Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-08T04:49:12.070Z Has data issue: false hasContentIssue false

Sur la philosophie analytique de la logique et des mathématiques. À propos de Infini, logique, géométrie de Paolo Mancosu

Published online by Cambridge University Press:  19 February 2016

YVON GAUTHIER*
Affiliation:
Université de Montréal

Abstract

I offer a critical analysis of a contemporary work in analytic philosophy applied to epistemology of logic and mathematics. I discuss the reach and limits of Paolo Mancosu’s work, as recently published in a French translation (2015).

Je propose dans cet article une analyse critique d’un ouvrage contemporain de philosophie analytique consacré aux questions d’épistémologie de la logique et des mathématiques. Je montre la portée et les limites du volume.

Type
Critical Notice/Étude critique
Copyright
Copyright © Canadian Philosophical Association 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références bibliographiques

Arana, Andrew 2007 « Toward A Philosophy Of Real Mathematics [review]», Mathematical Intelligencer, vol. 29, no 2, p. 8083.CrossRefGoogle Scholar
Avigad, Jeremy 2003 «Number Theory and Elementary Arithmetic», Philosophia Mathematica, vol. XI, p. 257284.CrossRefGoogle Scholar
Corfield, David 2003 Towards a Philosophy of Real Mathematics, Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Gauthier, Yvon 1979 «L’épistémologie française des mathématiques», Critique, Paris, Éditions de Minuit, p. 336.Google Scholar
Gauthier, Yvon 2008 « Towards a Philosophy of Real Mathematics [compte rendu]», Dialogue, vol. 47, nos 3-4, p. 700702.CrossRefGoogle Scholar
Gauthier, Yvon 2010a Logique arithmétique. L’arithmétisation de la logique, Québec, Presses de l’Université Laval.CrossRefGoogle Scholar
Gauthier, Yvon 2010b «La théorie des nombres chez Herbrand et Lautman», Philosophiques, vol. 37, no 1, p. 149161.CrossRefGoogle Scholar
Gauthier, Yvon 2014 « Why Is There Philosophy of Mathematics at all? [compte rendu]», Dialogue, vol. 53, no 4, p. 740743.CrossRefGoogle Scholar
Gauthier, Yvon 2015 Towards an Arithmetical Logic. Arithmetical Foundations of Logic, Bâle, Birkhäuser-Springer.CrossRefGoogle Scholar
Hacking, Ian 2014 Why is there Philosophy of Mathematics at all? Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Herbrand, Jacques 1968 Écrits logiques, éd. van Heijenoort, J., Paris, Presses Universitaires de France.Google Scholar
Mancosu, Paolo 1996 Philosophy of Mathematics and Mathematical Practice in the Seventeenth Century, New York (NY), Oxford University Press.CrossRefGoogle Scholar
Mancosu, Paolo, dir. 2008 From Brouwer to Hilbert. The Debate on the Foundations of Mathematics in the 1920s, New York (NY), Oxford University Press.Google Scholar
Mancosu, Paolo 2010 The Adventure of Reason. Interplay between Mathematical Logic and Philosophy of Mathematics: 1900-1940, Oxford, Oxford University Press.Google Scholar
Mancosu, Paolo 2015 Infini, logique, géométrie, Paris, Vrin.Google Scholar
Ramsey, Frank Plumpton 2003 Logique, philosophie et probabilités, sous la direction de Pascal Engel et Mathieu Marion, Paris, Vrin-Mathesis.Google Scholar
Weil, André 1995 Basic Number Theory, New York (NY), Springer.Google Scholar
Weil, André 2009 Œuvres scientifiques. Collected Papers, vol. 3, New York (NY), Springer.Google Scholar