Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T14:44:24.682Z Has data issue: false hasContentIssue false

Resting state coupling between the amygdala and ventromedial prefrontal cortex is related to household income in childhood and indexes future psychological vulnerability to stress

Published online by Cambridge University Press:  14 May 2019

Jamie L. Hanson*
Affiliation:
Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA Learning Research & Development Center, University of Pittsburgh, Pittsburgh, PA, USA
W. Dustin Albert
Affiliation:
Department of Psychology, Bryn Mawr College, Bryn Mawr, PA, USA
Ann T. Skinner
Affiliation:
Sanford School of Public Policy, Duke University, Durham, NC, USA
Shutian H. Shen
Affiliation:
Learning Research & Development Center, University of Pittsburgh, Pittsburgh, PA, USA
Kenneth A. Dodge
Affiliation:
Sanford School of Public Policy, Duke University, Durham, NC, USA Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
Jennifer E. Lansford
Affiliation:
Sanford School of Public Policy, Duke University, Durham, NC, USA
*
Author for Correspondence: Jamie Hanson, Learning Research & Development Center, University of Pittsburgh, 3939 O'Hara Street, Pittsburgh, PA 15260; E-mail: [email protected].

Abstract

While child poverty is a significant risk factor for poor mental health, the developmental pathways involved with these associations are poorly understood. To advance knowledge about these important linkages, the present study examined the developmental sequelae of childhood exposure to poverty in a multiyear longitudinal study. Here, we focused on exposure to poverty, neurobiological circuitry connected to emotion dysregulation, later exposure to stressful life events, and symptoms of psychopathology. We grounded our work in a biopsychosocial perspective, with a specific interest in “stress sensitization” and emotion dysregulation. Motivated by past work, we first tested whether exposure to poverty was related to changes in the resting-state coupling between two brain structures centrally involved with emotion processing and regulation (the amygdala and the ventromedial prefrontal cortex; vmPFC). As predicted, we found lower household income at age 10 was related to lower resting-state coupling between these areas at age 15. We then tested if variations in amygdala–vmPFC connectivity interacted with more contemporaneous stressors to predict challenges with mental health at age 16. In line with past reports showing risk for poor mental health is greatest in those exposed to early and then later, more contemporaneous stress, we predicted and found that lower vmPFC–amygdala coupling in the context of greater contemporaneous stress was related to higher levels of internalizing and externalizing symptoms. We believe these important interactions between neurobiology and life history are an additional vantage point for understanding risk and resiliency, and suggest avenues for prediction of psychopathology related to early life challenge.

Type
Special Issue Articles
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achenbach, T. M., Dumenci, L., & Rescorla, L. A. (2003). DSM-oriented and empirically based approaches to constructing scales from the same item pools. Journal of Clinical Child and Adolescent Psychology, 32, 328340.Google Scholar
Achenbach, T. M., & Rescorla, L. A. (2001). Manual for the ASEBA school-age forms & profiles: Child Behavior Checklist for ages 618, Teacher's Report Form, youth self-report: An integrated system of multi-informant assessment. Burlington, VT: University of Vermont, Research Center for Children Youth & Families.Google Scholar
Aldao, A., Gee, D. G., De Los Reyes, A., & Seager, I. (2016). Emotion regulation as a transdiagnostic factor in the development of internalizing and externalizing psychopathology: Current and future directions. Development and Psychopathology, 28(4, Pt. 1), 927946.Google Scholar
Aldao, A., Nolen-Hoeksema, S., & Schweizer, S. (2010). Emotion-regulation strategies across psychopathology: A meta-analytic review. Clinical Psychology Review, 30, 217237.Google Scholar
Attar, B. K., Guerra, N. G., & Tolan, P. H. (1994). Neighborhood disadvantage, stressful life events and adjustments in urban elementary-school children. Journal of Clinical Child Psychology, 23, 391400.Google Scholar
Beauchaine, T. P. (2015). Future directions in emotion dysregulation and youth psychopathology. Journal of Clinical Child and Adolescent Psychology, 44, 875896.Google Scholar
Beauchaine, T. P., Constantino, J. N., & Hayden, E. P. (2018). Psychiatry and developmental psychopathology: Unifying themes and future directions. Comprehensive Psychiatry, 87, 143152.Google Scholar
Beauchaine, T. P., & Zisner, A. (2017). Motivation, emotion regulation, and the latent structure of psychopathology: An integrative and convergent historical perspective. International Journal of Psychophysiology, 119, 108118.Google Scholar
Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10, 186198.Google Scholar
Burghy, C. A., Stodola, D. E., Ruttle, P. L., Molloy, E. K., Armstrong, J. M., Oler, J. A., … Davidson, R. J. (2012). Developmental pathways to amygdala-prefrontal function and internalizing symptoms in adolescence. Nature Neuroscience, 15, 17361741.Google Scholar
Burke, K. C., Burke, J. D., Regier, D. A., & Rae, D. S. (1990). Age at onset of selected mental disorders in five community populations. Archives of General Psychiatry, 47, 511518.Google Scholar
Calkins, S. D., & Hill, A. (2007). Caregiver influences on emerging emotion regulation: Biological and environmental transactions in early development. In Gross, J. J. (Ed.), Handbook of emotion regulation (pp. 229248). New York: Guilford Press.Google Scholar
Chen, E., Hanson, M. D., Paterson, L. Q., Griffin, M. J., Walker, H. A., & Miller, G. E. (2006). Socioeconomic status and inflammatory processes in childhood asthma: The role of psychological stress. Journal of Allergy and Clinical Immunology, 117, 10141020.Google Scholar
Chen, E., Langer, D. A., Raphaelson, Y. E., & Matthews, K. A. (2004). Socioeconomic status and health in adolescents: The role of stress interpretations. Child Development, 75, 10391052.Google Scholar
Chen, E., & Matthews, K. A. (2003). Development of the cognitive appraisal and understanding of social events (CAUSE) videos. Health Psychology, 22, 106110.Google Scholar
Chou, Y. H., Panych, L. P., Dickey, C. C., Petrella, J. R., & Chen, N. K. (2012). Investigation of long-term reproducibility of intrinsic connectivity network mapping: A resting-state fMRI study. American Journal of Neuroradiology, 33, 833838.Google Scholar
Cicchetti, D. (2013). Annual research review: Resilient functioning in maltreated children—Past, present, and future perspectives. Journal of Child Psychology and Psychiatry, 54, 402422.Google Scholar
Cicchetti, D., Ackerman, B. P., & Izard, C. E. (1995). Emotions and emotion regulation in developmental psychopathology. Development and Psychopathology, 7, 110.Google Scholar
Cicchetti, D., & Tucker, D. (1994). Development and self-regulatory structures of the mind. Development and Psychopathology, 6, 533549.Google Scholar
Cohen, S., Janicki-Deverts, D., Chen, E., & Matthews, K. A. (2010). Childhood socioeconomic status and adult health. Annals of the New York Academy of Sciences, 1186, 3755.Google Scholar
Cole, P. M., Hall, S. E., & Hajal, N. J. (2013). Emotion dysregulation as a vulnerability to psychopathology. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Child and adolescent psychopathology (2nd ed., pp. 346386). Hoboken, NJ: Wiley.Google Scholar
Conger, R. D., & Donnellan, M. B. (2007). An interactionist perspective on the socioeconomic context of human development. Annual Review of Psychology, 58, 175199.Google Scholar
Connolly, C. G., Ho, T. C., Blom, E. H., LeWinn, K. Z., Sacchet, M. D., Tymofiyeva, O., … Yang, T. T. (2017). Resting-state functional connectivity of the amygdala and longitudinal changes in depression severity in adolescent depression. Journal of Affective Disorders, 207, 8694.Google Scholar
Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29, 162173.Google Scholar
Cox, R. W., Chen, G., Glen, D. R., Reynolds, R. C., & Taylor, P. A. (2017). fMRI clustering and false-positive rates. Proceedings of the National Academy of Sciences, 114, E3370E3371.Google Scholar
Crick, N. R., & Dodge, K. A. (1994). A review and reformulation of social information-processing mechanisms in children's social adjustment. Psychological Bulletin, 115, 74101.Google Scholar
Dannlowski, U., Stuhrmann, A., Beutelmann, V., Zwanzger, P., Lenzen, T., Grotegerd, D., … Lindner, C. (2012). Limbic scars: Long-term consequences of childhood maltreatment revealed by functional and structural magnetic resonance imaging. Biological Psychiatry, 71, 286293.Google Scholar
Davidson, R. J., Putnam, K. M., & Larson, C. L. (2000). Dysfunction in the neural circuitry of emotion regulation—A possible prelude to violence. Science, 289, 591594.Google Scholar
Dodge, K. A. (2014). A social information processing model of social competence in children. In Perlmutter, M. (Ed.), Cognitive perspectives on children's social and behavioral development: The Minnesota Symposia on Child Psychology, Vol. 18 (pp. 85134). London: Psychology Press.Google Scholar
Dodge, K. A., Pettit, G. S., & Bates, J. E. (1994). Socialization mediators of the relation between socioeconomic status and child conduct problems. Child Development, 65, 649665.Google Scholar
Dougherty, L. R., Klein, D. N., & Davila, J. (2004). A growth curve analysis of the course of dysthymic disorder: The effects of chronic stress and moderation by adverse parent-child relationships and family history. Journal of Consulting and Clinical Psychology, 72, 10121021.Google Scholar
Dubow, E. F., Tisak, J., Causey, D., Hryshko, A., & Reid, G. (1991). A two-year longitudinal study of stressful life events, social support, and social problem-solving skills: Contributions to children's behavioral and academic adjustment. Child Development, 62, 583599.Google Scholar
Dufford, A. J., & Kim, P. (2017). Family income, cumulative risk exposure, and white matter structure in middle childhood. Frontiers in Human Neuroscience, 11, 547.Google Scholar
Edmiston, E. E., Wang, F., Mazure, C. M., Guiney, J., Sinha, R., Mayes, L. C., & Blumberg, H. P. (2011). Corticostriatal-limbic gray matter morphology in adolescents with self-reported exposure to childhood maltreatment. Archives of Pediatrics and Adolescent Medicine, 165, 10691077.Google Scholar
Eisenberg, N., & Spinrad, T. L. (2004). Emotion-related regulation: Sharpening the definition. Child Development, 75, 334339.Google Scholar
Elliott, M. L., Knodt, A. R., Cooke, M., Kim, M. J., Melzer, T. R., Keenan, R., … Moffitt, T. E. (2019). General functional connectivity: Shared features of resting-state and task fMRI drive reliable and heritable individual differences in functional brain networks. NeuroImage. Advance online publication.Google Scholar
Espejo, E. P., Hammen, C. L., Connolly, N. P., Brennan, P. A., Najman, J. M., & Bor, W. (2007). Stress sensitization and adolescent depressive severity as a function of childhood adversity: A link to anxiety disorders. Journal of Abnormal Child Psychology, 35, 287299.Google Scholar
Etkin, A., & Schatzberg, A. F. (2011). Common abnormalities and disorder-specific compensation during implicit regulation of emotional processing in generalized anxiety and major depressive disorders. American Journal of Psychiatry, 168, 968978.Google Scholar
Etkin, A., & Wager, T. D. (2007). Functional neuroimaging of anxiety: A meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. American Journal of Psychiatry, 164, 14761488.Google Scholar
Fox, M. D., & Greicius, M. (2010). Clinical applications of resting state functional connectivity. Frontiers in Systems Neuroscience, 4, 19.Google Scholar
Ghashghaei, H. T., & Barbas, H. (2002). Pathways for emotion: Interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience, 115, 12611279.Google Scholar
Gianaros, P. J., Horenstein, J. A., Hariri, A. R., Sheu, L. K., Manuck, S. B., Matthews, K. A., & Cohen, S. (2008). Potential neural embedding of parental social standing. Social Cognitive and Affective Neuroscience, 3, 9196.Google Scholar
Gianaros, P. J., Manuck, S. B., Sheu, L. K., Kuan, D. C. H., Votruba-Drzal, E., Craig, A. E., & Hariri, A. R. (2011). Parental education predicts corticostriatal functionality in adulthood. Cerebral Cortex, 21, 896910.Google Scholar
Gold, A. L., Shechner, T., Farber, M. J., Spiro, C. N., Leibenluft, E., Pine, D. S., & Britton, J. C. (2016). Amygdala-cortical connectivity: Associations with anxiety, development, and threat. Depression and Anxiety, 33, 917926.Google Scholar
Gooding, H. C., Milliren, C. E., Austin, S. B., Sheridan, M. A., & McLaughlin, K. A. (2015). Child abuse, resting blood pressure, and blood pressure reactivity to psychosocial stress. Journal of Pediatric Psychology, 41, 514.Google Scholar
Grasso, D. J., Ford, J. D., & Briggs-Gowan, M. J. (2012). Early life trauma exposure and stress sensitivity in young children. Journal of Pediatric Psychology, 38, 94103.Google Scholar
Gross, J. J. (1998). The emerging field of emotion regulation: an integrative review. Review of General Psychology, 2, 271299.Google Scholar
Guerra, N. G., Huesmann, L. R., Tolan, P. H., Van Acker, R., & Eron, L. D. (1995). Stressful events and individual beliefs as correlates of economic disadvantage and aggression among urban children. Journal of Consulting and Clinical Psychology, 63, 518528.Google Scholar
Gyurak, A., Gross, J. J., & Etkin, A. (2011). Explicit and implicit emotion regulation: A dual-process framework. Cognition and Emotion, 25, 400412.Google Scholar
Hamilton, J. P., Etkin, A., Furman, D. J., Lemus, M. G., Johnson, R. F., & Gotlib, I. H. (2012). Functional neuroimaging of major depressive disorder: A meta-analysis and new integration of baseline activation and neural response data. American Journal of Psychiatry, 169, 111.Google Scholar
Hammen, C. (2005). Stress and depression. Annual Review of Clinical Psychology, 1, 293319.Google Scholar
Hammen, C. (2018). Risk factors for depression: An autobiographical review. Annual Review of Clinical Psychology, 14, 128.Google Scholar
Hammen, C., Henry, R., & Daley, S. E. (2000). Depression and sensitization to stressors among young women as a function of childhood adversity. Journal of Consulting and Clinical Psychology, 68, 782.Google Scholar
Hanson, J. L., Chung, M. K., Avants, B. B., Rudolph, K. D., Shirtcliff, E. A., Gee, J. C., … Pollak, S. D. (2012). Structural variations in prefrontal cortex mediate the relationship between early childhood stress and spatial working memory. Journal of Neuroscience, 32, 79177925.Google Scholar
Hanson, J. L., Chung, M. K., Avants, B. B., Shirtcliff, E. A., Gee, J. C., Davidson, R. J., & Pollak, S. D. (2010). Early stress is associated with alterations in the orbitofrontal cortex: A tensor-based morphometry investigation of brain structure and behavioral risk. Journal of Neuroscience, 30, 74667472.Google Scholar
Hanson, J. L., Gillmore, A. D., Yu, T., Holmes, C. J., Hallowell, E. S., Barton, A. W., … Chen, E. (2019). A family focused intervention influences hippocampal-prefrontal connectivity through gains in self-regulation. Child Development. Advance online publication.Google Scholar
Hanson, J. L., Hair, N., Shen, D. G., Shi, F., Gilmore, J. H., Wolfe, B. L., & Pollak, S. D. (2013). Family poverty affects the rate of human infant brain growth. PLOS ONE, 8, e80954.Google Scholar
Hanson, J. L., Knodt, A. R., Brigidi, B. D., & Hariri, A. R. (2015). Lower structural integrity of the uncinate fasciculus is associated with a history of child maltreatment and future psychological vulnerability to stress. Development and Psychopathology, 27, 16111619.Google Scholar
Hanson, J. L., Knodt, A. R., Brigidi, B. D., & Hariri, A. R. (2018). Heightened connectivity between the ventral striatum and medial prefrontal cortex as a biomarker for stress-related psychopathology: Understanding interactive effects of early and more recent stress. Psychological Medicine, 48, 18351843.Google Scholar
Hanson, J. L., Nacewicz, B. M., Sutterer, M. J., Cayo, A. A., Schaefer, S. M., Rudolph, K. D., … Davidson, R. J. (2015). Behavioral problems after early life stress: Contributions of the hippocampus and amygdala. Biological Psychiatry, 77, 314323.Google Scholar
Hanson, J. L., van den Bos, W., Roeber, B. J., Rudolph, K. D., Davidson, R. J., & Pollak, S. D. (2017). Early adversity and learning: Implications for typical and atypical behavioral development. Journal of Child Psychology and Psychiatry, 58, 770778.Google Scholar
Hare, T. A., Camerer, C. F., & Rangel, A. (2009). Self-control in decision-making involves modulation of the vmPFC valuation system. Science, 324, 646648.Google Scholar
Hare, T. A., Hakimi, S., & Rangel, A. (2014). Activity in dlPFC and its effective connectivity to vmPFC are associated with temporal discounting. Frontiers in Neuroscience, 8, 50.Google Scholar
Hariri, A. R. (2009). The neurobiology of individual differences in complex behavioral traits. Annual Review of Neuroscience, 32, 225247.Google Scholar
Harkness, K. L., Bruce, A. E., & Lumley, M. N. (2006). The role of childhood abuse and neglect in the sensitization to stressful life events in adolescent depression. Journal of Abnormal Psychology, 115, 730.Google Scholar
Harms, M. B., Shannon Bowen, K. E., Hanson, J. L., & Pollak, S. D. (2018). Instrumental learning and cognitive flexibility processes are impaired in children exposed to early life stress. Developmental Science, 21, e12596.Google Scholar
Heim, C., Newport, D. J., Mletzko, T., Miller, A. H., & Nemeroff, C. B. (2008). The link between childhood trauma and depression: Insights from HPA axis studies in humans. Psychoneuroendocrinology, 33, 693710.Google Scholar
Herringa, R. J., Birn, R. M., Ruttle, P. L., Burghy, C. A., Stodola, D. E., Davidson, R. J., & Essex, M. J. (2013). Childhood maltreatment is associated with altered fear circuitry and increased internalizing symptoms by late adolescence. Proceedings of the National Academy of Sciences, 110, 1911919124.Google Scholar
Hiser, J., & Koenigs, M. (2018). The multifaceted role of vmPFC in emotion, decision-making, social cognition, and psychopathology. Biological Psychiatry, 83, 638647.Google Scholar
Ho, T. C., King, L. S., Leong, J. K., Colich, N. L., Humphreys, K. L., Ordaz, S. J., & Gotlib, I. H. (2017). Effects of sensitivity to life stress on uncinate fasciculus segments in early adolescence. Social Cognitive and Affective Neuroscience, 12, 14601469.Google Scholar
Holz, N. E., Boecker, R., Hohm, E., Zohsel, K., Buchmann, A. F., Blomeyer, D., … Laucht, M. (2015). The long-term impact of early life poverty on orbitofrontal cortex volume in adulthood: Results from a prospective study over 25 years. Neuropsychopharmacology, 40, 9961004. doi:10.1038/npp.2014.277Google Scholar
Hostinar, C. E., & Cicchetti, D. (2019). Emotion dysregulation and internalizing spectrum disorders. In Beauchaine, T. P. & Crowell, S. E. (Eds.), The Oxford handbook of emotion dysregulation. New York: Oxford University Press.Google Scholar
Javanbakht, A., King, A. P., Evans, G. W., Swain, J. E., Angstadt, M., Phan, K. L., & Liberzon, I. (2015). Childhood poverty predicts adult amygdala and frontal activity and connectivity in response to emotional faces. Frontiers in Behavioral Neuroscience, 9, 154.Google Scholar
Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., & Smith, S. M. (2012). FSL. Neuroimage, 62, 782790.Google Scholar
Johnstone, T., Van Reekum, C. M., Urry, H. L., Kalin, N. H., & Davidson, R. J. (2007). Failure to regulate: Counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression. Journal of Neuroscience, 27, 88778884.Google Scholar
Kalisch, R., Korenfeld, E., Stephan, K. E., Weiskopf, N., Seymour, B., & Dolan, R. J. (2006). Context-dependent human extinction memory is mediated by a ventromedial prefrontal and hippocampal network. Journal of Neuroscience, 26, 95039511.Google Scholar
Karl, A., Schaefer, M., Malta, L. S., Dörfel, D., Rohleder, N., & Werner, A. (2006). A meta-analysis of structural brain abnormalities in PTSD. Neuroscience and Biobehavioral Reviews, 30, 10041031.Google Scholar
Kendler, K. S., Kuhn, J. W., & Prescott, C. A. (2004). Childhood sexual abuse, stressful life events and risk for major depression in women. Psychological Medicine, 34, 14751482.Google Scholar
Kessler, R. C. (1997). The effects of stressful life events on depression. Annual Review of Psychology, 48, 191214.Google Scholar
Kessler, R. C., Berglund, P., Demler, O., Jin, R., Merikangas, K. R., & Walters, E. E. (2005). Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62, 593602.Google Scholar
Kiehl, K. A., Smith, A. M., Hare, R. D., Mendrek, A., Forster, B. B., Brink, J., & Liddle, P. F. (2001). Limbic abnormalities in affective processing by criminal psychopaths as revealed by functional magnetic resonance imaging. Biological Psychiatry, 50, 677684.Google Scholar
Kim, J., & Cicchetti, D. (2010). Longitudinal pathways linking child maltreatment, emotion regulation, peer relations, and psychopathology. Journal of Child Psychology and Psychiatry, 51, 706716.Google Scholar
Kim, P., Evans, G. W., Angstadt, M., Ho, S. S., Sripada, C. S., Swain, J. E., … Phan, K. L. (2013). Effects of childhood poverty and chronic stress on emotion regulatory brain function in adulthood. Proceedings of the National Academy of Sciences, 110, 1844218447.Google Scholar
Kim-Spoon, J., Cicchetti, D., & Rogosch, F. A. (2013). A longitudinal study of emotion regulation, emotion lability-negativity, and internalizing symptomatology in maltreated and nonmaltreated children. Child Development, 84, 512527.Google Scholar
Lantz, P. M., House, J. S., Mero, R. P., & Williams, D. R. (2005). Stress, life events, and socioeconomic disparities in health: Results from the Americans' Changing Lives Study. Journal of Health and Social Behavior, 46, 274288.Google Scholar
Ledoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155184.Google Scholar
Leitzke, B. T., Hilt, L. M., & Pollak, S. D. (2015). Maltreated youth display a blunted blood pressure response to an acute interpersonal stressor. Journal of Clinical Child and Adolescent Psychology, 44, 305313.Google Scholar
Leshin, J. C., & Lindquist, K. A. (2019). Neuroimaging of emotion dysregulation. In Beauchaine, T. P. & Crowell, S. E. (Eds.), The Oxford handbook of emotion dysregulation. New York: Oxford University Press.Google Scholar
Letourneau, N. L., Duffett-Leger, L., Levac, L., Watson, B., & Young-Morris, C. (2013). Socioeconomic status and child development: A meta-analysis. Journal of Emotional and Behavioral Disorders, 21, 211224.Google Scholar
Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E., & Barrett, L. F. (2012). The brain basis of emotion: A meta-analytic review. Behavioral and Brain Sciences, 35, 121143.Google Scholar
Luby, J., Belden, A., Botteron, K., Marrus, N., Harms, M. P., Babb, C., … Barch, D. (2013). The effects of poverty on childhood brain development: The mediating effect of caregiving and stressful life events. JAMA Pediatrics, 167, 11351142.Google Scholar
Lydon-Staley, D. M., & Bassett, D. S. (2018). Network neuroscience: A framework for developing biomarkers in psychiatry. In Pratt, J. & Hall, J. (Eds.), Biomarkers in psychiatry. Current Topics in Behavioral Neurosciences, Vol. 40. Cham: Springer.Google Scholar
Marín, O. (2016). Developmental timing and critical windows for the treatment of psychiatric disorders. Nature Medicine, 22, 12291238. doi:10.1038/nm.4225Google Scholar
McCrory, E. J., De Brito, S. A., Sebastian, C. L., Mechelli, A., Bird, G., Kelly, P. A., & Viding, E. (2011). Heightened neural reactivity to threat in child victims of family violence. Current Biology, 21, R947R948.Google Scholar
McCrory, E. J., & Viding, E. (2015). The theory of latent vulnerability: Reconceptualizing the link between childhood maltreatment and psychiatric disorder. Development and Psychopathology, 27, 493505.Google Scholar
McLaughlin, K. A., Breslau, J., Green, J. G., Lakoma, M. D., Sampson, N. A., Zaslavsky, A. M., & Kessler, R. C. (2011). Childhood socio-economic status and the onset, persistence, and severity of DSM–IV mental disorders in a US national sample. Social Science & Medicine, 73, 10881096.Google Scholar
McLaughlin, K. A., Conron, K. J., Koenen, K. C., & Gilman, S. E. (2010). Childhood adversity, adult stressful life events, and risk of past-year psychiatric disorder: A test of the stress sensitization hypothesis in a population-based sample of adults. Psychological Medicine, 40, 16471658.Google Scholar
McLaughlin, K. A., & Lambert, H. K. (2017). Child trauma exposure and psychopathology: Mechanisms of risk and resilience. Current Opinion in Psychology, 14, 2934.Google Scholar
McLaughlin, K. A., Sheridan, M. A., Alves, S., & Mendes, W. B. (2014). Child maltreatment and autonomic nervous system reactivity: Identifying dysregulated stress reactivity patterns using the biopsychosocial model of challenge and threat. Psychosomatic Medicine, 76, 538.Google Scholar
Messman-Moore, T. L., & Bhuptani, P. H. (2017). A review of the long-term impact of child maltreatment on posttraumatic stress disorder and its comorbidities: An emotion dysregulation perspective. Clinical Psychology: Science and Practice, 24, 154169.Google Scholar
Meyers, J. L., Lowe, S. R., Eaton, N. R., Krueger, R., Grant, B. F., & Hasin, D. (2015). Childhood maltreatment, 9/11 exposure, and latent dimensions of psychopathology: A test of stress sensitization. Journal of Psychiatric Research, 68, 337345.Google Scholar
Milad, M. R., & Quirk, G. J. (2012). Fear extinction as a model for translational neuroscience: Ten years of progress. Annual Review of Psychology, 63, 129151.Google Scholar
Monroe, S. M., & Harkness, K. L. (2005). Life stress, the “kindling” hypothesis, and the recurrence of depression: Considerations from a life stress perspective. Psychological Review, 112, 417445.Google Scholar
Monroe, S. M., & Reid, M. W. (2008). Gene-environment interactions in depression research: Genetic polymorphisms and life-stress polyprocedures. Psychological Science, 19, 947956.Google Scholar
Morris, A. S., Silk, J. S., Steinberg, L., Myers, S. S., & Robinson, L. R. (2007). The role of the family context in the development of emotion regulation. Social Development, 16, 361388.Google Scholar
Motzkin, J. C., Newman, J. P., Kiehl, K. A., & Koenigs, M. (2011). Reduced prefrontal connectivity in psychopathy. Journal of Neuroscience, 31, 1734817357.Google Scholar
Ochsner, K. N., & Gross, J. J. (2005). The cognitive control of emotion. Trends in Cognitive Sciences, 9, 242249.Google Scholar
Orpana, H. M., & Lemyre, L. (2004). Explaining the social gradient in health in Canada: Using the National Population Health Survey to examine the role of stressors. International Journal of Behavioral Medicine, 11, 143151.Google Scholar
Owens, E. B., & Shaw, D. S. (2003). Poverty and early childhood adjustment. In Luthar, S. S. (Ed.), Resilience and vulnerability: Adaptation in the context of childhood adversities (pp. 267292). New York: Cambridge University Press.Google Scholar
Ozer, E. J., Best, S. R., Lipsey, T. L., & Weiss, D. S. (2003). Predictors of posttraumatic stress disorder and symptoms in adults: A meta-analysis. Psychological Bulletin, 129, 52.Google Scholar
Palacios-Barrios, E. E., & Hanson, J. L. (2019). Poverty and self-regulation: Connecting psychosocial processes, neurobiology, and the risk for psychopathology. Comprehensive Psychiatry, 90, 5264. doi:10.1016/j.comppsych.2018.12.012Google Scholar
Park, A. T., Leonard, J. A., Saxler, P. K., Cyr, A. B., Gabrieli, J. D., & Mackey, A. P. (2018). Amygdala–medial prefrontal cortex connectivity relates to stress and mental health in early childhood. Social Cognitive and Affective Neuroscience, 13, 430439.Google Scholar
Paykel, E. S. (2003). Life events and affective disorders. Acta Psychiatrica Scandinavica, 108, 6166.Google Scholar
Perlman, S. B., Almeida, J. R., Kronhaus, D. M., Versace, A., LaBarbara, E. J., Klein, C. R., & Phillips, M. L. (2012). Amygdala activity and prefrontal cortex–amygdala effective connectivity to emerging emotional faces distinguish remitted and depressed mood states in bipolar disorder. Bipolar Disorders, 14, 162174.Google Scholar
Phelps, E. A., Delgado, M. R., Nearing, K. I., & LeDoux, J. E. (2004). Extinction learning in humans: Role of the amygdala and vmPFC. Neuron, 43, 897905.Google Scholar
Piotrowska, P. J., Stride, C. B., Croft, S. E., & Rowe, R. (2015). Socioeconomic status and antisocial behaviour among children and adolescents: A systematic review and meta-analysis. Clinical Psychology Review, 35, 4755.Google Scholar
Pitskel, N. B., Bolling, D. Z., Kaiser, M. D., Crowley, M. J., & Pelphrey, K. A. (2011). How grossed out are you? The neural bases of emotion regulation from childhood to adolescence. Developmental Cognitive Neuroscience, 1, 324337.Google Scholar
Pollak, S. D. (2015). Developmental psychopathology: Recent advances and future challenges. World Psychiatry, 14, 262269.Google Scholar
Reid, J. B., Kavanagh, K., & Baldwin, D. V. (1987). Abusive parents' perceptions of child problem behaviors: An example of parental bias. Journal of Abnormal Child Psychology, 15, 457466.Google Scholar
Reiss, F. (2013). Socioeconomic inequalities and mental health problems in children and adolescents: A systematic review. Social Science and Medicine, 90, 2431.Google Scholar
Rudolph, K. D., & Flynn, M. (2007). Childhood adversity and youth depression: Influence of gender and pubertal status. Development and Psychopathology, 19, 497521.Google Scholar
Saad, Z. S., Gotts, S. J., Murphy, K., Chen, G., Jo, H. J., Martin, A., & Cox, R. W. (2012). Trouble at rest: How correlation patterns and group differences become distorted after global signal regression. Brain Connectivity, 2, 2532.Google Scholar
Sakai, K., Hikosaka, O., Takino, R., Miyauchi, S., Nielsen, M., & Tamada, T. (2000). What and when: Parallel and convergent processing in motor control. Journal of Neuroscience, 20, 26912700.Google Scholar
Silvers, J. A., Insel, C., Powers, A., Franz, P., Helion, C., Martin, R. E., … Ochsner, K. N. (2016). vlPFC–vmPFC–amygdala interactions underlie age-related differences in cognitive regulation of emotion. Cerebral Cortex, 27, 35023514.Google Scholar
Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., … Niazy, R. K. (2004). Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 23, S208S219.Google Scholar
Sotres-Bayon, F., Cain, C. K., & LeDoux, J. E. (2006). Brain mechanisms of fear extinction: Historical perspectives on the contribution of prefrontal cortex. Biological Psychiatry, 60, 329336.Google Scholar
Starr, L. R., Hammen, C., Conway, C. C., Raposa, E., & Brennan, P. A. (2014). Sensitizing effect of early adversity on depressive reactions to later proximal stress: Moderation by polymorphisms in serotonin transporter and corticotropin releasing hormone receptor genes in a 20-year longitudinal study. Development and Psychopathology, 26, 12411254.Google Scholar
Stevens, J. S., Jovanovic, T., Fani, N., Ely, T. D., Glover, E. M., Bradley, B., & Ressler, K. J. (2013). Disrupted amygdala-prefrontal functional connectivity in civilian women with posttraumatic stress disorder. Journal of Psychiatric Research, 47, 14691478.Google Scholar
Swartz, J. R., Knodt, A. R., Radtke, S. R., & Hariri, A. R. (2015). A neural biomarker of psychological vulnerability to future life stress. Neuron, 85, 505511.Google Scholar
Tarullo, A. R., & Gunnar, M. R. (2006). Child maltreatment and the developing HPA axis. Hormones and Behavior, 50, 632639.Google Scholar
Thomason, M. E., Marusak, H. A., Tocco, M. A., Vila, A. M., McGarragle, O., & Rosenberg, D. R. (2015). Altered amygdala connectivity in urban youth exposed to trauma. Social Cognitive and Affective Neuroscience, 10, 14601468.Google Scholar
Thompson, R. A. (1994). Emotion regulation: A theme in search of definition. Monographs of the Society for Research in Child Development, 59, 2552.Google Scholar
Thompson, R. A., & Meyer, S. (2007). Socialization of emotion regulation in the family. In Gross, J. J. (Ed.), Handbook of emotion regulation (pp. 249268). New York: Guilford Press.Google Scholar
Tromp, D. P., Grupe, D. W., Oathes, D. J., McFarlin, D. R., Hernandez, P. J., Kral, T. R., … Nitschke, J. B. (2012). Reduced structural connectivity of a major frontolimbic pathway in generalized anxiety disorder. Archives of General Psychiatry, 69, 925934.Google Scholar
Urry, H. L., Van Reekum, C. M., Johnstone, T., Kalin, N. H., Thurow, M. E., Schaefer, H. S., … Davidson, R. J. (2006). Amygdala and ventromedial prefrontal cortex are inversely coupled during regulation of negative affect and predict the diurnal pattern of cortisol secretion among older adults. Journal of Neuroscience, 26, 44154425.Google Scholar
Vogel, S., Fernández, G., Joëls, M., & Schwabe, L. (2016). Cognitive adaptation under stress: a case for the mineralocorticoid receptor. Trends in cognitive sciences, 20(3), 192203.Google Scholar
Wadsworth, M. E., Evans, G. W., Grant, K., Carter, J. S., & Duffy, S. (2016). Poverty and the development of psychopathology. In Cicchetti, D. (Ed.), Developmental psychopathology. Hoboken, NJ: Wiley.Google Scholar
Waller, R., Gard, A. M., Shaw, D. S., Forbes, E. E., Neumann, C. S., & Hyde, L. W. (2018). Weakened functional connectivity between the amygdala and the VmPFC is longitudinally related to psychopathic traits in low-income males during early adulthood. Clinical Psychological Science. Advance online publication. doi:10.1177/2167702618810231Google Scholar
Woon, F., & Hedges, D. (2009). Amygdala volume in adults with posttraumatic stress disorder: A meta-analysis. Journal of Neuropsychiatry and Clinical Neuroscience, 21, 512.Google Scholar
Yoder, K. J., Harenski, C., Kiehl, K. A., & Decety, J. (2015). Neural networks underlying implicit and explicit moral evaluations in psychopathy. Translational Psychiatry, 5, e625.Google Scholar