Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T15:51:13.846Z Has data issue: false hasContentIssue false

Stress response and the adolescent transition: Performance versus peer rejection stressors

Published online by Cambridge University Press:  15 January 2009

Laura R. Stroud*
Affiliation:
Brown University
Elizabeth Foster
Affiliation:
Brown University
George D. Papandonatos
Affiliation:
Brown University
Kathryn Handwerger
Affiliation:
Tufts University
Douglas A. Granger
Affiliation:
Pennsylvania State University
Katie T. Kivlighan
Affiliation:
Johns Hopkins University
Raymond Niaura
Affiliation:
Brown University
*
Address correspondence and reprint requests to: Laura R. Stroud, Centers for Behavioral and Preventive Medicine, Department of Psychiatry and Human Behavior, Brown Medical School and The Miriam Hospital, Coro West, Suite 500, 1 Hoppin Street, Providence, RI 02903; E-mail: [email protected].

Abstract

Little is known about normative variation in stress response over the adolescent transition. This study examined neuroendocrine and cardiovascular responses to performance and peer rejection stressors over the adolescent transition in a normative sample. Participants were 82 healthy children (ages 7–12 years, n = 39, 22 females) and adolescents (ages 13–17, n = 43, 20 females) recruited through community postings. Following a habituation session, participants completed a performance (public speaking, mental arithmetic, mirror tracing) or peer rejection (exclusion challenges) stress session. Salivary cortisol, salivary alpha amylase (sAA), systolic and diastolic blood pressure (SBP, DBP), and heart rate were measured throughout. Adolescents showed significantly greater cortisol, sAA, SBP, and DBP stress response relative to children. Developmental differences were most pronounced in the performance stress session for cortisol and DBP and in the peer rejection session for sAA and SBP. Heightened physiological stress responses in typical adolescents may facilitate adaptation to new challenges of adolescence and adulthood. In high-risk adolescents, this normative shift may tip the balance toward stress response dysregulation associated with depression and other psychopathology. Specificity of physiological response by stressor type highlights the importance of a multisystem approach to the psychobiology of stress and may also have implications for understanding trajectories to psychopathology.

Type
Special Section Articles
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achenbach, T. M. (1991). Integrative guide to the 1991 CBCL/4–18, YSR, and TRF profiles. Burlington, VT: University of Vermont, Department of Psychology.Google Scholar
Achenbach, T. M., & Rescorla, L. A. (2001). Manual for the ASEBA school-age forms & profiles. Burlington, VT: University of Vermont, Research Center for Children, Youth, and Families.Google Scholar
Adam, E. K. (2006). Transactions among adolescent trait and state emotion and diurnal and momentary cortisol activity in naturalistic settings. Psychoneuroendocrinology, 31, 664679.CrossRefGoogle ScholarPubMed
Allen, M. T., & Matthews, K. A. (1997). Hemodynamic responses to laboratory stressors in children and adolescents: The influences of age, race, and gender. Psychophysiology, 34, 329339.CrossRefGoogle ScholarPubMed
Armario, A., Gavalda, A., & Marti, J. (1995). Comparison of the behavioural and endocrine response to forced swimming stress in five inbred strains of rats. Psychoneuroendocrinology, 20, 879890.CrossRefGoogle ScholarPubMed
Arnett, J. J. (1999). Adolescent storm and stress, reconsidered. American Psychologist, 54, 317326.CrossRefGoogle ScholarPubMed
Bauer, A. M., Quas, J. A., & Boyce, W. T. (2002). Associations between physiological reactivity and children's behavior: Advantages of a multisystem approach. Journal of Developmental and Behavioral Pediatrics, 23, 102113.CrossRefGoogle ScholarPubMed
Buske-Kirschbaum, A., Jobst, S., Psych, D., Wustmans, A., Kirschbaum, C., Rauh, W., et al. (1997). Attenuated free cortisol response to psychosocial stress in children with atopic dermatitis. Psychosomatic Medicine, 59, 419426.CrossRefGoogle ScholarPubMed
Charmandari, E., Tsigos, C., & Chrousos, G. (2005). Endocrinology of the stress response. Annual Review of Physiology, 67, 259284.CrossRefGoogle ScholarPubMed
Chen, E., Matthews, K. A., Salomon, K., & Ewart, C. K. (2002). Cardiovascular reactivity during social and nonsocial stressors: Do children's personal goals and expressive skills matter? Health Psychology, 21, 1624.CrossRefGoogle ScholarPubMed
Choi, S., & Kellogg, C. K. (1996). Adolescent development influences functional responsiveness of noradrenergic projections to the hypothalamus in male rats. Brain Research and Developmental Brain Research, 94, 144151.CrossRefGoogle Scholar
Chrousos, G. P., Torpy, D. J., & Gold, P. W. (1998). Interactions between the hypothalamic–pituitary–adrenal axis and the female reproductive system: Clinical implications. Annals of Internal Medicine, 129, 229240.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Blender, J. A. (2006). A multiple-levels-of-analysis perspective on resilience: Implications for the developing brain, neural plasticity, and preventive interventions. Annals of the New York Academy of Sciences, 1094, 248258.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Rogosch, F. A. (2002). A developmental psychopathology perspective on adolescence. Journal of Consulting and Clinical Psychology, 70, 620.CrossRefGoogle ScholarPubMed
Colten, M. E., & Gore, S. (1991). Adolescent stress: Causes and consequences. New York: Aldine De Gruyter.Google Scholar
Compas, B. E., Hinden, B. R., & Gerhardt, C. A. (1995). Adolescent development: Pathways and processes of risk and resilience. Annual Review of Psychology, 46, 265293.CrossRefGoogle ScholarPubMed
Critchlow, V., Liebelt, R. A., Bar-Sela, M., Mountcastle, W., & Lipscomb, H. S. (1963). Sex difference in resting pituitary–adrenal function in the rat. American Journal of Physiology, 205, 807815.CrossRefGoogle ScholarPubMed
Dahl, R. E. (2004). Adolescent development and the regulation of behavior and emotion: Introduction to part VIII. Annals of the New York Academy of Sciences, 1021, 294295.CrossRefGoogle ScholarPubMed
Dahl, R. E., Kaufman, J., Ryan, N. D., Perel, J., al-Shabbout, M., Birmaher, B., et al. (1992). The dexamethasone suppression test in children and adolescents: A review and a controlled study. Biological Psychiatry, 32, 109126.CrossRefGoogle ScholarPubMed
Dahl, R. E., Ryan, N. D., Puig-Antich, J., Nguyen, N. A., al-Shabbout, M., Meyer, V. A., et al. (1991). 24-hour cortisol measures in adolescents with major depression: A controlled study. Biological Psychiatry, 30, 2536.CrossRefGoogle ScholarPubMed
Dickerson, S. S., & Kemeny, M. E. (2004). Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130, 355391.CrossRefGoogle ScholarPubMed
Eccles, J. S., Midgley, C., Wigfield, A., Buchanan, C. M., Reuman, D., Flanagan, C., et al. (1993). Development during adolescence. The impact of stage-environment fit on young adolescents' experiences in schools and in families. American Psychologist, 48, 90101.CrossRefGoogle Scholar
Elmlinger, M. W., Kuhnel, W., & Ranke, M. B. (2002). Reference ranges for serum concentrations of lutropin (LH), follitropin (FSH), estradiol (E2), prolactin, progesterone, sex hormone-binding globulin (SHBG), dehydroepiandrosterone sulfate (DHEAS), cortisol and ferritin in neonates, children and young adults. Clinical Chemistry and Laboratory Medicine, 40, 11511160.CrossRefGoogle ScholarPubMed
Ewart, C. K., & Jorgensen, R. S. (2004). Agonistic interpersonal striving: Social–cognitive mechanism of cardiovascular risk in youth? Health Psychology, 23, 7585.CrossRefGoogle ScholarPubMed
Ewart, C. K., Jorgensen, R. S., & Kolodner, K. B. (1998). Sociotropic cognition moderates blood pressure response to interpersonal stress in high-risk adolescent girls. International Journal of Psychophysiology, 28, 131142.CrossRefGoogle ScholarPubMed
Folkman, S., & Moskowitz, J. T. (2007). Positive affect and meaning-focused coping during significant psychological stress. In Hewstone, M., Schut, H. A. W., De Wit, J. B. F., Van Den Bos, K., & Stroebe, M. S. (Eds.), The scope of social psychology: Theory and applications (pp. 193208). New York: Psychology Press.Google Scholar
Forbes, E. E., & Dahl, R. E. (2005). Neural systems of positive affect: Relevance to understanding child and adolescent depression? Development and Psychopathology, 17, 827850.CrossRefGoogle ScholarPubMed
Frankenhaeuser, M. (1982). Challenge–control interaction as reflected in sympathetic–adrenal and pituitary–adrenal activity: Comparison between the sexes. Scandinavian Journal of Psychology, 1(Suppl.), 158164.CrossRefGoogle Scholar
Gordis, E. B., Granger, D. A., Susman, E. J., & Trickett, P. K. (2006). Asymmetry between salivary cortisol and alpha-amylase reactivity to stress: Relation to aggressive behavior in adolescents. Psychoneuroendocrinology, 31, 976987.CrossRefGoogle ScholarPubMed
Gordis, E. B., Granger, D. A., Susman, E. J., & Trickett, P. K. (2008). Salivary alpha amylase-cortisol asymmetry in maltreated youth. Hormones and Behavior, 53, 96103.CrossRefGoogle ScholarPubMed
Graber, J. A., Brooks-Gunn, J., & Petersen, A. C. (1996). Transitions through adolescence: Interpersonal domains and context. Mahwah, NJ: Erlbaum.Google Scholar
Granger, D. A., Kivlighan, K. T., Blair, C., El-Sheikh, M., Mize, J., Lisonbee, J. A., et al. (2006). Integrating the measurement of salivary alpha amylase into studies of child health, development, and social relationships. Journal of Social and Personal Relationships, 23, 267290.CrossRefGoogle Scholar
Granger, D. A., Kivlighan, K. T., El-Sheikh, M., Gordis, E. B., & Stroud, L. R. (2007a). Assessment of salivary a-amylase in biobehavioral research. In Luecken, L. J. & Gallo, L. (Eds.), Handbook of physiological research methods in health psychology. New York: Sage.Google Scholar
Granger, D. A., Kivlighan, K. T., El-Sheikh, M., Gordis, E. B., & Stroud, L. R. (2007b). Salivary alpha-amylase in biobehavioral research: Recent developments and applications. Annals of the New York Academy of Sciences, 1098, 122144.CrossRefGoogle ScholarPubMed
Granger, D. A., Kivlighan, K. T., Fortunato, C., Harmon, A. G., Hibel, L. C., Schwartz, E. B., et al. (in press). Integration of salivary biomarkers into developmental and behaviorally-oriented research: Problems and solutions for collecting specimens. Physiology and Behavior, 92, 20122015.Google Scholar
Guinjoan, S. M., Bernabo, J. L., & Cardinali, D. P. (1995). Cardiovascular tests of autonomic function and sympathetic skin responses in patients with major depression. Journal of Neurology, Neurosurgery, and Psychiatry, 59, 299302.CrossRefGoogle ScholarPubMed
Gunnar, M. R. (1989). Studies of the human infant's adrenocortical response to potentially stressful events. New Directions in Child Development, 45, 318.CrossRefGoogle Scholar
Gunnar, M. R. (1992). Reactivity of the hypothalamic–pituitary–adrenocortical system to stressors in normal infants and children. Pediatrics, 90(3, Pt 2), 491497.Google ScholarPubMed
Gunnar, M. R. (2003). Integrating neuroscience and psychosocial approaches in the study of early experiences. In King, J. A., Ferris, C. F., & Lederhendler, I. I. (Eds.), Roots of mental illness in children (Vol. 1008, pp. 238247). New York: New York Academy of Sciences.Google Scholar
Gunnar, M. R., & Vazquez, D. M. (2001). Low cortisol and a flattening of expected daytime rhythm: Potential indices of risk in human development. Development and Psychopathology, 13, 515538.CrossRefGoogle Scholar
Gunnar, M. R., & Vazquez, D. M. (2006). Stress neurobiology and developmental psychopathology. In Cicchetti, D. & Cohen, D. (Eds.), Developmental psychopathology: Vol. 2. Developmental neuroscience (2nd ed., pp. 533577). New York: Wiley.Google Scholar
Gunnar, M. R., Wewerka, S., Frenn, K., Long, J. D., & Griggs, C. (2009). Developmental changes in HPA activity over the transition to adolescence: Normative changes and associations with puberty. Development and Psychopathology, 21, 6985.CrossRefGoogle Scholar
Halligan, S. L., Herbert, J., Goodyer, I., & Murray, L. (2007). Disturbances in morning cortisol secretion in association with maternal postnatal depression predict subsequent depressive symptomatology in adolescents. Biological Psychiatry, 62, 4046.CrossRefGoogle ScholarPubMed
Handwerger, K., Allwood, M. A., Kivlighan, K. T., Granger, D. A., & Stroud, L. R. (2008). Saliva alpha amylase stress reactivity in children and adolescents: Validation, contextual influences, and links to behavioral dysregulation. Unpublished manuscript.Google Scholar
Hayward, C. (2003). Gender differences at puberty. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Henry, J. P. (1992). Biological basis of the stress response. Integrative Physiology and Behavioral Sciences, 27, 6683.CrossRefGoogle ScholarPubMed
Hibel, L. C., Granger, D. A., Cicchetti, D., & Rogosch, F. (2007). Salivary biomarker levels and diurnal variation: Associations with medications prescribed to control children's problem behavior. Child Development, 78, 927937.CrossRefGoogle ScholarPubMed
Holsboer, F. (2000). The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology, 23, 477501.CrossRefGoogle ScholarPubMed
Jonetz-Mentzel, L., & Wiedemann, G. (1993). Establishment of reference ranges for cortisol in neonates, infants, children and adolescents. European Journal of Clinical Chemistry and Clinical Biochemistry, 31, 525529.Google ScholarPubMed
Kenny, F. M., Gancayco, G. P., Heald, F. P., & Hung, W. (1966). Cortisol production rate in adolescent males in different stages of sexual maturation. Journal of Clinical Endocrinology and Metabolism, 26, 12321236.CrossRefGoogle ScholarPubMed
Kiess, W., Meidert, A., Dressendorfer, R. A., Schriever, K., Kessler, U., Konig, A., et al. (1995). Salivary cortisol levels throughout childhood and adolescence: Relation with age, pubertal stage, and weight. Pediatric Research, 37(4, Pt 1), 502506.CrossRefGoogle ScholarPubMed
Kirschbaum, C., & Hellhammer, D. H. (1989). Salivary cortisol in psychobiological research: An overview. Neuropsychobiology, 22, 150169.CrossRefGoogle ScholarPubMed
Kirschbaum, C., & Hellhammer, D. H. (1994). Salivary cortisol in psychoneuroendocrine research: Recent developments and applications. Psychoneuroendocrinology, 19, 313333.CrossRefGoogle ScholarPubMed
Kirschbaum, C., Pirke, K. M., & Hellhammer, D. H. (1993). The “Trier Social Stress Test”—A tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology, 28, 7681.CrossRefGoogle Scholar
Klimes-Dougan, B., Hastings, P. D., Granger, D. A., Usher, B. A., & Zahn-Waxler, C. (2001). Adrenocortical activity in at-risk and normally developing adolescents: Individual differences in salivary cortisol basal levels, diurnal variation, and responses to social challenges. Development and Psychopathology, 13, 695719.CrossRefGoogle ScholarPubMed
Knutsson, U., Dahlgren, J., Marcus, C., Rosberg, S., Bronnegard, M., Stierna, P., et al. (1997). Circadian cortisol rhythms in healthy boys and girls: Relationship with age, growth, body composition, and pubertal development. Journal of Clinical Endocrinology and Metabolism, 82, 536540.Google ScholarPubMed
Kovacs, M. (1992). The Childhood Depression Inventory Manual. North Tonawanda, NY: Multi-Health Systems.Google Scholar
Kurtz, M. M., & Campbell, B. A. (1994). Paradoxical autonomic responses to aversive stimuli in the developing rat. Behavioral Neuroscience, 108, 962971.CrossRefGoogle ScholarPubMed
Ladd, G. W. (2006). Peer rejection, aggressive or withdrawn behavior, and psychological maladjustment from ages 5 to 12: An examination of four predictive models. Child Development, 77, 822846.CrossRefGoogle ScholarPubMed
Legro, R. S., Lin, H. M., Demers, L. M., & Lloyd, T. (2003). Urinary free cortisol increases in adolescent Caucasian females during perimenarche. Journal of Clinical Endocrinology and Metabolism, 88, 215219.CrossRefGoogle ScholarPubMed
Lerner, J. S., Dahl, R. E., Hariri, A. R., & Taylor, S. E. (2007). Facial expressions of emotion reveal neuroendocrine and cardiovascular stress responses. Biological Psychiatry, 61, 253260.CrossRefGoogle ScholarPubMed
Llabre, M. M., Spitzer, S. B., Saab, P. G., Ironson, G. H., & Schneiderman, N. (1991). The reliability and specificity of delta versus residualized change as measures of cardiovascular reactivity to behavioral challenges. Psychophysiology, 28, 701711.CrossRefGoogle ScholarPubMed
Lupien, S. J., King, S., Meaney, M. J., & McEwen, B. S. (2001). Can poverty get under your skin? basal cortisol levels and cognitive function in children from low and high socioeconomic status. Development and Psychopathology, 13, 653676.CrossRefGoogle ScholarPubMed
Marshall, W. A., & Tanner, J. M. (1969). Variations in pattern of pubertal changes in girls. Archives of Disease in Children, 44(235), 291303.CrossRefGoogle ScholarPubMed
Marshall, W. A., & Tanner, J. M. (1970). Variations in the pattern of pubertal changes in boys. Archives of Disease in Children, 45(239), 1323.CrossRefGoogle ScholarPubMed
Matchock, R. L., Dorn, L. D., & Susman, E. J. (2007). Diurnal and seasonal cortisol, testosterone, and DHEA rhythms in boys and girls during puberty. Chronobiology International, 24, 969990.CrossRefGoogle ScholarPubMed
Matthews, S. C., Nelesen, R. A., & Dimsdale, J. E. (2005). Depressive symptoms are associated with increased systemic vascular resistance to stress. Psychosomatic Medicine, 67, 509513.CrossRefGoogle ScholarPubMed
McEwen, B. S. (1998). Protective and damaging effects of stress mediators. New England Journal of Medicine, 338, 171179.CrossRefGoogle ScholarPubMed
Modesti, P. A., Pela, I., Cecioni, I., Gensini, G. F., Serneri, G. G., & Bartolozzi, G. (1994). Changes in blood pressure reactivity and 24-hour blood pressure profile occurring at puberty. Angiology, 45, 443450.CrossRefGoogle ScholarPubMed
Murphy, J. K., Alpert, B. S., Walker, S. S., & Willey, E. S. (1988). Race and cardiovascular reactivity. A replication. Hypertension, 11, 308311.CrossRefGoogle ScholarPubMed
Nater, U. M., La Marca, R., Florin, L., Moses, A., Langhans, W., Koller, M. M., et al. (2006). Stress-induced changes in human salivary alpha-amylase activity—Associations with adrenergic activity. Psychoneuroendocrinology, 31, 4958.CrossRefGoogle ScholarPubMed
Nelson, E. E., Leibenluft, E., McClure, E. B., & Pine, D. S. (2005). The social re-orientation of adolescence: A neuroscience perspective on the process and its relation to psychopathology. Psychological Medicine, 35, 163174.CrossRefGoogle ScholarPubMed
Netherton, C., Goodyer, I., Tamplin, A., & Herbert, J. (2004). Salivary cortisol and dehydroepiandrosterone in relation to puberty and gender. Psychoneuroendocrinology, 29, 125140.CrossRefGoogle ScholarPubMed
Plotsky, P. M., Owens, M. J., & Nemeroff, C. B. (1998). Psychoneuroendocrinology of depression. Hypothalamic–pituitary–adrenal axis. Psychiatric Clinics of North America, 21, 293307.CrossRefGoogle ScholarPubMed
Porth, C. (2006). Essentials of pathophysiology: Concepts of altered health states. Philadelphia, PA: Lippincott Williams & Wilkins.Google Scholar
Primus, R. J., & Kellogg, C. K. (1989). Pubertal-related changes influence the development of environment-related social interaction in the male rat. Developmental Psychobiology, 22, 633643.CrossRefGoogle ScholarPubMed
Prinstein, M. J., Borelli, J. L., Cheah, C. S., Simon, V. A., & Aikins, J. W. (2005). Adolescent girls' interpersonal vulnerability to depressive symptoms: A longitudinal examination of reassurance-seeking and peer relationships. Journal of Abnormal Psychology, 114, 676688.CrossRefGoogle ScholarPubMed
Reynolds, C. R., & Richmond, B. O. (2000). Revised Children's Manifest Anxiety Scale. Los Angeles: Western Psychological Services.Google Scholar
Romeo, R. D., Lee, S. J., & McEwen, B. S. (2005). Differential stress reactivity in intact and ovariectomized prepubertal and adult female rats. Neuroendocrinology, 80, 387393.CrossRefGoogle Scholar
Rosen, J. B., & Schulkin, J. (1998). From normal fear to pathological anxiety. Psychological Review, 105, 325350.CrossRefGoogle ScholarPubMed
Sapolsky, R. M., & Meaney, M. J. (1986). Maturation of the adrenocortical stress response: Neuroendocrine control mechanisms and the stress hyporesponsive period. Brain Research, 396, 6476.CrossRefGoogle ScholarPubMed
Schmidt, N. A. (1998). Salivary cortisol testing in children. Issues in Comprehensive Pediatric Nursing, 20, 183190.CrossRefGoogle Scholar
Schwartz, E. B., Granger, D. A., Susman, E. J., Gunnar, M. R., & Laird, B. (1998). Assessing salivary cortisol in studies of child development. Child Development, 69, 15031513.CrossRefGoogle ScholarPubMed
Shea, A., Walsh, C., Macmillan, H., & Steiner, M. (2005). Child maltreatment and HPA axis dysregulation: Relationship to major depressive disorder and post traumatic stress disorder in females. Psychoneuroendocrinology, 30, 162178.CrossRefGoogle ScholarPubMed
Spear, L. P. (2000). The adolescent brain and age-related behavioral manifestations. Neuroscience and Biobehavioral Reviews, 24, 417463.CrossRefGoogle ScholarPubMed
Spielberger, C. D., Edwards, C. D., Montuori, J., Lushene, R. E., & Platzek, D. (1973). State-Trait Anxiety Inventory for Children (STAIC). Palo Alto, CA: Mind Garden.Google Scholar
Steinberg, L., Dahl, R., Keating, D., Kupfer, D. J., Masten, A. S., & Pine, D. (2004). The study of developmental psychopathology in adolescence: Integrating affective neuroscience with the study of context. In Cicchetti, D. (Ed.), Handbook of developmental psychopathology. New York: Wiley.Google Scholar
Steinberg, L., & Morris, A. S. (2001). Adolescent development. Annual Review of Psychology, 52, 83110.CrossRefGoogle ScholarPubMed
Stroud, L. R., Papandonatos, G. D., Williamson, D. E., & Dahl, R. E. (2004). Sex differences in the effects of pubertal development on responses to a corticotropin-releasing hormone challenge: The Pittsburgh psychobiologic studies. Annals of the New York Academy of Sciences, 1021, 348351.CrossRefGoogle ScholarPubMed
Stroud, L. R., Salovey, P., & Epel, E. S. (2002). Sex differences in stress responses: Social rejection versus achievement stress. Biological Psychiatry, 52, 318327.CrossRefGoogle ScholarPubMed
Stroud, L. R., Tanofsky-Kraff, M., Wilfley, D. E., & Salovey, P. (2000). The Yale Interpersonal Stressor (YIPS): Affective, physiological, and behavioral responses to a novel interpersonal rejection paradigm. Annals of Behavioral Medicine, 22, 204213.CrossRefGoogle ScholarPubMed
Susman, E. J. (2006). Psychobiology of persistent antisocial behavior: Stress, early vulnerabilities and the attenuation hypothesis. Neuroscience and Biobehavioral Reviews, 30, 376389.CrossRefGoogle ScholarPubMed
van Goozen, S. H., Fairchild, G., Snoek, H., & Harold, G. T. (2007). The evidence for a neurobiological model of childhood antisocial behavior. Psychological Bulletin, 133, 149182.CrossRefGoogle ScholarPubMed
van Stegeren, A., Rohleder, N., Everaerd, W., & Wolf, O. T. (2006). Salivary alpha amylase as marker for adrenergic activity during stress: Effect of beta blockade. Psychoneuroendocrinology, 31, 137141.CrossRefGoogle Scholar
Vasey, M. W., & Thayer, J. F. (1987). The continuing problem of false positives in repeated measures ANOVA in psychophysiology: A multivariate solution. Psychophysiology, 24, 479486.CrossRefGoogle ScholarPubMed
Vazquez, D. M. (1998). Stress and the developing limbic–hypothalamic–pituitary–adrenal axis. Psychoneuroendocrinology, 23, 663700.CrossRefGoogle ScholarPubMed
Viau, V., Bingham, B., Davis, J., Lee, P., & Wong, M. (2005). Gender and puberty interact on the stress-induced activation of parvocellular neurosecretory neurons and corticotropin-releasing hormone messenger ribonucleic acid expression in the rat. Endocrinology, 146, 137146.CrossRefGoogle ScholarPubMed
Walker, C. D., Trottier, G., Rochford, J., & Lavallee, D. (1995). Dissociation between behavioral and hormonal responses to the forced swim stress in lactating rats. Journal of Neuroendocrinology, 7, 615622.CrossRefGoogle Scholar
Walker, E. F., Walder, D. J., & Reynolds, F. (2001). Developmental changes in cortisol secretion in normal and at-risk youth. Development and Psychopathology, 13, 721732.CrossRefGoogle ScholarPubMed
Weinstein, D. D., Diforio, D., Schiffman, J., Walker, E. F., & Bonsall, R. (1999). Minor physical anomalies, dermatoglyphic asymmetries, and cortisol levels in adolescents with schizotypal personality disorder. American Journal of Psychiatry, 156, 617623.CrossRefGoogle ScholarPubMed