Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-22T18:58:06.903Z Has data issue: false hasContentIssue false

What can allostasis tell us about anabolic–androgenic steroid addiction?

Published online by Cambridge University Press:  15 July 2011

Tom Hildebrandt*
Affiliation:
Mount Sinai School of Medicine
Rachel Yehuda
Affiliation:
Mount Sinai School of Medicine James J. Peters Veterans Affairs Medical Center
Lauren Alfano
Affiliation:
Mount Sinai School of Medicine
*
Address correspondence and reprint requests to: Tom Hildebrandt, Eating and Weight Disorders Program, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1230, New York, NY 10029; E-mail: [email protected].

Abstract

Anabolic–androgenic steroids (AASs) are synthetic hormones used by individuals who want to look better or perform better in athletics and at the gym. Their use raises an interesting paradox in which drug use is associated with a number of health benefits, but also the possibility of negative health consequences. Existing models of AAS addiction follow the traditional framework of drug abuse and dependence, which suggest that harmful use occurs as a result of the drug's ability to hijack the motivation–reward system. However, AASs, unlike typical drugs of abuse, are not used for acute intoxication effects or euphoria. Rather, AASs are used to affect the body through changes to the musculoskeletal system and the hypothalamic–pituitary–gonadal axis as opposed to stimulating the reward system. We offer an allostatic model of AAS addiction to resolve this inconsistency between traditional drug addiction and AAS addiction. This allostatic framework provides a way to (a) incorporate exercise into AAS misuse, (b) identify where AAS use transitions from recreational use into a drug problem, and (c) describe individual differences in vulnerability or resilience to AASs. Implications for this model of AAS addiction are discussed.

Type
Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlgrim, C., & Guglin, M. (2009). Anabolics and cardiomyopathy in a bodybuilder: Case report and literature review. Journal of Cardiac Failure, 15, 496500.CrossRefGoogle Scholar
Aizawa, K., Iemitsu, M., Maeda, S., Otsuki, T., Sato, K., Ushida, T., et al. (2010). Acute exercise activates local bioactive androgen metabolism in skeletal muscle. Steroids, 75, 219223.CrossRefGoogle ScholarPubMed
Aizawa, K., Iemitsu, M., Otsuki, T., Maeda, S., Miyauchi, T., & Mesaki, N. (2008). Sex differences in steroidogenesis in skeletal muscle following a single bout of exercise in rats. Journal of Applied Physiology, 104, 6774.CrossRefGoogle ScholarPubMed
Angeli, A., Minetto, M., Dovio, A., & Paccotti, P. (2004). The overtraining syndrome in athletes: A stress-related disorder. Journal of Endocrinological Investment, 27, 603612.CrossRefGoogle ScholarPubMed
Bahrke, M. S., & Yesalis, C. E. (2004). Abuse of anabolic androgenic steroids and related substances in sport and exercise. Current Opinion in Pharmacology, 4, 614620.CrossRefGoogle ScholarPubMed
Basaria, S. (2010). Androgen abuse in athletes: Detection and consequences. Journal of Clinical Endocrinology & Metabolism, 95, 15331543.CrossRefGoogle ScholarPubMed
Bassil, N., Alkaade, S., & Morley, J. E. (2009). The benefits and risks of testosterone replacement therapy: a review. Journal of Therapeutics and Clinical Risk Management, 5, 427448.Google ScholarPubMed
Bennett, N. C., Gardiner, R. A., Hooper, J. D., Johnson, D. W., & Gobe, G. C. (2010). Molecular cell biology of androgen receptor signalling. International Journal of Biochemistry & Cell Biology, 42, 813827.CrossRefGoogle ScholarPubMed
Bhasin, S., Woodhouse, L., Casaburi, R., Singh, A. B., Bhasin, D., Berman, N., et al. (2001). Testosterone dose–response relationships in healthy young men. American Journal of Physiology—Endocrinology and Metabolism, 281, E1172E1181.CrossRefGoogle ScholarPubMed
Catlin, D. H., Fitch, K. D., & Ljungqvist, A. (2008). Medicine and science in the fight against doping in sport. Journal of Internal Medicine, 264, 99114.CrossRefGoogle ScholarPubMed
Choi, P. Y., Pope, H. G. Jr., & Olivardia, R. (2002). Muscle dysmorphia: A new syndrome in weightlifters. British Journal of Sports Medicine, 36, 375376.CrossRefGoogle ScholarPubMed
Clark, A. S., & Henderson, L. P. (2003). Behavioral and physiological responses to anabolic–androgenic steroids. Neuroscience & Biobehavioral Reviews, 27, 413436.CrossRefGoogle ScholarPubMed
Clark, A. S., Lindenfeld, R. C., & Gibbons, C. H. (1996). Anabolic–androgenic steroids and brain reward. Pharmacology, Biochemistry, and Behavior, 53, 741745.CrossRefGoogle ScholarPubMed
Conacher, G. N., & Workman, D. G. (1989). Violent crime possibly associated with anabolic steroid use. American Journal of Psychiatry, 146, 679.Google ScholarPubMed
Copeland, J., Peters, R., & Dillon, P. (2000). Anabolic–androgenic steroid use disorders among a sample of Australian competitive and recreational users. Drug and Alcohol Dependence, 60, 9196.CrossRefGoogle ScholarPubMed
Dickerman, R. D., Schaller, F., & McConathy, W. J. (1998). Left ventricular wall thickening does occur in elite power athletes with or without anabolic steroid use. Cardiology, 90, 145148.CrossRefGoogle ScholarPubMed
Dickerman, R. D., Schaller, F., Zachariah, N. Y., & McConathy, W. J. (1997). Left ventricular size and function in elite bodybuilders using anabolic steroids. Clinical Journal of Sport Medicine, 7, 9093.CrossRefGoogle ScholarPubMed
DuRant, R. H., Escobedo, L. G., & Heath, G. W. (1995). Anabolic-steroid use, strength training, and multiple drug use among adolescents in the United States. Pediatrics, 96(1, Pt. 1), 2328.CrossRefGoogle ScholarPubMed
DuRant, R. H., Rickert, V. I., Ashworth, C. S., Newman, C., & Slavens, G. (1993). Use of multiple drugs among adolescents who use anabolic steroids. New England Journal of Medicine, 328, 922926.CrossRefGoogle ScholarPubMed
Du Toit, E. F., Rossouw, E., Van Rooyen, J., & Lochner, A. (2005). Proposed mechanisms for the anabolic steroid-induced increase in myocardial susceptibility to ischaemia/reperfusion injury. Cardiovascular Journal of South Africa, 16, 2128.Google ScholarPubMed
Ellem, S. J., & Risbridger, G. P. (2010). Aromatase and regulating the estrogen:androgen ratio in the prostate gland. Journal of Steroid Biochemistry and Molecular Biology, 118, 246251.CrossRefGoogle ScholarPubMed
Eriksson, A., Kadi, F., Malm, C., & Thornell, L. E. (2005). Skeletal muscle morphology in power-lifters with and without anabolic steroids. Histochemistry and Cell Biology, 124, 167175.CrossRefGoogle ScholarPubMed
Evans, N. A. (2004). Current concepts in anabolic–androgenic steroids. American Journal of Sports Medicine, 32, 534542.CrossRefGoogle ScholarPubMed
Folland, J. P., & Williams, A. G. (2007). The adaptations to strength training: Morphological and neurological contributions to increased strength. Sports Medicine, 37, 145168.CrossRefGoogle ScholarPubMed
Galligani, N., Renck, A., & Hansen, S. (1996). Personality profile of men using anabolic androgenic steroids. Hormones and Behavior, 30, 170175.CrossRefGoogle ScholarPubMed
Hallsworth, L., Wade, T., & Tiggemann, M. (2005). Individual differences in male body-image: An examination of self-objectification in recreational body builders. British Journal of Health Psychology, 10, 453465.CrossRefGoogle ScholarPubMed
Handa, R. J., Burgess, L. H., Kerr, J. E., & O'Keefe, J. A. (1994). Gonadal steroid hormone receptors and sex differences in the hypothalamo–pituitary–adrenal axis. Hormones and Behavior, 28, 464476.CrossRefGoogle ScholarPubMed
Hartgens, F., & Kuipers, H. (2004). Effects of androgenic–anabolic steroids in athletes. Sports Medicine, 34, 513554.CrossRefGoogle ScholarPubMed
Haykowsky, M. J., Dressendorfer, R., Taylor, D., Mandic, S., & Humen, D. (2002). Resistance training and cardiac hypertrophy: Unravelling the training effect. Sports Medicine, 32, 837849.CrossRefGoogle ScholarPubMed
Hildebrandt, T., Alfano, L., & Langenbucher, J. (2010). Body image disturbance among 1000 appearance and performance enhancing drug users. Journal of Psychiatric Research, 44, 841846.CrossRefGoogle ScholarPubMed
Hildebrandt, T., Langenbucher, J., Carr, S., Sanjuan, P., & Park, S. (2006). Predicting intentions for long-term anabolic–androgenic steroid use among men: a covariance structure model. Psychology of Addictive Behaviors, 20, 234240.CrossRefGoogle Scholar
Hildebrandt, T., Langenbucher, J. W., Carr, S. J., & Sanjuan, P. (2007). Modeling population heterogeneity in appearance- and performance-enhancing drug (APED) use: Applications of mixture modeling in 400 regular APED users. Journal of Abnormal Psychology, 116, 717733.CrossRefGoogle ScholarPubMed
Hildebrandt, T., Schlundt, D., Langenbucher, J., & Chung, T. (2006). Presence of muscle dysmorphia symptomatology among male weightlifter. Comprehensive Psychiatry, 47, 127135.CrossRefGoogle Scholar
Irving, L. M., Wall, M., Neumark-Sztainer, D., & Story, M. (2002). Steroid use among adolescents: Findings from Project EAT. Journal of Adolescent Health, 30, 243252.CrossRefGoogle ScholarPubMed
Kadi, F. (2008). Cellular and molecular mechanisms responsible for the action of testosterone on human skeletal muscle. A basis for illegal performance enhancement. British Journal of Pharmacology, 154, 522528.CrossRefGoogle ScholarPubMed
Kanayama, G., Brower, K. J., Wood, R. I., Hudson, J. I., & Pope, H. G. (2009a). Anabolic–androgenic steroid dependence: An emerging disorder. Addiction, 104, 19661978.CrossRefGoogle ScholarPubMed
Kanayama, G., Brower, K. J., Wood, R. I., Hudson, J. I., & Pope, H. G. (2009b). Issues for DSM-V: Clarifying the diagnostic criteria for anabolic–androgenic steroid dependence. American Journal of Psychiatry, 166, 642644.CrossRefGoogle ScholarPubMed
Kanayama, G., Hudson, J. I., & Pope, H. G. (2008). Long-term psychiatric and medical consequences of anabolic-androgenic steroid use: A looming public health concern? Drug and Alcohol Dependence, 98, 112.CrossRefGoogle ScholarPubMed
Kelley, A. E., Schochet, T., & Landry, C. F. (2004). Risk taking and novelty seeking in adolescence: Introduction to part I. Annals of the New York Academy of Sciences, 1021, 2732.CrossRefGoogle ScholarPubMed
Klotz, F., Petersson, A., Isacson, D., & Thiblin, I. (2007). Violent crime and substance abuse: A medico-legal comparison between deceased users of anabolic androgenic steroids and abusers of illicit drugs. Forensic Science International, 173, 5763.CrossRefGoogle ScholarPubMed
Koob, G. E. (1992). Drugs of abuse: Anatomy, pharmacology, and function of reward pathways. Trends in Pharmacological Sciences, 13, 177184.CrossRefGoogle ScholarPubMed
Koob, G. F. (2003). Alcoholism: Allostasis and beyond. Alcoholism—Clinical and Experimental Research, 27, 232243.CrossRefGoogle ScholarPubMed
Koob, G. E., & Le Moal, M. (1997). Drug abuse: Hedonic homeostatic dysregulation. Science, 278, 5258.CrossRefGoogle ScholarPubMed
Koob, G. F., & Le Moal, M. (2001). Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology, 24, 97129.CrossRefGoogle ScholarPubMed
Koob, G. E., & Le Moal, M. (2008). Addiction and the brain antireward system. Annual Review of Psychology, 59, 2953.CrossRefGoogle ScholarPubMed
Kraemer, W. J. (1988). Endocrine responses to resistance exercise. Medicine & Science in Sports & Exercise, 20(Suppl. 5), S152S157.CrossRefGoogle ScholarPubMed
Langenbucher, J., Hildebrandt, T., & Carr, S. (Eds.). (2008). Medical consequences of performance enhancing drug use (2nd ed.). New York: Hawthorne Medical Press.Google Scholar
Leal-Cerro, A., Gippini, A., Amaya, M. J., Lage, M., Mato, J. A., Dieguez, C., et al. (2003). Mechanisms underlying the neuroendocrine response to physical exercise. Journal of Endocrinological Investigation, 26, 879885.CrossRefGoogle ScholarPubMed
Lefavi, R. G., Reeve, T. G., & Newland, M. C. (1990). Relationship between anabolic steroid use and selected psychological parameters in male bodybuilders. Journal of Sport Behavior, 13, 157166.Google Scholar
Le Moal, M. (2009). Drug abuse: Vulnerability and transition to addiction. Pharmacopsychiatry, 42(Suppl. 1), S42S55.CrossRefGoogle ScholarPubMed
Lehmann, M., Foster, C., Dickhuth, H. H., & Gastman, U. (1998). Autonomic imbalance hypothesis and overtraining syndrome. Medicine & Science in Sports & Exercise, 30, 11401145.CrossRefGoogle ScholarPubMed
Ma, Q. (2008). Beneficial effects of moderate voluntary physical exercise and its biological mechanisms on brain health. Neuroscience Bulletin, 24, 265270.CrossRefGoogle ScholarPubMed
Mangweth, B., Pope, H. G. Jr., Kemmler, G., Ebenbichler, C., Hausmann, A., De Col, C., etr al. (2001). Body image and psychopathology in male bodybuilders. Psychotherapy and Psychosomatics, 70, 3843.CrossRefGoogle ScholarPubMed
Manuck, S. B., Marsland, A. L., Flory, J. D., Gorka, A., Ferrell, R. E., & Hariri, A. R. (2010). Salivary testosterone and a trinucleotide (CAG) length polymorphism in the androgen receptor gene predict amygdala reactivity in men. Psychoneuroendocrinology, 35, 94104.CrossRefGoogle Scholar
Martin, C. S., Chung, T., & Langenbucher, J. W. (2008). How should we revise diagnostic criteria for substance use disorders in the DSM-V? Journal of Abnormal Psychology, 117, 561575.CrossRefGoogle ScholarPubMed
Martin, N. M., Abu Dayyeh, B. K., & Chung, R. T. (2008). Anabolic steroid abuse causing recurrent hepatic adenomas and hemorrhage. World Journal of Gastroenterology, 14, 45734575.CrossRefGoogle ScholarPubMed
Martinez-Sanchis, S., Aragon, C. M., & Salvador, A. (2002). Cocaine-induced locomotor activity is enhanced by exogenous testosterone. Physiology & Behavior, 76, 605609.CrossRefGoogle ScholarPubMed
Mata, J., Thompson, R. J., & Gotlib, I. H. (2010). BDNF genotype moderates the relation between physical activity and depressive symptoms. Health Psychology, 29, 130133.CrossRefGoogle ScholarPubMed
Mayer, P., & Hollt, V. (2001). Allelic and somatic variations in the endogenous opioid system of humans. Pharmacology & Therapeutics, 91, 167177.CrossRefGoogle ScholarPubMed
McEwen, B. S. (1998). Stress, adaptation, and disease—Allostasis and allostatic load. Annals of the New York Academy of Sciences, 840, 3344.CrossRefGoogle ScholarPubMed
McEwen, B. S., & Stellar, E. (1993). Stress and the individual—Mechanisms leading to disease. Archives of Internal Medicine, 153, 20932101.CrossRefGoogle ScholarPubMed
McGinnis, M. Y. (2004). Anabolic androgenic steroids and aggression: Studies using animal models. Annals of the New York Academy of Sciences, 1036, 399415.CrossRefGoogle ScholarPubMed
McGinnis, M. Y., Lumia, A. R., Tetel, M. J., Molenda-Figueira, H. A., & Possidente, B. (2007). Effects of anabolic androgenic steroids on the development and expression of running wheel activity and circadian rhythms in male rats. Physiology & Behavior, 92, 10101018.CrossRefGoogle ScholarPubMed
Meaney, M. J., Diorio, J., Francis, D., Widdowson, J., LaPlante, P., Caldji, C., et al. (1996). Early environmental regulation of forebrain glucocorticoid receptor gene expression: Implications for adrenocortical responses to stress. Developmental Neuroscience, 18, 4972.CrossRefGoogle ScholarPubMed
Meeusen, R. (2005). Exercise and the brain: Insight in new therapeutic modalities. Annals of Transplantation, 10, 4951.Google ScholarPubMed
Mendez, M., & Morales-Mulia, M. (2008). Role of mu and delta opioid receptors in alcohol drinking behaviour. Current Drug Abuse Reviews, 1, 239252.CrossRefGoogle ScholarPubMed
Middleman, A. B., Faulkner, A. H., Woods, E. R., Emans, S. J., & DuRant, R. H. (1995). High-risk behaviors among high school students in Massachusetts who use anabolic steroids. Pediatrics, 96(2, Pt. 1), 268272.CrossRefGoogle ScholarPubMed
Monaghan, L. F. (2002). Vocabularies of motive for illicit steroid use among bodybuilders. Social Science & Medicine, 55, 695708.CrossRefGoogle ScholarPubMed
Morton, J. P., Kayani, A. C., McArdle, A., & Drust, B. (2009). The exercise-induced stress response of skeletal muscle, with specific emphasis on humans. Sports Medicine, 39, 643662.CrossRefGoogle ScholarPubMed
Nakao, A., Sakagami, K., Nakata, Y., Komazawa, K., Amimoto, T., Nakashima, K., et al. (2000). Multiple hepatic adenomas caused by long-term administration of androgenic steroids for aplastic anemia in association with familial adenomatous polyposis. Journal of Gastroenterology, 35, 557562.CrossRefGoogle ScholarPubMed
Noorafshan, A., Karbalay-Doust, S., & Ardekani, F. M. (2005). High doses of nandrolone decanoate reduce volume of testis and length of seminiferous tubules in rats. Acta Pathologica, Microbiologica et Immunologica Scandinavica, 113, 122125.CrossRefGoogle ScholarPubMed
Pagonis, T. A., Angelopoulos, N. V., Koukoulis, G. N., & Hadjichristodoulou, C. S. (2006). Psychiatric side effects induced by supraphysiological doses of combinations of anabolic steroids correlate to the severity of abuse. European Psychiatry, 21, 551562.CrossRefGoogle Scholar
Parkinson, A. B., & Evans, N. A. (2006). Anabolic androgenic steroids: A survey of 500 users. Medicine & Science in Sports & Exercise, 38, 644651.CrossRefGoogle ScholarPubMed
Pausova, Z., Abrahamowicz, M., Mahboubi, A., Syme, C., Leonard, G. T., Perron, M., et al. (2010). Functional variation in the androgen-receptor gene is associated with visceral adiposity and blood pressure in male adolescents. Hypertension, 55, 706714.CrossRefGoogle ScholarPubMed
Perry, P. J., Lund, B. C., Deninger, M. J., Kutscher, E. C., & Schneider, J. (2005). Anabolic steroid use in weightlifters and bodybuilders: An internet survey of drug utilization. Clinical Journal of Sport Medicine, 15, 326330.CrossRefGoogle ScholarPubMed
Perry, P. J., Andersen, K. H., & Yates, W. R. (1990). Illicit anabolic steroid use in athletes. A case series analysis. American Journal of Sports Medicine, 18, 422428.CrossRefGoogle ScholarPubMed
Perry, P. J., Kutscher, E. C., Lund, B. C., Yates, W. R., Holman, T. L., & Demers, L. (2003). Measures of aggression and mood changes in male weightlifters with and without androgenic anabolic steroid use. Journal of Forensic Science, 48, 646651.CrossRefGoogle ScholarPubMed
Petersson, A., Garle, M., Granath, F., & Thiblin, I. (2006). Morbidity and mortality in patients testing positively for the presence of anabolic androgenic steroids in connection with receiving medical care. A controlled retrospective cohort study. Drug and Alcohol Dependence, 81, 215220.CrossRefGoogle ScholarPubMed
Pervanidou, P. (2008). Biology of post-traumatic stress disorder in childhood and adolescence. Journal of Neuroendocrinology, 20, 632638.CrossRefGoogle ScholarPubMed
Pibiri, F., Nelson, M., Carboni, G., & Pinna, G. (2006). Neurosteroids regulate mouse aggression induced by anabolic androgenic steroids. NeuroReport, 17, 15371541.CrossRefGoogle ScholarPubMed
Pope, H. G. Jr., & Katz, D. L. (1988). Affective and psychotic symptoms associated with anabolic steroid use. American Journal of Psychiatry, 145, 487490.Google ScholarPubMed
Pope, H. G. Jr., & Katz, D. L. (1994). Psychiatric and medical effects of anabolic–androgenic steroid use. A controlled study of 160 athletes. Archives of General Psychiatry, 51, 375382.CrossRefGoogle ScholarPubMed
Porcerelli, J. H., & Sandler, B. A. (1995). Narcissism and empathy in steroid users. American Journal of Psychiatry, 152, 16721674.Google ScholarPubMed
Raznahan, A., Lee, Y., Stidd, R., Long, R., Greenstein, D., Clasen, L., et al. (2010). Longitudinally mapping the influence of sex and androgen signaling on the dynamics of human cortical maturation in adolescence. Proceedings of the National Academy of Sciences of the United States of America, 107, 1698816993.CrossRefGoogle ScholarPubMed
Romer, D., & Walker, E. F. (2007). Adolescent psychopathology and the developing brain: Integrating brain and prevention science. New York: Oxford University Press.CrossRefGoogle Scholar
Sato, S. A., Schulz, K. A., Sisk, C. L., & Wood, R. I. (2008). Adolescents and androgens, receptors and rewards. Hormones and Behavior, 53, 647658.CrossRefGoogle ScholarPubMed
Shahidi, N. T. (2001). A review of the chemistry, biological action, and clinical applications of anabolic–androgenic steroids. Clinical Therapeutics, 23, 13551390.CrossRefGoogle ScholarPubMed
Smith, L. L. (2000). Cytokine hypothesis of overtraining: A physiological adaptation to excessive stress? Medicine & Science in Sports & Exercise, 32, 317331.CrossRefGoogle ScholarPubMed
Socas, L., Zumbado, M., Perez-Luzardo, O., Ramos, A., Perez, C., Hernandez, J. R., et al. (2005). Hepatocellular adenomas associated with anabolic androgenic steroid abuse in bodybuilders: A report of two cases and a review of the literature. British Journal of Sports Medicine, 39, e27.CrossRefGoogle Scholar
Solomon, R. L., & Corbit, J. D. (1974). Opponent-process theory of motivation. 1. Temporal dynamics of affect. Psychological Review, 81, 119145.CrossRefGoogle Scholar
Spear, L. (2000). The adolescent brain and age-related behavioral manifestations. Neuroscience and Biobehavioral Reviews, 24, 417463.CrossRefGoogle ScholarPubMed
Steensland, P., Hallberg, M., Kindlundh, A., Fahlke, C., & Nyberg, F. (2005). Amphetamine-induced aggression is enhanced in rats pre-treated with the anabolic androgenic steroid nandrolone decanoate. Steroids, 70, 199204.CrossRefGoogle ScholarPubMed
Stergiopoulos, K., Brennan, J. J., Mathews, R., Setaro, J. F., & Kort, S. (2008). Anabolic steroids, acute myocardial infarction and polycythemia: A case report and review of the literature. Journal of Vascular Health and Risk Management, 4, 14751480.CrossRefGoogle ScholarPubMed
Sullivan, M. L., Martinez, C. M., Gennis, P., & Gallagher, E. J. (1998). The cardiac toxicity of anabolic steroids. Progress in Cardiovascular Diseases, 41, 115.CrossRefGoogle ScholarPubMed
Thiblin, I., Lindquist, O., & Rajs, J. (2000). Cause and manner of death among users of anabolic androgenic steroids. Journal of Forensic Sciences, 45, 1623.CrossRefGoogle ScholarPubMed
Tsatsoulis, A., & Fountoulakis, S. (2006). The protective role of exercise on stress system dysregulation and comorbidities. Annals of the New York Academy of Sciences, 1083, 196213.CrossRefGoogle ScholarPubMed
Urhausen, A., Albers, T., & Kindermann, W. (2004). Are the cardiac effects of anabolic steroid abuse in strength athletes reversible? Heart, 90, 496501.CrossRefGoogle ScholarPubMed
Vieira, R. P., Franca, R. F., Damaceno-Rodrigues, N. R., Dolhnikoff, M., Caldini, E. G., Carvalho, C. R., et al. (2008). Dose-dependent hepatic response to subchronic administration of nandrolone decanoate. Medicine & Science in Sports & Exercise, 40, 842847.CrossRefGoogle ScholarPubMed
Walsh, S., Zmuda, J. M., Cauley, J. A., Shea, P. R., Metter, E. J., Hurley, B. F., et al. (2005). Androgen receptor CAG repeat polymorphism is associated with fat-free mass in men. Journal of Applied Physiology, 98, 132137.CrossRefGoogle ScholarPubMed
Wesson, D. W., & McGinnis, M. Y. (2006). Stacking anabolic androgenic steroids (AAS) during puberty in rats: A neuroendocrine and behavioral assessment. Pharmacology Biochemistry, and Behavior, 83, 410419.CrossRefGoogle ScholarPubMed
Wood, R. I. (2002). Oral testosterone self-administration in male hamsters: Dose–response, voluntary exercise, and individual differences. Hormones and Behavior, 41, 247258.CrossRefGoogle ScholarPubMed
Wood, R. I. (2004). Reinforcing aspects of androgens. Physiology & Behavior, 83, 279289.CrossRefGoogle ScholarPubMed
Wood, R. I. (2008). Anabolic–androgenic steroid dependence? Insights from animals and humans. Frontiers in Neuroendocrinology, 29, 490506.CrossRefGoogle Scholar
Wood, R. I., & Peters, K. D. (2008). Anabolic–androgenic steroid dependence? Insights from animals and humans. Frontiers in Neuroendocrinology, 29, 490506.CrossRefGoogle Scholar
Woodhouse, L. J., Gupta, N., Bhasin, M., Singh, A. B., Ross, R., Phillips, J., et al. (2004). Dose-dependent effects of testosterone on regional adipose tissue distribution in healthy young men. Journal of Clinical Endocrinology & Metabolism, 89, 718726.CrossRefGoogle ScholarPubMed
Woodhouse, L. J., Reisz-Porszasz, S., Javanbakht, M., Storer, T. W., Lee, M., Zerounian, H., et al. (2003). Development of models to predict anabolic response to testosterone administration in healthy young men. American Journal of Physiology—Endocrinology & Metabolism, 284, E1009–E1017.CrossRefGoogle ScholarPubMed
Wyce, A., Bai, Y., Nagpal, S., & Thompson, C. C. (2010). Research resource: The androgen receptor modulates expression of genes with critical roles in muscle development and function. Molecular Endocrinology, 24, 16651674.CrossRefGoogle Scholar
Yates, W. R., Perry, P. J., MacIndoe, J., Holman, T., & Ellingrod, V. (1999). Psychosexual effects of three doses of testosterone cycling in normal men. Biological Psychiatry, 45, 254260.CrossRefGoogle ScholarPubMed
Yehuda, R., & Bierer, L. M. (2008). Transgenerational transmission of cortisol and PTSD risk. Progress in Brain Research, 167, 121135.CrossRefGoogle ScholarPubMed
Zimmermann, U. S., Blomeyer, D., Laucht, M., & Mann, K. F. (2007). How gene–stress–behavior interactions can promote adolescent alcohol use: The roles of predrinking allostatic load and childhood behavior disorders. Pharmacology, Biochemistry, and Behavior, 86, 246262.CrossRefGoogle ScholarPubMed