Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T23:29:07.412Z Has data issue: false hasContentIssue false

Trait neuroticism and emotion neurocircuitry: Functional magnetic resonance imaging evidence for a failure in emotion regulation

Published online by Cambridge University Press:  03 June 2019

Merav H. Silverman*
Affiliation:
Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
Sylia Wilson
Affiliation:
Department of Psychology, University of Minnesota, Twin Cities, Minneapolis, MN, USA
Ian S. Ramsay
Affiliation:
Department of Psychiatry, University of Minnesota, Twin Cities, Minneapolis, MN, USA
Ruskin H. Hunt
Affiliation:
Institute of Child Development, University of Minnesota, Twin Cities, Minneapolis, MN, USA
Kathleen M. Thomas
Affiliation:
Institute of Child Development, University of Minnesota, Twin Cities, Minneapolis, MN, USA
Robert F. Krueger
Affiliation:
Department of Psychology, University of Minnesota, Twin Cities, Minneapolis, MN, USA
William G. Iacono
Affiliation:
Department of Psychology, University of Minnesota, Twin Cities, Minneapolis, MN, USA
*
Author for Correspondence: Merav H. Silverman, Minneapolis VA Healthcare System, 1 Veterans Drive, Minneapolis, MN 55417; E-mail: [email protected].

Abstract

Though theory suggests that individual differences in neuroticism (a tendency to experience negative emotions) would be associated with altered functioning of the amygdala (which has been linked with emotionality and emotion dysregulation in childhood, adolescence, and adulthood), results of functional neuroimaging studies have been contradictory and inconclusive. We aimed to clarify the relationship between neuroticism and three hypothesized neural markers derived from functional magnetic resonance imaging during negative emotion face processing: amygdala activation, amygdala habituation, and amygdala-prefrontal connectivity, each of which plays an important role in the experience and regulation of emotions. We used general linear models to examine the relationship between trait neuroticism and the hypothesized neural markers in a large sample of over 500 young adults. Although neuroticism was not significantly associated with magnitude of amygdala activation or amygdala habituation, it was associated with amygdala–ventromedial prefrontal cortex connectivity, which has been implicated in emotion regulation. Results suggest that trait neuroticism may represent a failure in top-down control and regulation of emotional reactions, rather than overactive emotion generation processes, per se. These findings suggest that neuroticism, which has been associated with increased rates of transdiagnostic psychopathology, may represent a failure in the inhibitory neurocircuitry associated with emotion regulation.

Type
Special Issue Articles
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aggleton, J. P. (Ed.). (1992). The amygdala: Neurobiological aspects of emotion, memory, and mental dysfunction. New York: Wiley.Google Scholar
Allen, T. A., & Deyoung, C. G. (2016). Personality neuroscience and the Five-Factor Model: Oxford handbook of the Five-Factor Model. New York: Oxford University Press.Google Scholar
Beauchaine, T. P., & Gatzke-Kopp, L. M. (2012). Instantiating the multiple levels of analysis perspective in a program of study on externalizing behavior. Development and Psychopathology, 24, 10031018.Google Scholar
Beauchaine, T. P., & Zisner, A. (2017). Motivation, emotion regulation, and the latent structure of psychopathology: An integrative and convergent historical perspective. International Journal of Psychophysiology, 119, 108118.Google Scholar
Berking, M., Wupperman, P., Reichardt, A., Pejic, T., Dippel, A., & Znoj, H. (2008). Emotion-regulation skills as a treatment target in psychotherapy. Behaviour Research and Therapy, 46, 12301237. doi:10.1016/j.brat.2008.08.005Google Scholar
Bjørnebekk, A., Fjell, A. M., Walhovd, K. B., Grydeland, H., Torgersen, S., & Westlye, L. T. (2013). Neuronal correlates of the Five Factor Model (FFM) of human personality: Multimodal imaging in a large healthy sample. NeuroImage, 65, 194208. doi:10.1016/j.neuroimage.2012.10.009Google Scholar
Blair, K., Geraci, M., Devido, J., McCaffrey, D., Chen, G., Vythilingam, M., … Pine, D. S. (2008). Neural response to self- and other referential praise and criticism in generalized social phobia. Archives of General Psychiatry, 65, 1176. doi:10.1001/archpsyc.65.10.1176Google Scholar
Blom, G. (1958). Statistical estimates and transformed beta-variables (Unpublished doctoral dissertation, Almqvist & Wiksell).Google Scholar
Breiter, H. C., Etcoff, N. L., Whalen, P. J., Kennedy, W. A., Rauch, S. L., Buckner, R. L., … Rosen, B. R. (1996). Response and habituation of the human amygdala during visual processing of facial expression. Neuron, 17, 875887. doi:10.1016/S0896-6273(00)80219-6Google Scholar
Britton, J. C., Lissek, S., Grillon, C., Norcross, B. S., & Pine, D. S. (2011). Development of anxiety: The role of threat appraisal and fear learning. Depression and Anxiety, 28, 517. doi:10.1002/da.20733.DevelopmentGoogle Scholar
Brück, C., Kreifelts, B., Kaza, E., Lotze, M., & Wildgruber, D. (2011). Impact of personality on the cerebral processing of emotional prosody. NeuroImage, 58, 259268. doi:10.1016/j.neuroimage.2011.06.005Google Scholar
Bruhl, A. B., Delsignore, A., Komossa, K., & Weidt, S. (2014). Neuroimaging in social anxiety disorder—A meta-analytic review resulting in a new neurofunctional model. Neuroscience and Biobehavioral Reviews, 47, 260280.Google Scholar
Buckholtz, J. W., & Meyer-Lindenberg, A. (2012). Psychopathology and the human connectome: Toward a transdiagnostic model of risk for mental illness. Neuron, 74, 9901004.Google Scholar
Campbell-Sills, L., & Barlow, D. H. (2007). Incorporating emotion regulation into conceptualizations and treatments of anxiety and mood disorders. In Gross, J. J. (Ed.), Handbook of emotion regulation (pp. 542559). New York: Guilford Press.Google Scholar
Caspi, A., Harrington, H., Milne, B., Amell, J. W., Theodore, R. F., & Moffitt, T. E. (2003). Children's behavioral styles at age 3 are linked to their adult personality traits at age 26. Journal of Personality, 71, 495514.Google Scholar
Chan, S. W. Y., Norbury, R., Goodwin, G. M., & Harmer, C. J. (2009). Risk for depression and neural responses to fearful facial expressions of emotion. British Journal of Psychiatry, 194, 139145. doi:10.1192/bjp.bp.107.047993Google Scholar
Cheng, D. T., Richards, J. R., & Helmstetter, F. J. (2007). Activity in the human amygdala corresponds to early, rather than late period autonomic responses to a signal for shock. Learning & Memory, 14, 485490.Google Scholar
Churchwell, J. C., Morris, A. M., Heurtelou, N. M., & Kesner, R. P. (2009). Interactions between the prefrontal cortex and amygdala during delay discounting and reversal. Beahvioral Neuroscience, 123, 11851196.Google Scholar
Cremers, H. R., Demenescu, L. R., Aleman, A., Renken, R., van Tol, M. J., van der Wee, N. J., … Roelofs, K. (2010). Neuroticism modulates amygdala-prefrontal connectivity in response to negative emotional facial expressions. NeuroImage, 49, 963970. doi:10.1016/j.neuroimage.2009.08.023Google Scholar
Cuijpers, P., Smit, F., Penninx, B., de Graaf, R., ten Have, M., & Beekman, A. (2010). Economic costs of neuroticism: A population-based study. Archives of General Psychiatry, 67, 10861093.Google Scholar
Cunningham, W. A., Arbuckle, N. L., Jahn, A., Mowrer, S. M., & Abduljalil, A. M. (2011). Reprint of: Aspects of neuroticism and the amygdala: Chronic tuning from motivational styles. Neuropsychologia, 49, 657662. doi:10.1016/j.neuropsychologia.2011.02.027Google Scholar
Davis, M. (1992). The role of the amygdala in fear and anxiety. Annual Reviews Neuroscience, 15, 353375.Google Scholar
Davis, M., & Whalen, P. J. (2001). The amygdala: Vigilance and emotion. Molecular Psychiatry, 6, 1334. doi:10.1038/sj.mp.4000812Google Scholar
De Fruyt, F., De Clercq, B., De Bolle, M., Wille, B., Markon, K., & Krueger, R. F. (2013). General and maladaptive traits in a five-factor framework for DSM-5 in a university student sample. Assessment, 20, 295307. doi:10.1177/1073191113475808Google Scholar
Delgado, M. R., Nearing, K. I., LeDoux, J. E., & Phelps, E. A. (2008). Neural circuitry underlying the regulation of conditioned fear and its relation to extinction. Neuron, 59, 829838. doi:10.1016/j.neuron.2008.06.029Google Scholar
Depue, R. (2009). Genetic, environmental, and epigenetic factors in the development of personality disturbance. Development and Psychopathology, 21, 10311063.Google Scholar
DeYoung, C. G. (2015). Cybernetic Big Five Theory. Journal of Research in Personality, 56, 3358. doi:10.1016/j.jrp.2014.07.004Google Scholar
DeYoung, C. G., & Gray, J. R. (2009). Personality neuroscience: Explaining individual differences in affect, behaviour, and cognition. In The Cambridge handbook of personality psychology (pp. 323346). Cambridge: Cambridge Univerity Press.Google Scholar
DeYoung, C. G., Hirsh, J. B., Shane, M. S., Papademetris, X., Rajeevan, N., & Gray, J. (2010). Testing predictions from personality neuroscience: Brain structure and the Big Five. Psychological Science, 21, 820828.Google Scholar
Diekhof, E. K., Geier, K., Falkai, P., & Gruber, O. (2011). Fear is only as deep as the mind allows. A coordinate-based meta-analysis of neuroimaging studies on the regulation of negative affect. NeuroImage, 58, 275285. doi:10.1016/j.neuroimage.2011.05.073Google Scholar
Disner, S. G., Beevers, C. G., Haigh, E. A. P., & Beck, A. T. (2011). Neural mechanisms of the cognitive model of depression. Nature Reviews Neuroscience, 12, 467477. doi:10.1038/nrn3027Google Scholar
Drabant, E. M., McRae, K., Manuck, S. B., Hariri, A. R., & Gross, J. J. (2009). Individual differences in typical reappraisal use predict amygdala and prefrontal responses. Biological Psychiatry, 65, 367373.Google Scholar
Ekman, P., & Friesen, W. (1977). Facial Action Coding System. Sanfrancisco,CA: Paul Ekman Group.Google Scholar
Eysenck, H. (1967). The biological basis of personality. Springfield, IL: Thomas.Google Scholar
Friston, K. J. (2005). Models of brain function in neuroimaging. Annual Review of Psychology, 56, 5787. doi:10.1146/annurev.psych.56.091103.070311Google Scholar
Gold, A. L., Shechner, T., Farber, M. J., Spiro, C. N., Leibenluft, E., Pine, D. S., & Britton, J. C. (2016). Amygdala–cortical connectivity: Associations with anxiety, development, and threat. Depression and Anxiety, 33, 917926.Google Scholar
Gore, W. L., & Widiger, T. (2013). The DSM-5 dimensional trait model and five-factor models of general personality. Journal of Abnormal Psychology, 122, 816821. doi:10.1037/a0032822Google Scholar
Gratz, K. L., & Tull, M. T. (2010). Emotion regulation as a mechanism of change in acceptance- and mindfulness-based treatments (Baer, R. A., Ed.) Oakland, CA: New Harbinger.Google Scholar
Gray, J. (1982). The neuropsychology of anxiety: An enquiry into the functions of the septo-hippocampal system. New York: Clarendon Press.Google Scholar
Gray, J. (1991). Neural systems, emotion, and personality. In Madden, J. (Ed.), Neurobiology of learning, emotion, and affect (pp. 273306). New York: Raven Press.Google Scholar
Greenberg, L. S. (2017). Emotion-focused therapy of depression. Person-Centered and Experiential Psychotherapies, 16, 106117. doi:10.1080/14779757.2017.1330702Google Scholar
Haas, B. W., Constable, R., & Canli, T. (2008). Stop the sadness: Neuroticism is associated with sustained medial prefrontal cortex response to emotional facial expressions. NeuroImage, 42, 385392.Google Scholar
Haas, B. W., Omura, K., Constable, R. T., & Canli, T. (2007). Emotional conflict and neuroticism: Personality-dependent activation in the amygdala and subgenual anterior cingulate. Behavioral Neuroscience, 121, 249–56. doi:10.1037/0735-7044.121.2.249Google Scholar
Hamm, L. L., Jacobs, R. H., Johnson, M. W., Fitzgerald, D. A., Fitzgerald, K. D., & Phan, K. L. (2014). Aberrant amygdala functional connectivity at rest in pediatric anxiety disorders. Biology of Mood and Anxiety Disorders, 4, 15.Google Scholar
Han, X., Jovicich, J., Salat, D., van der Kouwe, A., Quinn, B., Czanner, S., … Fischl, B. (2006). Reliability of MRI-derived measurements of human cerebral cortical thickness: The effects of field strength, scanner upgrade and manufacturer. NeuroImage, 32, 180194. doi:10.1016/j.neuroimage.2006.02.051Google Scholar
Hankin, B. L., Lakdawalla, Z., Carter, I. L., Abela, J. R. Z., & Adams, P. (2007). Are neuroticism, cognitive vulnerabilities and self–esteem overlapping or distinct risks for depression? Evidence from exploratory and confirmatory factor analyses. Journal of Social and Clinical Psychology, 26, 2963. doi:10.1521/jscp.2007.26.1.29Google Scholar
Hardee, J. E., Benson, B. E., Bar-Haim, Y., Mogg, K., Bradley, B. P., Chen, G., … Perez-Edgar, K. (2013). Patterns of neural connectivity during an attention bias task moderate associations between early childhood temperament and internalizing symptoms in young adulthood. Biological Psychiatry, 74, 273279.Google Scholar
Harenski, C. L., Kim, S. H., & Hamann, S. (2009). Neuroticism and psychopathy predict brain activation during moral and nonmoral emotion regulation. Cognitive, Affective & Behavioral Neuroscience, 9, 115. doi:10.3758/cabn.9.1.1Google Scholar
Heimer, L. (2003). A new anatomical framework for neuropsychiatric disorders and drug abuse. American Journal of Psychiatry, 160, 17261739.Google Scholar
Heinz, A., Braus, D. F., Smolka, M. N., Wrase, J., Puls, I., Hermann, D., … Büchel, C. (2005). Amygdala-prefrontal coupling depends on a genetic variation of the serotonin transporter. Nature Neuroscience, 8, 2021. doi:10.1038/nn1366Google Scholar
Hilt, L. M., Hanson, J. L., & Pollak, S. D. (2011). Emotion dysregulation. In Brown, B. B. & Prinstein, M. J. (Eds.), Encyclopedia of adolescence (Vol. 3, pp. 160169). New York: Elsevier.Google Scholar
Hyde, L. W., Gorka, A., Manuck, S. B., & Hariri, A. R. (2011). Perceived social support moderates the link between threat-related amygdala reactivity and trait anxiety. NeuropsychologiaNeuropsychologia, 49, 651656.Google Scholar
Iacono, W. G., Carlson, S. R., Taylor, J., Elkins, I. J., & McGue, M. (1999). Behavioral disinhibition and the development of substance-use disorders: Findings from the Minnesota Twin Family Study. Development and Psychopathology, 11, 869900.Google Scholar
Iacono, W. G., & McGue, M. (2002). Minnesota Twin Family Study. Twin Research and Human Genetics, 5, 482487.Google Scholar
Iacono, W. G., McGue, M., & Krueger, R. F. (2006). Minnesota Center for Twin and Family Research. Twin Research and Human Genetics, 9, 978984.Google Scholar
Johnstone, T., Somerville, L. H., Alexander, A. L., Oakes, T. R., Davidson, R. J., Kalin, N. H., & Whalen, P. J. (2005). Stability of amygdala BOLD response to fearful faces over multiple scan sessions. NeuroImage, 25, 11121123. doi:10.1016/j.neuroimage.2004.12.016Google Scholar
Johnstone, T., van Reekum, C. M., Urry, H. L., Kalin, N. H., & Davidson, R. J. (2007). Failure to regulate: Counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression. Journal of Neuroscience, 27, 88778884. doi:10.1523/JNEUROSCI.2063-07.2007Google Scholar
Jovicich, J., Czanner, S., Han, X., Salat, D., Kouwe, A., Van Der, , Quinn, B., … Fischl, B. (2009). MRI-derived measurements of human subcortical, ventricular, and intracranial brain volumes: Reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths. NeuroImage, 46, 177192. doi:10.1016/j.neuroimage.2009.02.010.MRI-derivedGoogle Scholar
Kagan, J., Reznick, S., Clarke, C., Snidman, N., & Garcia-Coll, C. (1984). Behavioral inhibition to the unfamiliar. Child Development, 55, 22122225.Google Scholar
Kamphausen, S., Schröder, P., Maier, S., Bader, K., Feige, B., Kaller, C. P., … Tüscher, O. (2013). Medial prefrontal dysfunction and prolonged amygdala response during instructed fear processing in borderline personality disorder. World Journal of Biological Psychiatry, 14, 307318. doi:10.3109/15622975.2012.665174Google Scholar
Keyes, M. A., Malone, S. M., Elkins, I. J., Legrand, L. N., McGue, M., & Iacono, W. G. (2009). The enrichment study of the Minnesota Twin Family Study: Increasing the yield of twin families at high risk for externalizing psychopathology. Twin Research and Human Genetics, 12, 489501.Google Scholar
Kienast, T., Hariri, A. R., Schlagenhauf, F., Wrase, J., Sterzer, P., Buchholz, H. G., … Heinz, A. (2008). Dopamine in amygdala gates limbic processing of aversive stimuli in humans. Nature Neuroscience, 11, 13811382. doi:10.1038/nn.2222Google Scholar
Kim, M. J., Loucks, R. A., Palmer, A. L., Brown, A. C., Solomon, K. M., Marchante, A. N., & Whalen, P. J. (2011). The structural and functional connectivity of the amygdala: From normal emotion to pathological anxiety. Behavioural Brain Research, 223, 403410. doi:10.1016/j.bbr.2011.04.025Google Scholar
Kim, M. J., & Whalen, P. J. (2009). The structural integrity of an Aamygdala-prefrontal Pathway predicts trait anxiety. Journal of Neuroscience, 29, 1161411618. doi:10.1523/JNEUROSCI.2335-09.2009Google Scholar
Koeningsberg, H. W., Denny, B. T., Fan, J., Liu, X., Guerreri, S., Mayson, S. J., … Siever, L. J. (2014). The neural correlates of anomalous habituation to negative emotional pictures in borderline and avoidant personality disorder patients. American Journal of Psychiatry, 171, 8290.Google Scholar
Krueger, R. F., Derringer, J., Markon, K. E., Watson, D., & Skodol, A. E. (2012). Initial construction of a maladaptive personality trait model and inventory for DSM-5. Psychological Medicine, 42, 18791890. doi:10.1017/S0033291711002674Google Scholar
Kujawa, A., Wu, M., Klumpp, H., Pine, D. S., Swain, J. E., Fitzgerald, K. D., … Phan, K. L. (2016). Altered development of amgydala-anterior cingulate cortex connectivity in anxious youth and young adults. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1, 345352.Google Scholar
Lahey, B. B. (2009). Public health significance of neuroticism. American Psychologist, 64, 241256. doi:10.1037/a0015309Google Scholar
LeDoux, J. (1998). The emotional brain: The mysterious underpinnings of emotional life. New York: Simon & Schuster.Google Scholar
Lemogne, C., Gorwood, P., Bergouignan, L., Pélissolo, A., Lehéricy, S., & Fossati, P. (2011). Negative affectivity, self-referential processing and the cortical midline structures. Social Cognitive and Affective Neuroscience, 6, 426433. doi:10.1093/scan/nsq049Google Scholar
Lonsdorf, T. B., Golkar, A., Lindstöm, K. M., Fransson, P., Schalling, M., Öhman, A., & Ingvar, M. (2011). 5-HTTLPR and COMTval158met genotype gate amygdala reactivity and habituation. Biological Psychology, 87, 106112. doi:10.1016/j.biopsycho.2011.02.014Google Scholar
Lynch, T. R., Trost, W. T., Salsman, N., & Linehan, M. M. (2007). Dialectical behavior therapy for borderline personality disorder. Annual Review of Clinical Psychology, 3, 181205. doi:10.1146/annurev.clinpsy.2.022305.095229Google Scholar
McCrae, R., & Costa, P. (2003). Personality in adulthood: A five-factor theory perspective. New York: Guilford Press.Google Scholar
Mesulam, M. (1998). From sensation to cognition. Brain, 121, 10131052.Google Scholar
Monk, C. S., Telzer, E. H., Mogg, K., Bradley, B. P., Mai, X., Louro, H. M. C., … Pine, D. P. (2008). Amygdala and ventrolateral pre-frontal cortex activation to masked-angry faces in children and adolescents with generalized anxiety disorder. Archives in General Psychiatry, 65, 568576.Google Scholar
Morris, J. S., Friston, K. J., Büchel, C., Frith, C. D., Young, A. W., Calder, A. J., & Dolan, R. J. (1998). A neuromodulatory role for the human amygdala in processing emotional facial expressions. Brain, 121, 4757. doi:10.1093/brain/121.1.47Google Scholar
Norris, C. J., Larsen, J. T., & Cacioppo, J. T. (2007). Neuroticism is associated with larger and more prolonged electrodermal responses to emotionally evocative pictures. Psychophysiology, 44, 823826. doi:10.1111/j.1469-8986.2007.00551.xGoogle Scholar
Ochsner, K. N., & Gross, J. J. (2005). The cognitive control of emotion. Trends in Cognitive Sciences, 9, 242249. doi:10.1016/j.tics.2005.03.010Google Scholar
Ochsner, K. N., Silvers, J. A., & Buhle, J. T. (2012). Functional imaging studies of emotion regulation: A synthetic review and evolving model of the cognitive control of emotion. Annals of the New York Academy of Sciences, 1251, E1E24. doi:10.1111/j.1749-6632.2012.06751.x.FunctionalGoogle Scholar
O'Reilly, J. X., Woolrich, M. W., Behrens, T. E. J., Smith, S. M., & Johansen-Berg, H. (2012). Tools of the trade: Psychophysiological interactions and functional connectivity. Social Cognitive and Affective Neuroscience, 7, 604609. doi:10.1093/scan/nss055Google Scholar
Ormel, J., Bastiaansen, A., Riese, H. H., Bos, E. H., Servaas, M., Ellenbogen, M., … Aleman, A. A. (2013). The biological and psychological basis of neuroticism: Current status and future directions. Neuroscience and Biobehavioral Reviews, 37, 5972. doi:10.1016/j.neubiorev.2012.09.004Google Scholar
Ormel, J., Jeronimus, B. F., Kotov, R., Riese, H., Bos, E. H., Hankin, B., … Oldehinkel, A. J. (2013). Neuroticism and common mental disorders: Meaning and utility of a complex relationship. Clinical Psychology Review, 33, 686697. doi:10.1016/j.cpr.2013.04.003Google Scholar
Ormel, J., Rosmalen, J., & Farmer, A. (2004). Neuroticism: A non-informative marker of vulnerability to psychopathology. Social Psychiatry and Psychiatric Epidemiology, 39, 906912. doi:10.1007/s00127-004-0873-yGoogle Scholar
Patrick, C. J., Curtin, J. J., & Tellegen, A. (2002). Development and validation of a brief form of the Multidimensional Personality Questionnaire. Psychological Assessment, 14, 150163. doi:10.1037/1040-3590.14.2.150Google Scholar
Patrick, C. J., Venables, N. C., Yancey, J. R., Hicks, B. M., Nelson, L. D., & Kramer, M. D. (2013). A construct-network approach to bridging diagnostic and physiological domains: Application to assessment of externalizing psychopathology. Journal of Abnormal Psychology, 122, 902916. doi:10.1037/a0032807Google Scholar
Phelps, E. A., & LeDoux, J. E. (2005). Contributions of the amygdala to emotion processing: From animal models to human behavior. Neuron, 48, 175187. doi:10.1016/j.neuron.2005.09.025Google Scholar
Phillips, M., Medford, N., Young, A., Williams, L., Williams, S., Bullmore, E., … Brammer, M. (2001). Time courses of left and right amygdalar responses to fearful facial expressions. Human Brain Mapping, 12, 193202.Google Scholar
Plichta, M. M., Grimm, O., Morgen, K., Mier, D., Sauer, C., Haddad, L., … Meyer-Lindenberg, A. (2014). Amygdala habituation: A reliable fMRI phenotype. NeuroImage, 103, 383390. doi:10.1016/j.neuroimage.2014.09.059Google Scholar
Portella, M. J., Harmer, C. J., Flint, J., Cowen, P., & Goodwin, G. M. (2005). Enhanced early morning salivary cortisol in neuroticism. American Journal of Psychiatry, 162, 807809. doi:10.1176/appi.ajp.162.4.807Google Scholar
R Core Team. (2015). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Samuel, D. B., Carroll, K. M., Rounsaville, B. J., & Ball, S. A. (2013). Personality disorders as maladaptive, extreme variants of normal personality: Borderline personality disorder and neuroticism in a substance using sample. Journal of Personality Disorders, 27, 625635. doi:10.1521/pedi.2013.27.5.625Google Scholar
Sauder, C. L., Hajcak, G., Angstadt, M., & Phan, K. L. (2013). Test‐retest reliability of amygdala response to emotional faces. Psychophysiology, 50, 11471156.Google Scholar
Schuyler, B. S., Kral, T. R. A., Jacquart, J., Burghy, C. A., Weng, H. Y., Perlman, D. M., … Davidson, R. J. (2014). Temporal dynamics of emotional responding: Amygdala recovery predicts emotional traits. Social Cognitive and Affective Neuroscience, 9, 176181. doi:10.1093/scan/nss131Google Scholar
Servaas, M. N., Geerligs, L., Renken, R. J., Marsman, J. B., Ormel, J., Riese, H., & Aleman, A. (2015). Connectomics and neuroticism: An altered functional network organization. Neuropsychopharmacology, 40, 296304. doi:10.1038/npp.2014.169Google Scholar
Servaas, M. N., van der Velde, J., Costafreda, S. G., Horton, P., Ormel, J., Riese, H., & Aleman, A. (2013). Neuroticism and the brain: A quantitative meta-analysis of neuroimaging studies investigating emotion processing. Neuroscience and Biobehavioral Reviews, 37, 15181529. doi:10.1016/j.neubiorev.2013.05.005Google Scholar
Simms, L. J., Grös, D. F., Watson, D., & O'Hara, M. W. (2008). Parsing the general and specific components of depression and anxiety with bifactor modeling. Depression and Anxiety, 25, 3446. doi:10.1002/da.20432Google Scholar
Soto, C. J., John, O. P., Gosling, S. D., & Potter, J. (2011). Age differences in personality traits from 10 to 65: Big Five domains and facets in a large cross-sectional sample. Journal of Personality and Social Psychology, 100, 330348. doi:10.1037/a0021717Google Scholar
Sporns, O. (2011). The human connectome: A complex network. Annals of the New York Academy of Sciences, 1224, 109125. doi:10.1111/j.1749-6632.2010.05888.xGoogle Scholar
Stein, J. L., Wiedholz, L. M., Bassett, D. S., Weinberger, D. R., Zink, C. F., Mattay, V. S., & Meyer-Lindenberg, A. (2007). A validated network of effective amygdala connectivity. NeuroImage, 36, 736745. doi:10.1016/j.neuroimage.2007.03.022Google Scholar
Strauss, M. M., Makris, N., Aharon, I., Vangel, M. G., Goodman, J., Kennedy, D. N., … Breiter, H. C. (2005). fMRI of sensitization to angry faces. NeuroImage, 26, 389413. doi:10.1016/j.neuroimage.2005.01.053Google Scholar
Suls, J., & Martin, R. (2005). The daily life of the garden-variety neurotic: Reactivity, stressor exposure, mood spillover, and maladaptive coping. Journal of Personality, 73, 14851509. doi:10.1111/j.1467-6494.2005.00356.xGoogle Scholar
Tackett, J. L. (2006). Evaluating models of the personality-psychopathology relationship in children and adolescents. Clinical Psychology Review, 26, 584599.Google Scholar
Tackett, J. L., & Lahey, B. B. (2016). Neuroticism (Vol. 1). doi:10.1093/oxfordhb/9780199352487.013.14Google Scholar
Tellegen, A., & Waller, N. (2008). Exploring personality through test construction: Development of the Multidimensional Personality Questionnaire. In The SAGE handbook of personality theory and assessment (Vol. 2, pp. 261292).Thousand Oaks, CA: Sage.Google Scholar
Thomas, E. J., Elliott, R., McKie, S., Arnone, D., Downey, D., Juhasz, G., … Anderson, I. M. (2011). Interaction between depression and rumination on neural responses to emotional faces. Psychological Medicine, 41, 18451855.Google Scholar
Thompson, R. F., & Spencer, W. A. (1966). Habituation: A model phenomenon for the study of neuronal substrates of behavior. Psychological Review, 73, 1643. doi:10.1037/h0022681Google Scholar
Tzschoppe, J., Nees, F., Banaschewski, T., Barker, G. J., Büchel, C., Conrod, P. J., … Flor, H. (2014). Aversive learning in adolescents: Modulation by amygdala–prefrontal and amygdala–hippocampal connectivity and neuroticism. Neuropsychopharmacology, 39, 875884. doi:10.1038/npp.2013.287Google Scholar
Urry, H. L., van Reekum, C. M., Johnstone, T., Kalin, N. H., Thurow, M. E., Schaefer, H. S., & Davidson, R. J. (2006). Amygdala and ventromedial prefrontal cortex are inversely coupled during regulation of negative affect and predict the diurnal pattern of cortisol secretion among older adults. Journal of Neuroscience, 26, 44154425.Google Scholar
Van Den Berg, S. M., De Moor, M. H. M., McGue, M., Pettersson, E., Terracciano, A., Verweij, K. J. H., … Boomsma, D. I. (2014). Harmonization of neuroticism and extraversion phenotypes across inventories and cohorts in the Genetics of Personality Consortium: An application of item response theory. Behavior Genetics, 44, 295313. doi:10.1007/s10519-014-9654-xGoogle Scholar
Watson, D., Gamez, W., & Simms, L. J. (2005). Basic dimensions of temperament and their relation to anxiety and depression: A symptom-based perspective. Journal of Research in Personality, 39, 4666.Google Scholar
Watson, D., & Naragon-Gainey, K. (2014). Personality, emotions, and the emotional disorders. Clinical Psychological Science, 2, 422442.Google Scholar
Watson, D., O'Hara, M. W., Naragon-Gainey, K., Koffel, E., Chmielewski, M., Kotov, R., … Ruggero, C. J. (2012). Development and validation of new anxiety and bipolar symptom scales for an expanded version of the IDAS (the IDAS-II). Assessment, 19, 399420. doi:10.1177/1073191112449857Google Scholar
Watson, D., Stasik, S. M., Ro, E., & Clark, L. A. (2013). Integrating normal and pathological personality. Assessment, 20, 312326. doi:10.1177/1073191113485810Google Scholar
Weisberg, Y. J., De Young, C. G., & Hirsh, J. B. (2011). Gender differences in personality across the ten aspects of the Big Five. Frontiers in Psychology, 2, 111. doi:10.3389/fpsyg.2011.00178Google Scholar
Widiger, T. A. (2009). Neuroticism. In Leary, M. & Hoyle, R. (Eds.), Handbook of individual differences in social behavior (pp. 129146). New York: Guilford Press.Google Scholar
Williams, L. M., Brown, K. J., Palmer, D., Liddell, B. J., Kemp, A. H., Olivieri, G., … Gordon, E. (2006). The mellow years? Neural basis of improving emotional stability over age. Journal of Neuroscience, 26, 64226430. doi:10.1523/JNEUROSCI.0022-06.2006Google Scholar
Wilson, G. D., Kumari, V., Gray, J. A., & Corr, P. J. (2000). The role of neuroticism in startle reactions to fearful and disgusting stimuli. Personality and Individual Differences, 29, 10771082. doi:10.1016/S0191-8869(99)00255-XGoogle Scholar
Xu, J., & Potenza, M. (2012). White matter integrity and five-factor personality measures in healthy adults. NeuroImage, 59, 800807.Google Scholar
Yarkoni, T. (2009). Big correlations in little studies: Inflated fMRI correlations reflect low statistical power-commentary on Vul et al. Perspectives on Psychological Science, 4, 294298.Google Scholar