Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-22T18:35:19.812Z Has data issue: false hasContentIssue false

Will neuroimaging ever be used to diagnose pediatric bipolar disorder?

Published online by Cambridge University Press:  25 October 2006

KIKI CHANG
Affiliation:
Stanford University School of Medicine
NANCY ADLEMAN
Affiliation:
Stanford University School of Medicine
CHRISTOPHER WAGNER
Affiliation:
Stanford University School of Medicine
NAAMA BARNEA-GORALY
Affiliation:
Stanford University School of Medicine
AMY GARRETT
Affiliation:
Stanford University School of Medicine

Abstract

There is a great need for discovery of biological markers that could be used diagnostically for pediatric onset disorders, particularly those with potentially confusing phenomenology such as pediatric-onset bipolar disorder (BD). Obtaining these markers would help overcome current subjective diagnostic techniques of relying on parent and child interview and symptomatic history. Brain imaging may be the most logical choice for a diagnostic tool, and certain neurobiological abnormalities have already been found in pediatric BD. However, much work remains to be done before neuroimaging can be used reliably to diagnose this disorder, and because of the nature of BD and the limitations of imaging technology and technique, neuroimaging will likely at most be only a diagnostic aide in the near future. In this paper we discuss the characteristics of pediatric BD that complicate the use of biological markers as diagnostic tools, how neuroimaging techniques have been used to study pediatric BD so far, and the limitations and potential of such techniques for future diagnostic use.This work was supported in part by NIH Grant MH64460-01 (to K.C.).

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adleman, N. E., Barnea-Goraly, N., & Chang, K. D. (2004). Review of magnetic resonance imaging and spectroscopy studies in children with bipolar disorder. Expert Reviews in Neurotherapy, 4, 6977.Google Scholar
Adleman, N. E., Menon, V., Blasey, C. M., White, C. D., Warsofsky, I. S., Glover, G. H., et al. (2002). A developmental fMRI study of the Stroop color-word task. Neuroimage, 16, 6175.Google Scholar
Adler, C. M., Adams, J., DelBello, M. P., Holland, S. K., Schmithorst, V., Levine, A., et al. (2006). Evidence of white matter pathology in bipolar disorder adolescents experiencing their first episode of mania: A diffusion tensor imaging study. American Journal of Psychiatry, 163, 322324.Google Scholar
Adler, C. M., Delbello, M. P., Mills, N. P., Schmithorst, V., Holland, S., & Strakowski, S. M. (2005). Comorbid ADHD is associated with altered patterns of neuronal activation in adolescents with bipolar disorder performing a simple attention task. Bipolar Disorders, 7, 577588.Google Scholar
Adler, C. M., Holland, S. K., Schmithorst, V., Wilke, M., Weiss, K. L., Pan, H., et al. (2004). Abnormal frontal white matter tracts in bipolar disorder: A diffusion tensor imaging study. Bipolar Disorders, 6, 197203.Google Scholar
Adler, C. M., Levine, A. D., DelBello, M. P., & Strakowski, S. M. (2005). Changes in gray matter volume in patients with bipolar disorder. Biological Psychiatry, 58, 151157.Google Scholar
Altshuler, L. L., Bartzokis, G., Grieder, T., Curran, J., & Mintz, J. (1998). Amygdala enlargement in bipolar disorder and hippocampal reduction in schizophrenia: An MRI study demonstrating neuroanatomic specificity. Archives in General Psychiatry, 55, 663664.Google Scholar
Angst, J., & Cassano, G. (2005). The mood spectrum: Improving the diagnosis of bipolar disorder. Bipolar Disorders, 7(Suppl. 4), 412.Google Scholar
Awad, I. A., Spetzler, R. F., Hodak, J. A., Awad, C. A., & Carey, R. (1986). Incidental subcortical lesions identified on magnetic resonance imaging in the elderly. I. Correlation with age and cerebrovascular risk factors. Stroke, 17, 10841089.Google Scholar
Bachmann, R. F., Schloesser, R. J., Gould, T. D., & Manji, H. K. (2005). Mood stabilizers target cellular plasticity and resilience cascades: Implications for the development of novel therapeutics. Molecular Neurobiology, 32, 173202.Google Scholar
Baron, M., Risch, N., Hamburger, R., Mandel, B., Kushner, S., Newman, M., et al. (1987). Genetic linkage between X-chromosome markers and bipolar affective illness. Nature, 326, 289292.Google Scholar
Basser, P. J., & Jones, D. K. (2002). Diffusion-tensor MRI: Theory, experimental design and data analysis—A technical review. NMR in Biomedicine, 15, 456467.Google Scholar
Basser, P. J., & Pierpaoli, C. (1996). Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. Journal of Magnetic Resonance B, 111, 209219.Google Scholar
Berrettini, W. H. (1999). On the future of genetic research in bipolar and schizophrenic syndromes. Neuropsychopharmacology, 21, 12.Google Scholar
Bertolino, A., Callicott, J. H., Nawroz, S., Mattay, V. S., Duyn, J. H., Tedeschi, G., et al. (1998). Reproducibility of proton magnetic resonance spectroscopic imaging in patients with schizophrenia. Neuropsychopharmacology, 18, 19.Google Scholar
Beyer, J. L., Taylor, W. D., MacFall, J. R., Kuchibhatla, M., Payne, M. E., Provenzale, J. M., et al. (2005). Cortical white matter microstructural abnormalities in bipolar disorder. Neuropsychopharmacology, 30, 22252229.Google Scholar
Biederman, J., Faraone, S., Mick, E., Wozniak, J., Chen, L., Ouellette, C., et al. (1996). Attention-deficit hyperactivity disorder and juvenile mania: An overlooked comorbidity? Journal of the American Academy of Child & Adolescent Psychiatry, 35, 9971008.Google Scholar
Biederman, J., Faraone, S. V., Chu, M. P., & Wozniak, J. (1999). Further evidence of a bidirectional overlap between juvenile mania and conduct disorder in children. Journal of the American Academy of Child & Adolescent Psychiatry, 38, 468476.Google Scholar
Biederman, J., Faraone, S. V., Wozniak, J., Mick, E., Kwon, A., Cayton, G. A., et al. (2005). Clinical correlates of bipolar disorder in a large, referred sample of children and adolescents. Journal of Psychiatric Research, 39, 611622.Google Scholar
Birmaher, B., Kennah, A., Brent, D., Ehmann, M., Bridge, J., & Axelson, D. (2002). Is bipolar disorder specifically associated with panic disorder in youths? Journal of Clinical Psychiatry, 63, 414419.Google Scholar
Blumberg, H. P., Kaufman, J., Martin, A., Charney, D. S., Krystal, J. H., & Peterson, B. S. (2004). Significance of adolescent neurodevelopment for the neural circuitry of bipolar disorder. Annals of the New York Academy of Science, 1021, 376383.Google Scholar
Blumberg, H. P., Kaufman, J., Martin, A., Whiteman, R., Zhang, J. H., Gore, J. C., et al. (2003). Amygdala and hippocampal volumes in adolescents and adults with bipolar disorder. Archives of General Psychiatry, 60, 12011208.Google Scholar
Blumberg, H. P., Leung, H. C., Skudlarski, P., Lacadie, C. M., Fredericks, C. A., Harris, B. C., et al. (2003). A functional magnetic resonance imaging study of bipolar disorder: State- and trait-related dysfunction in ventral prefrontal cortices. Archives of General Psychiatry, 60, 601609.Google Scholar
Blumberg, H. P., Martin, A., Kaufman, J., Leung, H. C., Skudlarski, P., Lacadie, C., et al. (2003). Frontostriatal abnormalities in adolescents with bipolar disorder: Preliminary observations from functional MRI. American Journal of Psychiatry, 160, 13451347.Google Scholar
Botteron, K. N., Figiel, G. S., Wetzel, M. W., Hudziak, J., & VanEerdewegh, M. (1992). MRI abnormalities in adolescent bipolar affective disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 31, 258261.Google Scholar
Carlson, G. A. (2005). Early onset bipolar disorder: Clinical and research considerations. Journal of Clinical Child and Adolescent Psychology, 34, 333343.Google Scholar
Cassano, G. B., Rucci, P., Frank, E., Fagiolini, A., Dell'Osso, L., Shear, M. K., et al. (2004). The mood spectrum in unipolar and bipolar disorder: Arguments for a unitary approach. American Journal of Psychiatry, 161, 12641269.Google Scholar
Cecil, K. M., DelBello, M. P., Sellars, M. C., & Strakowski, S. M. (2003). Proton magnetic resonance spectroscopy of the frontal lobe and cerebellar vermis in children with a mood disorder and a familial risk for bipolar disorders. Journal of Child and Adolescent Psychopharmacology, 13, 545555.Google Scholar
Chang, K., Adleman, N., Dienes, K., Barnea-Goraly, N., Reiss, A., & Ketter, T. (2003). Decreased N-acetylaspartate in children with familial bipolar disorder. Biological Psychiatry, 53, 10591065.Google Scholar
Chang, K., Adleman, N. E., Dienes, K., Simeonova, D. I., Menon, V., & Reiss, A. (2004). Anomalous prefrontal-subcortical activation in familial pediatric bipolar disorder: A functional magnetic resonance imaging investigation. Archives of General Psychiatry, 61, 781792.Google Scholar
Chang, K., Barnea-Goraly, N., Karchemskiy, A., Simeonova, D. I., Barnes, P., Ketter, T., et al. (2005). Cortical magnetic resonance imaging findings in familial pediatric bipolar disorder. Biological Psychiatry, 58, 197203.Google Scholar
Chen, C. H., Lennox, B., Jacob, R., Calder, A., Lupson, V., Bisbrown-Chippendale, R., et al. (2006). Explicit and implicit facial affect recognition in manic and depressed states of bipolar disorder: A functional magnetic resonance imaging study. Biological Psychiatry, 59, 3139.Google Scholar
Cicchetti, D., & Dawson, G. (2002). Multiple levels of analysis. Development and Psychopathology, 14, 417420.Google Scholar
Cicchetti, D., & Rogosch, F. A. (1999). Psychopathology as risk for adolescent substance use disorders: A developmental psychopathology perspective. Journal of Clinical Child Psychology, 28, 355365.Google Scholar
Cox, D. D., & Savoy, R. L. (2003). Functional magnetic resonance imaging (fMRI) “brain reading”: Detecting and classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage, 19(2 Pt. 1), 261270.Google Scholar
Craney, J. L., & Geller, B. (2003). A prepubertal and early adolescent bipolar disorder-I phenotype: Review of phenomenology and longitudinal course. Bipolar Disorders, 5, 243256.Google Scholar
Davanzo, P., Thomas, M. A., Yue, K., Oshiro, T., Belin, T., Strober, M., et al. (2001). Decreased anterior cingulate myo-inositol/creatine spectroscopy resonance with lithium treatment in children with bipolar disorder. Neuropsychopharmacology, 24, 359369.Google Scholar
Deichmann, R., Josephs, O., Hutton, C., Corfield, D. R., & Turner, R. (2002). Compensation of susceptibility-induced BOLD sensitivity losses in echo-planar fMRI imaging. Neuroimage, 15, 120135.Google Scholar
Egeland, J. A., Gerhard, D. S., Pauls, D. L., Sussex, J. N., Kidd, K. K., Allen, C. R., et al. (1987). Bipolar affective disorders linked to DNA markers on chromosome 11. Nature, 325, 783787.Google Scholar
Ernst, C. L., & Goldberg, J. F. (2004). Clinical features related to age at onset in bipolar disorder. Journal of Affective Disorders, 82, 2127.Google Scholar
Faraone, S. V., Biederman, J., Wozniak, J., Mundy, E., Mennin, D., & O'Donnell, D. (1997). Is comorbidity with ADHD a marker for juvenile-onset mania? Journal of the American Academy of Child & Adolescent Psychiatry, 36, 10461055.Google Scholar
Fazekas, F., Niederkorn, K., Schmidt, R., Offenbacher, H., Horner, S., Bertha, G., et al. (1988). White matter signal abnormalities in normal individuals: Correlation with carotid ultrasonography, cerebral blood flow measurements, and cerebrovascular risk factors. Stroke, 19, 12851288.Google Scholar
Frazier, J. A., Ahn, M. S., DeJong, S., Bent, E. K., Breeze, J. L., & Giuliano, A. J. (2005). Magnetic resonance imaging studies in early-onset bipolar disorder: A critical review. Harvard Review of Psychiatry, 13, 125140.Google Scholar
Gallelli, K., Howe, M., Wagner, C. M., Spielman, D., & Chang, K. (2006). Prefrontal neurometabolite changes following lamotrigine treatment in adolescents with bipolar depression. Manuscript submitted for publication.
Gallelli, K. A., Wagner, C. M., Karchemskiy, A., Howe, M., Spielman, D., Reiss, A., et al. (2005). N-Acetyl aspartate levels in bipolar offspring with and at high-risk for bipolar disorder. Bipolar Disorders, 7, 589597.Google Scholar
Geller, B., Bolhofner, K., Craney, J. L., Williams, M., DelBello, M. P., & Gundersen, K. (2000). Psychosocial functioning in a prepubertal and early adolescent bipolar disorder phenotype. Journal of the American Academy of Child & Adolescent Psychiatry, 39, 15431548.Google Scholar
Geller, B., & Luby, J. (1997). Child and adolescent bipolar disorder: A review of the past 10 years. Journal of the American Academy of Child & Adolescent Psychiatry, 36, 11681176.Google Scholar
Geller, B., Tillman, R., Craney, J. L., & Bolhofner, K. (2004). Four-year prospective outcome and natural history of mania in children with a prepubertal and early adolescent bipolar disorder phenotype. Archives of General Psychiatry, 61, 459467.Google Scholar
Geller, B., Williams, M., Zimerman, B., Frazier, J., Beringer, L., & Warner, K. L. (1998). Prepubertal and early adolescent bipolarity differentiate from ADHD by manic symptoms, grandiose delusions, ultra-rapid or ultradian cycling. Journal of Affective Disorders, 51, 8191.Google Scholar
Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., et al. (1999). Brain development during childhood and adolescence: A longitudinal MRI study. Nature Neuroscience, 2, 861863.Google Scholar
Gottlieb, G. (2001). The relevance of developmental-psychobiological metatheory to developmental neuropsychology. Developmental Neuropsychology, 19, 19.Google Scholar
Hariri, A. R., Drabant, E. M., Munoz, K. E., Kolachana, B. S., Mattay, V. S., Egan, M. F., et al. (2005). A susceptibility gene for affective disorders and the response of the human amygdala. Archives of General Psychiatry, 6, 146152.Google Scholar
Hasan, K. M., Alexander, A. L., & Narayana, P. A. (2004). Does fractional anisotropy have better noise immunity characteristics than relative anisotropy in diffusion tensor MRI? An analytical approach. Magnetic Resonance Medicine, 51, 413417.Google Scholar
Hasler, G., Drevets, W. C., Gould, T. D., Gottesman, I. I., & Manji, H. K. (2006). Toward constructing an endophenotype strategy for bipolar disorders. Biological Psychiatry.Google Scholar
Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293, 24252430.Google Scholar
Haznedar, M. M., Roversi, F., Pallanti, S., Baldini-Rossi, N., Schnur, D. B., Licalzi, E. M., et al. (2005). Fronto-thalamo-striatal gray and white matter volumes and anisotropy of their connections in bipolar spectrum illnesses. Biological Psychiatry, 57, 733742.Google Scholar
Hesslinger, B., Thiel, T., Tebartz van Elst, L., Hennig, J., & Ebert, D. (2001). Attention-deficit disorder in adults with or without hyperactivity: Where is the difference? A study in humans using short echo (1)H-magnetic resonance spectroscopy. Neuroscience Letters, 304, 117119.Google Scholar
Horska, A., Kaufmann, W. E., Brant, L. J., Naidu, S., Harris, J. C., & Barker, P. B. (2002). In vivo quantitative proton MRSI study of brain development from childhood to adolescence. Journal of Magnetic Resonance Imaging, 15, 137143.Google Scholar
Ketter, T. A., Wang, P. W., Becker, O. V., Nowakowska, C., & Yang, Y. (2004). Psychotic bipolar disorders: Dimensionally similar to or categorically different from schizophrenia? Journal of Psychiatric Research, 38, 4761.Google Scholar
Krasnow, B., Tamm, L., Greicius, M. D., Yang, T. T., Glover, G. H., Reiss, A. L., et al. (2003). Comparison of fMRI activation at 3 and 1.5 T during perceptual, cognitive, and affective processing. Neuroimage, 18, 813826.Google Scholar
Kronhaus, D. M., Lawrence, N. S., Williams, A. M., Frangou, S., Brammer, M. J., Williams, S. C., et al. (2006). Stroop performance in bipolar disorder: Further evidence for abnormalities in the ventral prefrontal cortex. Bipolar Disorder, 8, 2839.Google Scholar
Leibenluft, E., Blair, R. J., Charney, D. S., & Pine, D. S. (2003). Irritability in pediatric mania and other childhood psychopathology. Annals of the New York Academy of Science, 1008, 201218.Google Scholar
Lin, P. I., McInnis, M. G., Potash, J. B., Willour, V. L., Mackinnon, D. F., Miao, K., et al. (2005). Assessment of the effect of age at onset on linkage to bipolar disorder: Evidence on chromosomes 18p and 21q. American Journal of Human Genetics, 77, 545555.Google Scholar
Logothetis, N. K., & Pfeuffer, J. (2004). On the nature of the BOLD fMRI contrast mechanism. Magnetic Resonance Imaging, 22, 15171531.Google Scholar
Lyoo, I. K., Lee, H. K., Jung, J. H., Noam, G. G., & Renshaw, P. F. (2002). White matter hyperintensities on magnetic resonance imaging of the brain in children with psychiatric disorders. Comprehensive Psychiatry, 43, 361368.Google Scholar
Maziade, M., Roy, M. A., Chagnon, Y. C., Cliche, D., Fournier, J. P., Montgrain, N., et al. (2005). Shared and specific susceptibility loci for schizophrenia and bipolar disorder: A dense genome scan in Eastern Quebec families. Molecular Psychiatry, 10, 486499.Google Scholar
Miller, B. L. (1991). A review of chemical issues in 1H NMR spectroscopy: N-acetyl-L-aspartate, creatinine and choline. NMR Biomedicine, 4, 4752.Google Scholar
Mills, N. P., DelBello, M. P., Adler, C. M., & Strakowski, S. M. (2005). MRI analysis of cerebellar vermal abnormalities in bipolar disorder. American Journal of Psychiatry, 162, 15301532.Google Scholar
Moore, G. J., Bebchuk, J. M., Hasanat, K., Chen, G., Seraji-Bozorgzad, N., Wilds, I. B., et al. (2000). Lithium increases N-acetyl-aspartate in the human brain: In vivo evidence in support of bcl-2's neurotrophic effects? Biological Psychiatry, 48, 18.Google Scholar
Moore, G. J., Bebchuk, J. M., Parrish, J. K., Faulk, M. W., Arfken, C. L., Strahl-Bevacqua, J., et al. (1999). Temporal dissociation between lithium-induced changes in frontal lobe myo-inositol and clinical response in manic-depressive illness. American Journal of Psychiatry, 156, 19021908.Google Scholar
Moore, G. J., Bebchuk, J. M., Wilds, I. B., Chen, G., Manji, H. K., & Menji, H. K. (2000). Lithium-induced increase in human brain grey matter. Lancet, 356, 12411242.Google Scholar
Moore, P. B., Shepherd, D. J., Eccleston, D., Macmillan, I. C., Goswami, U., McAllister, V. L., et al. (2001). Cerebral white matter lesions in bipolar affective disorder: Relationship to outcome. British Journal of Psychiatry, 178, 172176.Google Scholar
Mukamel, R., Gelbard, H., Arieli, A., Hasson, U., Fried, I., & Malach, R. (2005). Coupling between neuronal firing, field potentials, and FMRI in human auditory cortex. Science, 309, 951954.Google Scholar
Narayana, P. A., Wolinsky, J. S., Rao, S. B., He, R., & Mehta, M. (2004). Multicentre proton magnetic resonance spectroscopy imaging of primary progressive multiple sclerosis. Multiple Sclerosis, 10(Suppl. 1), S73S78.Google Scholar
Pavuluri, M. N., Birmaher, B., & Naylor, M. W. (2005). Pediatric bipolar disorder: A review of the past 10 years. Journal of the American Academy of Child & Adolescent Psychiatry, 44, 846871.Google Scholar
Pearlson, G. D., Barta, P. E., Powers, R. E., Menon, R. R., Richards, S. S., Aylward, E. H., et al. (1997). Ziskind–Somerfeld Research Award 1996. Medial and superior temporal gyral volumes and cerebral asymmetry in schizophrenia versus bipolar disorder. Biological Psychiatry, 41, 114.Google Scholar
Perlis, R. H., Miyahara, S., Marangell, L. B., Wisniewski, S. R., Ostacher, M., DelBello, M. P., et al. (2004). Long-Term implications of early onset in bipolar disorder: Data from the first 1000 participants in the systematic treatment enhancement program for bipolar disorder (STEP-BD). Biological Psychiatry, 55, 875881.Google Scholar
Peterson, B. S. (2003). Conceptual, methodological, and statistical challenges in brain imaging studies of developmentally based psychopathologies. Development and Psychopathology, 15, 811832.Google Scholar
Pezawas, L., Meyer-Lindenberg, A., Drabant, E. M., Verchinski, B. A., Munoz, K. E., Kolachana, B. S., et al. (2005). 5-HTTLPR polymorphism impacts human cingulate–amygdala interactions: A genetic susceptibility mechanism for depression. Nature Neuroscience, 8, 828834.Google Scholar
Robinson, R. (2004). FMRI beyond the clinic: Will it ever be ready for prime time? PLoS Biology, 2, e150.Google Scholar
Ross, B., & Michaelis, T. (1994). Clinical applications of magnetic resonance spectroscopy. Magnetic Resonance Quarterly, 10, 191247.Google Scholar
Sanches, M., Roberts, R. L., Sassi, R. B., Axelson, D., Nicoletti, M., Brambilla, P., et al. (2005). Developmental abnormalities in striatum in young bipolar patients: A preliminary study. Bipolar Disorders, 7, 153158.Google Scholar
Schulze, T. G., & McMahon, F. J. (2003). Genetic linkage and association studies in bipolar affective disorder: A time for optimism. American Journal of Medical Genetics C Seminars in Medical Genetics, 123, 3647.Google Scholar
Schurhoff, F., Bellivier, F., Jouvent, R., Mouren-Simeoni, M. C., Bouvard, M., Allilaire, J. F., et al. (2000). Early and late onset bipolar disorders: Two different forms of manic-depressive illness? Journal of Affective Disorders, 58, 215221.Google Scholar
Selkoe, D. J. (2005). By the way, doctor. Is there a brain scan that can specifically diagnose Alzheimer's disease? Harvard Health Letter, 30, 8.Google Scholar
Sharma, R., Venkatasubramanian, P. N., Barany, M., & Davis, J. M. (1992). Proton magnetic resonance spectroscopy of the brain in schizophrenic and affective patients. Schizophrenia Research, 8, 4349.Google Scholar
Silverstone, P. H., McGrath, B. M., & Kim, H. (2005). Bipolar disorder and myo-inositol: A review of the magnetic resonance spectroscopy findings. Bipolar Disorders, 7, 110.Google Scholar
Silverstone, T., McPherson, H., Li, Q., & Doyle, T. (2003). Deep white matter hyperintensities in patients with bipolar depression, unipolar depression and age-matched control subjects. Bipolar Disorders, 5, 5357.Google Scholar
Soares, J. C., & Mann, J. J. (1997). The anatomy of mood disorders—Review of structural neuroimaging studies. Biological Psychiatry, 41, 86106.Google Scholar
Sorensen, A. G., Wu, O., Copen, W. A., Davis, T. L., Gonzalez, R. G., Koroshetz, W. J., et al. (1999). Human acute cerebral ischemia: Detection of changes in water diffusion anisotropy by using MR imaging. Radiology, 212, 785792.Google Scholar
Strakowski, S. M., DelBello, M. P., Sax, K. W., Zimmerman, M. E., Shear, P. K., Hawkins, J. M., et al. (1999). Brain magnetic resonance imaging of structural abnormalities in bipolar disorder. Archives of General Psychiatry, 56, 254260.Google Scholar
Strakowski, S. M., DelBello, M. P., Zimmerman, M. E., Getz, G. E., Mills, N. P., Ret, J., et al. (2002). Ventricular and periventricular structural volumes in first- versus multiple-episode bipolar disorder. American Journal of Psychiatry, 159, 18411847.Google Scholar
Swayze, V. W., 2nd, Andreasen, N. C., Alliger, R. J., Yuh, W. T., & Ehrhardt, J. C. (1992). Subcortical and temporal structures in affective disorder and schizophrenia: A magnetic resonance imaging study. Biological Psychiatry, 31, 221240.Google Scholar
Taylor, M. A., & Abrams, R. (1981). Early- and late-onset bipolar illness. Archives of General Psychiatry, 38, 5861.Google Scholar
Thomason, M. E., Burrows, B. E., Gabrieli, J. D., & Glover, G. H. (2005). Breath holding reveals differences in fMRI BOLD signal in children and adults. Neuroimage, 25, 824837.Google Scholar
Winsberg, M. E., Sachs, N., Tate, D. L., Adalsteinsson, E., Spielman, D., & Ketter, T. A. (2000). Decreased dorsolateral prefrontal N-acetyl aspartate in bipolar disorder. Biological Psychiatry, 47, 475481.Google Scholar
Wozniak, J., Biederman, J., Kiely, K., Ablon, J. S., Faraone, S. V., Mundy, E., et al. (1995). Mania-like symptoms suggestive of childhood-onset bipolar disorder in clinically referred children. Journal of the American Academy of Child & Adolescent Psychiatry, 34, 867876.Google Scholar
Wu, D. H., Lewin, J. S., & Duerk, J. L. (1997). Inadequacy of motion correction algorithms in functional MRI: Role of susceptibility-induced artifacts. Journal of Magnetic Resonance Imaging, 7, 365370.Google Scholar