Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T19:46:05.817Z Has data issue: false hasContentIssue false

La descente infinie, l’induction transfinie et le tiers exclu

Published online by Cambridge University Press:  01 March 2009

Yvon Gauthier*
Affiliation:
Université de Montréal

Abstract

ABSTRACT: It is argued that the equivalence, which is usually postulated to hold between infinite descent and transfinite induction in the foundations of arithmetic uses the law of excluded middle through the use of a double negation on the infinite set of natural numbers and therefore cannot be admitted in intuitionistic logic and mathematics, and a fortiori in more radical constructivist foundational schemes. Moreover it is shown that the infinite descent used in Dedekind-Peano arithmetic does not correspond to the infinite descent of classical Fermatian arithmetic or number theory. However, from the point of view of classical logic, the principles of complete induction and transfinite induction, the least number principle and infinite descent are all equivalent. We find here a focal point for a foundational critique that aims for a a clarification of philosophical options in the foundations of logic and mathematics.

RÉSUMÉ : Cet article propose que l’équivalence postulée entre la descente infinie et l’induction transfinie dans les fondements de l’arithmétique fait intervenir le principe du tiers exclu par la double négation sur l’ensemble infini des nombres naturels et ne saurait donc être admissible du point de vue de la logique et des mathématiques intuitionnistes. Si, par ailleurs, on adopte le point de vue de la logique classique, les principes de l’induction complète, de l’induction transfinie, du plus petit nombre et de la descente infinie sont tous équivalents; pourtant, la descente infinie en jeu dans l’arithmétique ensembliste de Dedekind-Peano ne correspond pas à la descente infinie de Fermat en théorie des nombres et en arithmétique classique de Gauss jusqu’à nos jours. C’est là le point d’ancrage d’une critique fondationnelle qui cherche à mieux définir les options philosophiques dans les fondements de la logique et des mathématiques.

Type
Articles
Copyright
Copyright © Canadian Philosophical Association 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Bishop, E. 1967 Foundations of Constructive Analysis, New York, McGraw-Hill.Google Scholar
Brouwer, L. E. J. 1975 Collected Works, vol. 1, Amsterdam, North-Holland.Google Scholar
Dummett, M. 2000 Elements of Intuitionism, Oxford, Oxford University Press.CrossRefGoogle Scholar
Eisele, C. 1979 Studies in the Scientific and Mathematical Philosophy of C.S. Peirce, The Hague, Mouton.Google Scholar
Gauthier, Y. 1976 Fondements des mathématiques. Introduction à une philosophie constructiviste, Montréal, Presses de l’Université de Montréal.Google Scholar
Gauthier, Y. 1991 De la logique interne, Paris, Vrin.Google Scholar
Gauthier, Y. 1997 Logique et fondements des mathématiques, Paris, Diderot.Google Scholar
Gauthier, Y. 2002 Internal Logic. Foundations of Mathematics from Kronecker to Hilbert, Dordrecht, Kluwer.Google Scholar
Gentzen, G. 1969 Collected Papers, Amsterdam, North-Holland.Google Scholar
Hellegouarch, Y. 1997 Invitation aux mathématiques de Fermat-Wiles, Paris, Masson.Google Scholar
Kleene, S. C. et Vesley, J. 1965 Foundations of Intuitionistic Mathematics, Amsterdam, North-Holland.Google Scholar
Kolmogorov, A. N. 1925 «O Принципе tertium non datur», Matematicheskiĭ sbornik, vol. 32, p. 646667.Google Scholar
Nelson, E. 1986 Predicative Arithmetic, Mathematical Notes 32, Princeton (NJ), Princeton University Press.CrossRefGoogle Scholar
Peano, G. 1959 Opere scelte, vol. 2, Roma, Edizione Cremonese.Google Scholar
Schütte, K 1970 Beweistheorie, Berlin, Springer-Verlag.Google Scholar
Takeuti, G. 1975 Proof Theory, Amsterdam, North-Holland.Google Scholar
Troelstra, A. S. 1969 Principles of Intuitionism, Lectures Notes in Mathematics 95, Berlin, Springer-Verlag.CrossRefGoogle Scholar
Troelstra, A. S. 1977 Choice Sequences, Oxford, Clarendon Press.Google Scholar
Troelstra, A. S. et van Dalen, D. 1988 Constructivism in Mathematics, vol. 1, Amsterdam, North-Holland.Google Scholar
Weil, A. 1984 Number Theory. An Approach Through History. From Hammourabi to Legendre, Boston, Birkhaüser.Google Scholar