Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-22T19:02:05.639Z Has data issue: false hasContentIssue false

Pubertal neuromaturation, stress sensitivity, and psychopathology

Published online by Cambridge University Press:  01 December 2004

ELAINE F. WALKER
Affiliation:
Emory University
ZAINAB SABUWALLA
Affiliation:
Emory University
REBECCA HUOT
Affiliation:
Emory University

Abstract

Normal adolescent development is often accompanied by transient emotional and behavioral problems. For most individuals with postpubertal-onset adjustment problems, there is a resolution by early adulthood and relative stability through the adult life span. But for a minority, adjustment problems escalate during adolescence and portend the development of serious mental illness in adulthood. In this article, we explore adolescent behavioral changes and neurodevelopmental processes that might contribute to stress sensitivity and vulnerability for the emergence of the mental disorders. Of particular interest is the role that hormonal changes might play in the expression of genetic vulnerabilities for psychopathology. Drawing on recent findings from clinical research and behavioral neuroscience, we describe the ways in which postpubertal hormones might alter brain function and, thereby, behavior. It is concluded that there are both activational and organization effects of hormones on the adolescent brain, and these contribute to developmental discontinuities in behavioral adjustment. Implications for adult psychopathology and preventive intervention are discussed.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, M. T., & Matthews, K. A. (1997). Hemodynamic responses to laboratory stressors in children and adolescents: The influences of age, race, and gender. Psychophysiology 34, 329339.Google Scholar
Angold, A., Costello, E. J., & Worthman, C. M. (1998). Puberty and depression: The roles of age, pubertal status and pubertal timing. Psychological Medicine 28, 5161.Google Scholar
Angold, A., & Rutter, M. (1992). Effects of age and pubertal status on depression in a large clinical sample. Development and Psychopathology 4, 528.Google Scholar
Arnett, J. J. (1999). Adolescent storm and stress, reconsidered. American Psychologist 54, 317326.Google Scholar
Arnold, A. P., & Breedlove, S. M. (1985). Organizational and activational effects of sex steroids on brain and behavior: A reanalysis. Hormones & Behavior 19, 469498.Google Scholar
Benes, F. M. (2003a). Schizophrenia, II: Amygdalar fiber alteration as etiology? American Journal of Psychiatry, 160, 1053.Google Scholar
Benes, F. M. (2003b). Why does psychosis develop during adolescence and early adulthood? Current Opinion in Psychiatry 16, 317319.Google Scholar
Blumberg, H. P., Martin, A., Kaufman, J., Leung, H., Skudlarski, P., Lacadie, C., Fulbright, R. K., Gore, J. C., Charney, D. S., Krystal, J. H., & Peterson, B. S. (2003). Frontostriatal abnormalities in adolescents with bipolar disorder: Preliminary observations from functional MRI. American Journal of Psychiatry 160, 13451347.Google Scholar
Birmaher, B., & Heydl, P. (2001). Biological studies in depressed children and adolescents. International Journal of Neuropsychopharmacology 4, 149157.Google Scholar
Booth, A., Johnson, D. R., Granger, D. A., Crouter, A. C., & McHale, S. (2003). Testosterone and child and adolescent adjustment: The moderating role of parent–child relationships. Developmental Psychology 39, 8598.Google Scholar
Brooks–Gunn, J. (1988). Antecedents and consequences of variations in girls' maturational timing. Journal of Adolescent Health Care 9, 365373.Google Scholar
Buchanan, C. M., Eccles, J. S., & Becker, J. B. (1992). Are adolescents the victims of raging hormones? Evidence for activational effects of hormones on moods and behavior at adolescence. Psychological Bulletin 111, 62107.Google Scholar
Buske–Kirschbaum, A., Jobst, S., Wustmans, A., Kirschbaum, C., Rauh, W., & Hellhammer, D. (1997). Attenuated free cortisol response to psychosocial stress in children with atopic dermatitis. Psychosomatic Medicine 59, 419426.Google Scholar
Caspi, A., & Moffitt, T. E. (1991). Individual differences are accentuated during periods of social change: The sample case of girls at puberty. Journal of Personality and Social Psychology 61, 157168.Google Scholar
Chambers, R. A., Taylor, J. R., & Potenza, M. N. (2003). Developmental neurocircuitry of motivation in adolescence: A critical period of addiction vulnerability. American Journal of Psychiatry 160, 10411052.Google Scholar
Charmandari, E., Kino, T., Souvatzoglou, E., & Chrousos, G. P. (2003). Pediatric stress: Hormonal mediators and human development. Hormone Research, 59, 161179.Google Scholar
Chen, E., Matthews, K. A., & Boyce, W. T. (2002). Socioeconomic differences in children's health: How and why do these relationships change with age? Psychological Bulletin 128, 295329.Google Scholar
Cicchetti, D., & Rogosch, F. A. (2002). A developmental psychopathology perspective on adolescence. Journal of Consulting & Clinical Psychology 70, 620.Google Scholar
Cyranowski, J. M., Frank, E., Young, E., & Shear, K. (2000). Adolescent onset of the gender difference in lifetime rates of major depression. Archives of General Psychiatry 57, 2127.Google Scholar
Davies, P. S., Collins, D. L., Gregory, J. R., & Clarke, P. C. (1996). Parents' and childrens' reactions to taking blood in a nutrition study. Archives of Disease in Childhood 75, 309313.Google Scholar
Dorn, L. D., & Chrousos, G. P. (1997). Neurobiology of stress: Understanding regulation of affect during female biological transitions. Seminars in Reproductive Endocrinology 15, 2945.Google Scholar
Dorn, L. D., Hitt, S. F., & Rotenstein, D. (1999). Biopsychological and cognitive differences in children with premature vs. on-time adrenarche. Archives of Pediatric & Adolescent Medicine 153, 137146.Google Scholar
Durston, S., Hulshoff Pol, H. E., Casey, B. J., Giedd, J. N., Buitelaar, J. K., & van Engeland, H. (2001). Anatomical MRI of the developing human brain: What have we learned? Journal of the American Academy of Child & Adolescent Psychiatry 40, 10121020.Google Scholar
Fadalti, M., Petraglia, F., Luisi, S., Bernardi, F., Casarosa, E., Ferrari, E., Luisi, M., Saggese, G., Genazzani, A. R., & Bernasconi, S. (1999). Changes of serum allopregnanolone levels in the first 2 years of life and during pubertal development. Pediatric Research 46, 323327.Google Scholar
Faloia, E., Camilloni, M. A., Giacchetti, G., & Mantero, F. (2000). Adipose tissue as an endocrine organ? A review of some recent data. Eating & Weight Disorders 5, 116123.Google Scholar
Flinn, M. V., & England, B. G. (1997). Social economics of childhood glucocorticoid stress response and health. American Journal of Physical Anthropology 102, 3353.Google Scholar
Galdos, P., & van Os, J. (1995). Gender, psychopathology, and development: From puberty to early adulthood. Schizophrenia Research 14, 105112.Google Scholar
Gest, S. D., Reed, M. J., & Masten, A. S. (1999). Measuring developmental changes in exposure to adversity: A life chart and rating scale approach. Development and Psychopathology 11, 171192.Google Scholar
Goldsmith, H. H., & Lemery, K. S. (2000). Linking temperamental fearfulness and anxiety symptoms: A behavior–genetic perspective. Biological Psychiatry 48, 11991209.Google Scholar
Goodyer, I., Herbert, J., Moor, S., & Altham, P. (1991). Cortisol hypersecretion in depressed school-aged children and adolescents. Psychiatry Research 37, 237244.Google Scholar
Goodyer, I. M., Herbert, J., Tamplin, A., & Altham, P. M. (2000). Recent life events, cortisol, dehydroepiandrosterone and the onset of major depression in high-risk adolescents. British Journal of Psychiatry 177, 499504.Google Scholar
Goodyer, I. M., Park, R. J., & Herbert, J. (2001). Psychosocial and endocrine features of chronic first-episode major depression in 8–16 year olds. Biological Psychiatry 50, 351357.Google Scholar
Goodyer, I. M., Park, R. J., Netherton, C. M., & Herbert, J. (2001). Possible role of cortisol and dehydroepiandrosterone in human development and psychopathology. British Journal of Psychiatry 179, 243249.Google Scholar
Graber, J. A., & Brooks–Gunn, J. (1996). Transitions and turning points: Navigating the passage from childhood through adolescence. Developmental Psychology 32, 768776.Google Scholar
Graber, J. A., Brooks–Gunn, J., & Warren, M. P. (1995). The antecedents of menarcheal age: Heredity, family environment, and stressful life events. Child Development 66, 346359.Google Scholar
Granger, D. A., Weisz, J. R., McCracken, J. T., Ikeda, S. C., & Douglas, P. (1996). Reciprocal influences among adrenocortical activation, psychosocial processes, and the behavioral adjustment of clinic-referred children. Child Development 67, 32503262.Google Scholar
Grilo, C. M., Becker, D. F., Edell, W. S., & McGlashan, T. H. (2001). Stability and change of DSM-III-R personality disorder dimensions in adolescents followed up 2 years after psychiatric hospitalization. Comprehensive Psychiatry 42, 364368.Google Scholar
Guercio, G., Rivarola, M. A., Chaler, E., Maceiras, M., & Belgorosky, A. (2003). Relationship between the growth hormone/insulin-like growth factor-I axis, insulin sensitivity, and adrenal androgens in normal prepubertal and pubertal girls. Journal of Clinical Endocrinology & Metabolism 88, 13891393.Google Scholar
Hayward, C., Killen, J. D., Wilson, D. M., Hammer, L. D., Litt, I. F., Kraemer, H. C., Haydel, F., Varady, A., & Taylor, C. B. (1997). Psychiatric risk associated with early puberty in adolescent girls. Journal of the American Academy of Child & Adolescent Psychiatry 36, 255262.Google Scholar
Hessl, D., Glaser, B., Dyer–Friedman, J., Blasey, C., Hastie, T., Gunnar, M., & Reiss, A. L. (2002). Cortisol and behavior in fragile X syndrome. Psychoneuroendocrinology 27, 855872.Google Scholar
Jacobson, K. C., Prescott, C. A., & Kendler, K. S. (2002). Sex differences in the genetic and environmental influences on the development of antisocial behavior. Development and Psychopathology 14, 395416.Google Scholar
Kagan, J., Reznick, J. S., & Snidman, N. (1988). Biological Bases of childhood shyness. Science 240, 167171.Google Scholar
Kawata, M. (1995). Roles of steroid hormones and their receptors in structural organization in the nervous system. Neuroscience Research 24, 146.Google Scholar
Keenan, P. A., & Soleymani, R. M. (2001). Gonadal steroids and cognition. In R. Tarter & M. Butters (Eds.), Medical neuropsychology: The impact of disease on behavior. Critical Issues in Neuropsychology (pp. 181197). New York: Plenum Press.
Keks, N. A., Copolov, D. L., Mackie, B., Stuart, G. W., Singh, B. S., McGorry, P. D., & Coffey, C. (1991). Comparison of participants and nonparticipants in a neuroendocrine investigation of psychosis. Acta Psychiatrica Scandinavica 83, 373376.Google Scholar
Kellogg, C. K., Awatramani, G. B., & Piekut, D. T. (1998). Adolescent development alters stressor-induced Fos immunoreactivity in rat brain. Neuroscience 83, 681689.Google Scholar
Kenny, F. M., Gancayco, G. P., Heald, F. P., & Hung, W. (1966). Cortisol production rate in adolescent males in different stages of sexual maturation. Journal of Clinical Endocrinology 26, 12321236.Google Scholar
Kenny, F. M., Preeyasombat, C., & Migeon, C. J. (1966). Cortisol production rate II: Normal infants, children and adults. Pediatrics 37, 3442.Google Scholar
Kiess, W., Meidert, A., Dressendorfer, R. A., Scheiver, K., Kessler, U., & Konig, A. (1995). Salivary cortisol levels throughout childhood and adolescence: Relation with age, pubertal stage and weight. Pediatric Research 37, 502506.Google Scholar
Kim, K., & Smith, P. K. (1998). Childhood stress, behavioral symptoms and mother–daughter pubertal development. Journal of Adolescence 21, 231240.Google Scholar
Kirschbaum, C., Kudielka, B. M., Gaab, J., Schommer, N. C., & Hellhammer, D. H. (1999). Impact of gender, menstrual cycle phase, and oral contraceptives on the activity of the hypothalamus–pituitary–adrenal axis. Psychosomatic Medicine 61, 154162.Google Scholar
Klump, K. L., McGue, M., & Iacono, W. G. (2003). Differential heritability of eating attitudes and behaviors in prepubertal versus pubertal twins. International Journal of Eating Disorders 33, 287292.Google Scholar
Knutsson, U., Dahlgren, J., Marcus, C., Rosberg, S., Bronnegard, M., Stierna, P., & Albertsson–Wiklund, K. (1997). Circadian cortisol rhythms in healthy boys and girls: Relationship with age, growth, body composition and pubertal development. Journal of Clinical Endocrinology & Metabolism 82, 536540.Google Scholar
L'Allemand, D., Penhoat, A., Lebrethon, M. C., Ardevol, R., Baehr, V., Oelkers, W., & Saez, J. M. (1996). Insulin-like growth factors enhance steroidogenic enzyme and corticotropin receptor messenger ribonucleic acid levels and corticotropin steroidogenic responsiveness in cultured human adrenocortical cells. Journal of Clinical Endocrinology & Metabolism 81, 38923897.Google Scholar
Lupien, S. J., Wilkinson, C. W., Briere, S., Menard, C., Ng, Y., Kin, N. M., & Nair, N. P. (2002). The modulatory effects of corticosteroids on cognition: Studies in young human populations. Psychoneuroendocrinology 27, 401416.Google Scholar
Lyons, M. J., Ture, W. R., Eisen, S. A., Goldberg, J., Meyer, J., Faraone, S. V., Eaves, L. J., & Tsuang, M. T. (1995). Differential heritability of adult and juvenile antisocial traits. Archives of General Psychiatry 52, 906915.Google Scholar
Malina, R. M. (1983). Menarche in athletes: A synthesis and hypothesis. Annals of Human Biology 10, 124.Google Scholar
Mann, D. R., Johnson, A. O., Gimpel, T., & Castracane, V. D. (2003). Changes in circulating leptin, leptin receptor, and gonadal hormones from infancy until advanced age in humans. Journal of Clinical Endocrinology & Metabolism 88, 33393345.Google Scholar
Matthews, K. A., Gump, B. B., Block, D. R., & Allen, M. T. (1997). Does background stress heighten or dampen children's cardiovascular responses to acute stress? Psychosomatic Medicine 59, 488496.Google Scholar
McBurnett, K., Lahey, B. B., Rathouz, P. J., & Rolf, L. (2000). Low salivary cortisol and persistent aggression in boys referred for disruptive behavior. Archives of General Psychiatry 57, 3843.Google Scholar
McCrae, R. R., Costa, P. T., Jr., Ostendorf, F., Angleitner, A., Hrebickova, M., Avia, M. D., Sanz, J., Sanchez–Bernardos, M. L., Kusdil, M. E., Woodfield, R., Saunders, P. R., & Smith, P. B. (2000). Nature over nurture: Temperament, personality, and life span development. Journal of Personality & Social Psychology 78, 173186.Google Scholar
McGue, M., Bacon, S., & Lykken, D. T. (1993). Personality stability and change in early adulthood: A behavioral genetic analysis. Developmental Psychology 29, 96109.Google Scholar
Mesce, K. A. (2002). Metamodulation of the biogenic amines: Second-order modulation by steroid hormones and amine cocktails. Brain, Behavior & Evolution 60, 339349.Google Scholar
Miller, E. M., & Shields, S. A. (1980). Skin conductance response as a measure of adolescents' emotional reactivity. Psychological Reports 46, 587590.Google Scholar
Muller, M., Holsboer, F., & Keck, M. E. (2002). Genetic modification of corticosteroid receptor signalling: Novel insights into pathophysiology and treatment strategies of human affective disorders. Neuropeptides 36, 117131.Google Scholar
Neugarten, B. L. (1979). Time, age, and the life cycle. American Journal of Psychiatry 136, 887894.Google Scholar
Neumann, C. S., Grimes, K., Walker, E. F., & Baum, K. (1995). Developmental pathways to schizophrenia: Behavioral subtypes. Journal of Abnormal Psychology 104, 558566.Google Scholar
Nottelmann, E. D., Susman, E. J., Dorn, L. D., Inoff–Germain, G., Loriaux, D. L., Cutler, G. B., Jr., & Chrousos, G. P. (1987). Developmental processes in early adolescence: Relations among chronological age, pubertal stage, height, weight, and serum levels of gonadotropins, sex steroids, and adrenal androgens. Journal of Adolescent Health Care 8, 246260.Google Scholar
Patton, G. C., Hibbert, M. E., Carlin, J., Shao, Q., Rosier, M., Caust, J., & Bowes, G. (1997). Menarche and the onset of depression and anxiety in Victoria, Australia. Journal of Epidemiology & Community Health 50, 661666.Google Scholar
Paus, T., Zijdenbos, A., Worsley, K., Collins, D. L., Blumenthal, J., Giedd, J. N., Rapoport, J. L., & Evans, A. C. (1999). Structural maturation of neural pathways in children and adolescents: In vivo study. Science 283, 19081911.Google Scholar
Petrill, S. A. (2003). The development of intelligence: Behavioral genetic approaches. In R. Sternberg & J. Lautrey (Eds.), Models of intelligence: International perspectives (pp. 8189). Washington, DC: American Psychological Association.
Pine, D. S. (2003). Developmental psychobiology and response to threats: Relevance to trauma in children and adolescents. Biological Psychiatry 53, 796808.Google Scholar
Post, R. M. (2002). Do the epilepsies, pain syndromes, and affective disorders share common kindling-like mechanisms? Epilepsy Research 50, 203219.Google Scholar
Rice, F., Harold, G. T., & Thapar, A. (2003). Negative life events as an account of age-related differences in the genetic aetiology of depression in childhood and adolescence. Journal of Child Psychology & Psychiatry & Allied Disciplines 44, 977987.Google Scholar
Rieder, J., & Coupey, S. M. (1999). Update on pubertal development. Current Opinion in Obstetrics & Gynecology 11, 457462.Google Scholar
Roberts, B. W., Caspi, A., & Moffitt, T. E. (2001). The kids are alright: Growth and stability in personality development from adolescence to adulthood. Journal of Personality & Social Psychology 81, 670683.Google Scholar
Saito, R., Toyama, H., Uemura, K., Ishii, K., Senda, M., & Uchiyama, A. (2001). Quantitative estimation of brain atrophy and function with PET and MRI two-dimensional projection images. Kaku Igaku–Japanese Journal of Nuclear Medicine 38, 201209.Google Scholar
Schmidt, M., Enthoven, L., van der Mark, M., Levine, S., de Kloet, E. R., & Oitzl, M. S. (2003). The postnatal development of the hypothalamic–pituitary–adrenal axis in the mouse. International Journal of Developmental Neuroscience 21, 125132.Google Scholar
Schmidt, P. J., Nieman, L. K., Danaceau, M. A, Adams, L. F., & Rubinow, D. R. (1998). Differential behavioral effects of gonadal steroids in women with and in those without premenstrual syndrome. New England Journal of Medicine 338, 209216.Google Scholar
Schneider, W. (2002). Memory development in childhood. In U. Goswami (Ed)., Blackwell handbook of childhood cognitive development (pp. 236256). Malden, MA: Blackwell.
Silberg, J. L., Pickles, A., Rutter, M., Hewitt, J., Simonoff, E., Maes, H., Carbonneau, R., Murrelle, L., Foley, D., & Eaves, L. (1999). The influence of genetic factors and life stress on depression among adolescent girls. Archives of General Psychiatry 56, 225232.Google Scholar
Snieder, H., van Doornen, L. J., & Boomsma, D. I. (1997). The age dependency of gene expression for plasma lipids, lipoproteins, and apolipoproteins. American Journal of Human Genetics 60, 638650.Google Scholar
Steiner, H., & Levine, S. (1988). Family environment of adolescents and coping in the hospital. Psychoneuroendocrinology 13, 333338.Google Scholar
Stevens, J. R. (2002). Schizophrenia: Reproductive hormones and the brain. American Journal of Psychiatry 159, 713719.Google Scholar
Stoffel–Wagner, B. (2001). Neurosteroid metabolism in the human brain. European Journal of Endocrinology 145, 669679.Google Scholar
Susman, E. J., Dorn, L. D., & Chrousos, G. P. (1991). Negative affect and hormone levels in young adolescents: Concurrent and predictive perspectives. Journal of Youth and Adolescence 20, 167190.Google Scholar
Susman, E. J., Dorn, L. D., Inoff–Germain, G., Nottelmann, E. D., & Chrousos, G. P. (1997). Cortisol reactivity, distress behavior, and behavioral and psychological problems in young adolescents: A longitudinal perspective. Journal of Research on Adolescence 7, 81105.Google Scholar
Susman, E. J., Nottelmann, E. D., Dorn, L. D., Inoff–Germain, G., & Chrousos, G. P. (1989). Physiological and behavioral aspects of stress in adolescence. In G. Chrousos & P. Gold (Eds.), Mechanisms of physical and emotional stress (pp. 341352). New York: Plenum Press.
Susman, E. J., Nottelmann, E. D., Inoff–Germain, G. E., Dorn, L. D., & Chrousos, G. P. (1987). Hormonal influences on aspects of psychological development during adolescence. Journal of Adolescent Health Care 8, 492504.Google Scholar
Tamm, L., Menon, V., & Reiss, A. L. (2002). Maturation of brain function associated with response inhibition. Journal of the American Academy of Child & Adolescent Psychiatry 41, 12311238.Google Scholar
Tornhage, C. J. (2002). Reference values for morning salivary cortisol concentrations in healthy school-aged children. Journal of Pediatric Endocrinology & Metabolism 15, 197204.Google Scholar
Udry, J. R., Billy, J. G., Morris, N. M., Groff, T. R., & Raj, M. H. (1985). Serum androgenic hormone motivate sexual behavior in adolescent boys. Fertility & Sterility 43, 9094.Google Scholar
Udry, J. R., & Talbert, L. M. (1988). Sex hormone effects on personality at puberty. Journal of Personality & Social Psychology 54, 291295.Google Scholar
van Oel, C. J., Sitskoorn, M. M., Cremer, M. P., & Kahn, R. (2002). School performance as a premorbid marker for schizophrenia: A twin study. Schizophrenia Bulletin 28, 401414.Google Scholar
Veldhuis, J. D. (1996). Neuroendocrine mechanisms mediating awakening of the human gonadotropic axis in puberty. Pediatric Nephrology 10, 304317.Google Scholar
Viken, R. J., Rose, R. J., Kaprio, J., & Koskenvuo, M. (1994). A developmental genetic analysis of adult personality: Extraversion and neuroticism from 18 to 59 years of age. Journal of Personality & Social Psychology 66, 722730.Google Scholar
Wajs–Kuto, E., De Beeck, L. O., Rooman, R. P., & Caju, M. V. (1999). Hormonal changes during the first year of oestrogen treatment in constitutionally tall girls. European Journal of Endocrinology 141, 579584.Google Scholar
Walker, E., & Bollini, A. M. (2002). Pubertal neurodevelopment and the emergence of psychotic symptoms. Schizophrenia Research 54, 1723.Google Scholar
Walker, E. F., & Diforio, D. (1997). Schizophrenia: A neural diathesis-stress model. Psychological Review 104, 667685.Google Scholar
Walker, E. F., Walder, D. J., & Reynolds, F. (2001). Developmental changes in cortisol secretion in normal and at-risk youth. Development and Psychopathology 13, 721732.Google Scholar
Warren, M., & Brooks–Gunn, J. (1989). Mood and behavior at adolescence: Evidence for hormonal factors. Journal of Clinical Endocrinology & Metabolism 69, 7783.Google Scholar
Weber, A., Clark, A. J., Perry, L. A., Honour, J. W., & Savage, M. O. (1997). Diminished adrenal androgen secretion in familial glucocorticoid deficiency implicates a significant role for ACTH in the induction of adrenarche. Clinical Endocrinology 46, 431437.Google Scholar
Weise, M., Eisenhofer, G., & Merke, D. P. (2002). Pubertal and gender-related changes in the sympathoadrenal system in healthy children. Journal of Clinical Endocrinology & Metabolism 87, 50385043.Google Scholar
Wingo, M. K. (2002). The adolescent stress response to a naturalistic driving stressor. Dissertation Abstracts International: Section B: The Sciences & Engineering, 63, 1082 (Transaction Periodicals Consortium, Rutgers University).Google Scholar
Wolkowitz, O., Epel, E., & Reus, V. (2001). Stress hormone-related psychopathology: Pathophysiological and treatment implications. World Journal of Biological Psychiatry 2, 115143.Google Scholar
Yung, A. R., Phillips, L. J., Yuen, H. P., Francey, S. M., McFarlane, C. A., Hallgren, M., & McGorry, P. D. (2003). Psychosis prediction: 12-month follow up of a high-risk (“prodromal”) group. Schizophrenia Research 60, 2132.Google Scholar