

Dans l’introduction aux Principes de la connaissance humaine, Berkeley emploie des exemples géométriques pour illustrer une façon d’engendrer des «idées universelles» permettant d’expliquer l’existence des termes généraux. En faisant des démonstrations on pourrait, par exemple, porter une attention sélective à la forme triangulaire d’un diagramme. Il est probable que ce que l’on démontrerait en employant cette seule caractéristique s’appliquerait à tous les triangles.

Je soutiens plutôt que, étant donnée la conception berkeleyenne de l’extension, il n’existe aucun triangle euclidien à étudier. La démonstration exige plutôt, comme Berkeley le supposerait normalement, l’idéalisation des diagrammes : leur traitement conforme aux contraintes d’Euclide. Cette convention résoud le problème de la généralisation représentative.

Type
Articles
Copyright
Copyright © Canadian Philosophical Association 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Badici, Emil 2008On the Compatibility between Euclidean Geometry and Hume’s Denial of Infinite Divisibility,” Hume Studies Volume 34, Number 2,Google Scholar
Barrow, Isaac 1683 [1734] The Usefulness of Mathematical Learning Explained and Demonstrated. tr. Kirkby, John, London: Angel and Bible in St. Paul’s Churchyard.Google Scholar
Baum, Robert 1972The Instrumentalist and Formalist Elements in Berkeley’s Philosophy of Mathematics,” History and Philosophy of Science Part A, 3, 2.Google Scholar
Berkeley, George 1734 [1965] A Treatise Concerning the Principles of Human Knowledge and Three Dialogues Between Hylas and Philonous, ed., Turbayne, Colin Murray, Kansas City: Bobbs Merill,Google Scholar
Berkeley, George 1705 [1975] Philosophical Works, Introduction, Ayers, M. R., London: Dents and Sons.Google Scholar
Berkeley, George 1732 [1871] Alciphron or the Minute Philosopher in Works, ed. Fraser, A.C., Vol II, Oxford: Clarendon Press.Google Scholar
Berkeley, George 1734 [1948-1957] The Analyst, edited Luce, A. A., in Works, vol. 4, London: Nelson and Sons.Google Scholar
Berkeley, George 1732 [1963] Essay Towards a New Theory of Vision. in Works on Vision, ed. Turbayne, Colin Murray, Indianapolis: Bobbs Merill.Google Scholar
Bracken, Harry 1987On Some Points in Bayle, Berkeley, and Hume,” History of Philosophy Quarterly 4. 4.Google Scholar
Coffa, Alberto 1986From Geometry to Tolerance,” In From Quarks to Quasars, University of Pittsburg Series in the Philosophy of Physics, Vol. 7, ed. Colodny, Robert G., Pittsburg: Pittsburg University Press.CrossRefGoogle Scholar
Cohen, Morris R. and Nagel, Ernest 1934 Logic and Scientific Method, New York: Harcourt, Brace and Co.Google Scholar
Descartes, Rene 1637 [1985] Discourse on Method, The Philosophical Writings of Descartes, trans. Cottingham, John, Stoothof, Robert, Muerdoch, Dugald, Vol. 1, Cambridge: Cambridge University Press.Google Scholar
Detlefsen, Michael 2005Formalism,” in Shapiro, Stewart ed. The Oxford Handbook of Philosophy of Mathematics and Logic, Oxford: Oxford University Press.Google Scholar
Downing, Lisa 1995Siris and the Scope of Berkeley’s Instrumentalism,” British Journal for the History of Philosophy 3, 2.Google Scholar
Einstein, Albert 1921 [2010] “Lecture before the Prussian Academy of Sciences, January 27.” Expanded and reprinted in Sidelights on Relativity, Whitefish, Montana: Kessinger.Google Scholar
Euclid, 1956 The Thirteen Books of the Elements, Vol. 1, (Books I and II) translated by Heath, Sir Thomas, New York: Dover.Google Scholar
Fogelein, Robert 1988Hume and Berkeley on the Proofs of Infinite Divisibility,” Philosophical Review 97, 1.Google Scholar
Frege, Gottlob 1980 Philosophical and Mathematical Correspondence. Chicago: University of Chicago Press.Google Scholar
Galilei, Galileo 1638 [1974] Dialogues Concerning Two New Sciences, trans. Stillman, , Drake, . Madison: University of Wisconsin Press.Google Scholar
Hall, Rupert, and Boas, Marie 1970Newton and the Theory of Matter,” in The Annus Mirabilis of Sir Isaac Newton, edited Palter, Robert, Cambridge: MIT Press.Google Scholar
Hume, David 1740 [1888] A Treatise of Human Nature, ed., Selby BiggeL, A. L, A., Oxford: Clarendon Press.Google Scholar
Jesseph, Douglas M. 1993 Berkeley’s Philosophy of Mathematics, Chicago: University of Chicago Press.Google Scholar
Leibniz, Gottfried 1677 [1969] “Dialogue on the Connection between Things and Words,” in Philosophic Papers and Letters, Vol. 2, Ed. Loemker, Leroy E., Chicago: Chicago University Press.Google Scholar
Manders, Kenneth 1995 [2007] “The Euclidean Diagram,” in Mancosu, Paolo, ed., The Philosophy of Mathematical Practice, Oxford: Oxford University Press.Google Scholar
McMullin, Ernest 1985Galilean Idealization,” Studies in the History and Philosophy of Science, 16, 3.Google Scholar
Mueller, Ian 1981 Philosophy of Mathematics and Deductive Structure in Euclid’s Elements, Massachusetts: MIT Press.Google Scholar
Proclus, 1970 A Commentary on the First Book of Euclid’s Elements, trans. Morrow, Glenn R., Princeton: Princeton University Press.Google Scholar
Pycior, Helen M. 1987Mathematics and Philosophy: Wallis, Hobbes, Barrow, and Berkeley,” Journal of the History of Ideas 48, 2.Google Scholar
Raynor, David 1980Minima Sensibilia in Berkeley and Hume,” Dialogue 19, 2.Google Scholar
Sepkoski, David 2005Nominalism and Constructivism in Seventeenth-Century Mathematical Philosophy,” Historia Mathematica 32.Google Scholar
Sherry, David 1993Don’t Take Me Half the Way, On Berkeley On Mathematical Reasoning,” Studies in the History and Philosophy of Science 24, 2.CrossRefGoogle Scholar
Storrie, Stefan 2012What is it the unbodied spirit cannot do? Berkeley and Barrow on the nature of geometrical construction,” British Journal for the History of Philosophy 2. 2.Google Scholar
Szabo, Zoltan 1995Berkeley’s Triangle,” History of Philosophy Quarterly Vol. 12, No. 1.Google Scholar
Warnock, G.J. 1953 Berkeley, Baltimore: Penguin, 1953.Google Scholar
Weisberg, Michael 2007Three kinds of Idealization,” The Journal of Philosophy CIV, 12.Google Scholar