Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-30T03:47:22.854Z Has data issue: false hasContentIssue false

Prefrontal mechanisms of comorbidity from a transdiagnostic and ontogenic perspective

Published online by Cambridge University Press:  14 October 2016

Allison N. Macdonald*
Affiliation:
Emory University
Katrina B. Goines
Affiliation:
Emory University
Derek M. Novacek
Affiliation:
Emory University
Elaine F. Walker
Affiliation:
Emory University
*
Address correspondence and reprint requests to: Allison N. Macdonald, Emory University, Department of Psychology, 36 Eagle Row, Atlanta, GA 30322; E-mail: [email protected].

Abstract

Accumulating behavioral and genetic research suggests that most forms of psychopathology share common genetic and neural vulnerabilities and are manifestations of a relatively few core underlying processes. These findings support the view that comorbidity mostly arises, not from true co-occurrence of distinct disorders, but from the behavioral expression of shared vulnerability processes across the life span. The purpose of this review is to examine the role of the prefrontal cortex (PFC) in the shared vulnerability mechanisms underlying the clinical phenomena of comorbidity from a transdiagnostic and ontogenic perspective. In adopting this perspective, we suggest complex transactions between neurobiologically rooted vulnerabilities inherent in PFC circuitry and environmental factors (e.g., parenting, peers, stress, and substance use) across development converge on three key PFC-mediated processes: executive functioning, emotion regulation, and reward processing. We propose that individual differences and impairments in these PFC-mediated functions provide intermediate mechanisms for transdiagnostic symptoms and underlie behavioral tendencies that evoke and interact with environmental risk factors to further potentiate vulnerability.

Type
Special Issue Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agoston, A. M., & Rudolph, K. D. (2015). Interactive contributions of cumulative peer stress and executive function deficits to depression in early adolescence. Journal of Early Adolescence. Advance online publication.Google Scholar
Aguilera, M., Arias, B., Wichers, M., Barrantes-Vidal, N., Moya, J., Villa, H., et al. (2009). Early adversity and 5-HTT/BDNF genes: New evidence of gene–environment interactions on depressive symptoms in a general population. Psychological Medicine, 39, 14251432.CrossRefGoogle ScholarPubMed
Ahmed, S. P., Bittencourt-Hewitt, A., & Sebastian, C. L. (2015). Neurocognitive bases of emotion regulation development in adolescence. Developmental Cognitive Neuroscience, 15, 1125.Google Scholar
Albert, D., Chein, J., & Steinberg, L. (2013). The teenage brain: Peer influences on adolescent decision-making. Current Directions in Psychological Science, 22, 114120.CrossRefGoogle ScholarPubMed
Aldao, A., Nolen-Hoeksema, S., & Schweizer, S. (2010). Emotion-regulation strategies across psychopathology: A meta-analytic review. Clinical Psychology Review, 30, 217237.CrossRefGoogle ScholarPubMed
Andersen, S. L., Tomada, A., Vincow, E. S., Valente, E., Polcari, A., & Teicher, M. H. (2014). Preliminary evidence for sensitive periods in the effect of childhood sexual abuse on regional brain development. Journal of Neuropsychiatry and Clinical Neurosciences, 20, 292301.CrossRefGoogle Scholar
Andreotti, C., Thigpen, J. E., Dunn, M. J., Watson, K., Potts, J., Reising, M. M., et al. (2013). Cognitive reappraisal and secondary control coping: Associations with working memory, positive and negative affect, and symptoms of anxiety/depression. Anxiety, Stress & Coping, 26, 2035.CrossRefGoogle ScholarPubMed
Angold, A., Costello, E. J., & Erkanli, A. (1999). Comorbidity. Journal of Child Psychology and Psychiatry, 40, 5787.CrossRefGoogle ScholarPubMed
Arango, C., Rapado-Castro, M., Reig, S., Castro-Fornieles, J., González-Pinto, A., Otero, S., et al. (2012). Progressive brain changes in children and adolescents with first-episode psychosis. Archives of General Psychiatry, 69, 1626.Google Scholar
Arnsten, A. F. (2009). Stress signaling pathways that impair prefrontal cortex structure and function. Nature Reviews Neuroscience, 10, 410422.Google Scholar
Arnsten, A. F. (2011). Catecholamine influences on dorsolateral prefrontal cortical networks. Biological Psychiatry, 69, e89e99.Google Scholar
Arnsten, A. F., & Li, B. M. (2005). Neurobiology of executive functions: Catecholamine influences on prefrontal cortical functions. Biological Psychiatry, 57, 13771384.Google Scholar
Arnsten, A. F., & Rubia, K. (2012). Neurobiological circuits regulating attention, cognitive control, motivation, and emotion: Disruptions in neurodevelopmental psychiatric disorders. Journal of the American Academy of Child & Adolescent Psychiatry, 54, 356367.CrossRefGoogle Scholar
Arseneault, L., Bowes, L., & Shakoor, S. (2010). Bullying victimization in youths and mental health problems: “Much ado about nothing”? Psychological Medicine, 40, 717729.CrossRefGoogle Scholar
Aznar, S., & Klein, A. B. (2013). Regulating prefrontal cortex activation: An emerging role for the 5-HT2A serotonin receptor in the modulation of emotion-based actions. Molecular Neurobiology, 48, 841853.CrossRefGoogle ScholarPubMed
Bailey, C. E. (2007). Cognitive accuracy and intelligent executive function in the brain and in business. Annals of the New York Academy of Sciences, 1118, 122141.Google Scholar
Banich, M. T. (2009). Executive function: The search for an integrated account. Current Directions in Psychological Science, 18, 8994.Google Scholar
Bava, S., & Tapert, S. F. (2010). Adolescent brain development and the risk for alcohol and other drug problems. Neuropsychology Review, 20, 398413.CrossRefGoogle ScholarPubMed
Beauchaine, T. P. (2015). Future directions in emotion dysregulation and youth psychopathology. Journal of Clinical Child & Adolescent Psychology, 44, 875896.Google Scholar
Beauchaine, T. P., & Gatzke-Kopp, L. M. (2012). Instantiating the multiple levels of analysis perspective in a program of study on externalizing behavior. Development and Psychopathology, 24, 10031018.Google Scholar
Beauchaine, T. P., & McNulty, T. (2013). Comorbidities and continuities as ontogenic processes: Toward a developmental spectrum model of externalizing psychopathology. Development and Psychopathology, 25, 15051528.Google Scholar
Belleine, B. W., Delgado, M. R., & Hikosaka, O. (2007). The role of the dorsal striatum in reward and decision-making. Journal of Neuroscience, 27, 81618165.CrossRefGoogle Scholar
Bernier, A., Carlson, S. M., & Whipple, N. (2010). From external regulation to self-regulation: Early parenting precursors of young children's executive functioning. Child Development, 81, 326339.Google Scholar
Berridge, K. C., Robinson, T. E., & Aldridge, J. W. (2009). Dissecting components of reward: “Liking,” “wanting,” and learning. Current Opinion in Pharmacology, 9, 6573.CrossRefGoogle ScholarPubMed
Best, J. R., & Miller, P. H. (2010). A developmental perspective on executive function. Child Development, 81, 16411660.CrossRefGoogle ScholarPubMed
Biederman, J., Faraone, S., Mick, E., & Lelon, E. (1995). Psychiatric comorbidity among referred juveniles with major depression: Fact or artifact? Journal of the American Academy of Child & Adolescent Psychiatry, 34, 579590.Google Scholar
Bilsky, S. A., Cole, D. A., Dukewich, T. L., Martin, N. C., Sinclair, K. R., Tran, C. V., et al. (2013). Does supportive parenting mitigate the longitudinal effects of peer victimization on depressive thoughts and symptoms in children? Journal of Abnormal Psychology, 122, 406419.CrossRefGoogle ScholarPubMed
Bjork, J. M., Smith, A. R., Chen, G., & Hommer, D. W. (2010). Adolescents, adults and rewards: Comparing motivational neurocircuitry recruitment using fMRI. PLOS ONE, 5, 114.Google Scholar
Björklund, A., & Dunnett, S. B. (2007). Dopamine neuron systems in the brain: An update. Trends in Neuroscience, 30, 194202.Google Scholar
Blachman, D. R., & Hinshaw, S. P. (2002). Patterns of friendship among girls with and without attention-deficit/hyperactivity disorder. Journal of Abnormal Child Psychology, 30, 625640.CrossRefGoogle ScholarPubMed
Blair, C., & Razza, R. P. (2007). Relating effortful control, executive function, and false belief understanding to emerging math and literacy ability in kindergarten. Child Development, 78, 647663.Google Scholar
Bohlken, M. M., Brouwer, R. M., Mandl, R. C. W., Van den Heuvel, M. P., Hedman, A. M., De Hert, M., et al. (2016). Structural brain connectivity as a genetic marker for schizophrenia. JAMA Psychiatry, 73, 19.CrossRefGoogle ScholarPubMed
Borella, E., Carretti, B., Riboldi, F., & De Beni, R. (2010). Working memory training in older adults: Evidence of transfer and maintenance effects. Psychology and Aging, 25, 767778.CrossRefGoogle ScholarPubMed
Borgwardt, S. J., McGuire, P. K., Aston, J., Gschwandtner, U., Pflüger, M. O., Stieglitz, R. D., et al. (2008). Reductions in frontal, temporal and parietal volume associated with the onset of psychosis. Schizophrenia Research, 106, 108114.Google Scholar
Bos, K. J., Fox, N., Zeanah, C. H., & Nelson, C. A. (2009). Effects of early psychosocial deprivation on the development of memory and executive function. Frontiers in Behavioral Neuroscience, 3, 16.Google Scholar
Bouwmeester, H., Smits, K., & Van Ree, J. M. (2002). Neonatal development of projections to the basolateral amygdala from prefrontal and thalamic structures in rat. Journal of Comparative Neurology, 450, 241255.CrossRefGoogle Scholar
Brechwald, W. A., & Prinstein, M. J. (2011). Beyond homophily: A decade of advances in understanding peer influence processes. Journal of Research on Adolescence, 21, 166179.Google Scholar
Brendgen, M., Boivin, M., Vitaro, F., Bukowski, W. M., Dionne, G., Tremblay, R. E., et al. (2008). Linkages between children's and their friends’ social and physical aggression: Evidence for a gene–environment interaction. Child Development, 79, 1329.Google Scholar
Brent, B. K., Thermenos, H. W., Keshavan, M. S., & Seidman, L. J. (2013). Gray matter alterations in schizophrenia high-risk youth and early-onset schizophrenia: A review of structural MRI findings. Child and Adolescent Psychiatric Clinics of North America, 22, 689714.CrossRefGoogle ScholarPubMed
Broidy, L. M., Tremblay, R. E., Brame, B., Fergusson, D., Horwood, J. L., Laird, R., et al. (2003). Developmental trajectories of childhood disruptive behaviors and adolescent delinquency: A six-site cross-national study. Developmental Psychopathology, 39, 222245.Google Scholar
Brouwer, R. M., Koenis, M. M. G., Schnack, H. G., van Baal, G. C., van Soelen, I. L. C., Boomsma, D. I., et al. (2015). Longitudinal development of hormone levels and grey matter density in 9- and 12-year-old twins. Behavior Genetics, 45, 313323.Google Scholar
Brown, S. A., & Tapert, S. F. (2004). Adolescence and the trajectory of alcohol use: Basic to clinical studies. Annals of the New York Academy of Sciences, 1021, 234244.Google Scholar
Bryck, R. L., & Fisher, P. A. (2012). Training the brain: Practical applications of neural plasticity from the intersection of cognitive neuroscience, developmental psychology, and prevention science. American Psychologist, 67, 87100.Google Scholar
Buckholdt, K. E., Parra, G. R., & Jobe-Shields, L. (2014). Intergenerational transmission of emotion dysregulation through parental invalidation of emotions: Implications for adolescent internalizing and externalizing behaviors. Journal of Child and Family Studies, 23, 324332.Google Scholar
Buckholtz, J. W., & Meyer-Lindenberg, A. (2008). MAOA and the neurogenetic architecture of human aggression. Trends in Neurosciences, 31, 120129.Google Scholar
Buckholtz, J. W., & Meyer-Lindenberg, A. (2012). Psychopathology and the human connectome: Toward a transdiagnostic model of risk for mental illness. Neuron, 74, 9901004.Google Scholar
Bunge, S. A., Dudukovic, N. M., Thomason, M. E., Vaidya, C. J., & Gabrieli, J. D. E. (2002). Immature frontal lobe contributions to cognitive control in children: Evidence from fMRI. Neuron, 33, 301311.CrossRefGoogle ScholarPubMed
Burghy, C. A., Stodola, D. E., Ruttle, P. L., Molloy, E. K., Armstrong, J. M., Oler, J. A., et al. (2012). Developmental pathways to amygdala-prefrontal function and internalizing symptoms in adolescence. Nature Neuroscience, 15, 17361741.Google Scholar
Buss, K. A., Davis, E. L., Kiel, E. J., Brooker, R. J., Beekman, C., & Early, M. C. (2013). Dysregulated fear predicts social wariness and social anxiety symptoms during kindergarten. Journal of Clinical Child and Adolescent Psychology, 42, 603616.Google Scholar
Caldwell, L. C., Schweinsburg, A. D., Nagel, B. J., Barlett, V. C., Brown, S. A., & Tapert, S. F. (2005). Gender and adolescent alcohol use disorders on BOLD (blood oxygen level dependent) response to spatial working memory. Alcohol and Alcoholism, 40, 194200.Google Scholar
Calkins, S. D., & Marcovitch, S. (2010). Emotion regulation and executive functioning in early development: Integrated mechanisms of control supporting adaptive functioning. In Calkins, S. D. & Bell, M. A. (Eds.), Child development at the intersection of emotion and cognition: Human brain development (pp. 3757). Washington, DC: American Psychological Association.Google Scholar
Cano-Colino, M., Almeida, R., Gomez-Cabrero, D., Artigas, F., & Compte, A. (2014). Serotonin regulates performance nonmonotonically in a spatial working memory network. Cerebral Cortex, 24, 24492463.CrossRefGoogle Scholar
Cao, M., Shu, N., Cao, Q., Wang, Y., & He, Y. (2014). Imaging functional and structural brain connectomics in attention-deficit/hyperactivity disorder. Molecular Neurobiology, 50, 11111123.Google Scholar
Casey, B. J., & Jones, R. M. (2010). Neurobiology of the adolescent brain and behavior: Implications for substance use disorders. Journal of the American Academy of Child & Adolescent Psychiatry, 49, 11891201.Google Scholar
Casey, B. J., Jones, R. M., & Hare, T. A. (2008). The adolescent brain. Annals of the New York Academy of Sciences, 1124, 111126.Google Scholar
Casey, B. J., Jones, R. M., Levita, L., Libby, V., Pattwell, S. S., Ruberry, E. J., et al. (2010). The storm and stress of adolescence: Insights from human imaging and mouse genetics. Developmental Psychobiology, 52, 225235.CrossRefGoogle ScholarPubMed
Casey, B. J., Tottenham, N., & Fossella, J. (2002). Clinical, imaging, lesion, and genetic approaches toward a model of cognitive control. Developmental Psychobiology, 40, 237254.CrossRefGoogle Scholar
Castellanos, F. X., Sonuga-Barke, E. J., Milham, M. P., & Tannock, R. (2006). Characterizing cognition in ADHD: Beyond executive dysfunction. Trends in Cognitive Sciences, 10, 117123.CrossRefGoogle ScholarPubMed
Cauffman, E., Shulman, E. P., Steinberg, L., Claus, E., Banich, M. T., Graham, S., et al. (2010). Age differences in affective decision making as indexed by performance on the Iowa gambling task. Developmental Psychology, 46, 193207.Google Scholar
Chen, Y., & Baram, T. Z. (2015). Toward understanding how early-life stress reprograms cognitive and emotional brain networks. Neuropsychopharmacology, 41, 197206.Google Scholar
Churchwell, J. C., Lopez-Larson, M., & Yurgelun-Todd, D. A. (2010). Altered frontal cortical volume and decision making in adolescent cannabis users. Frontiers in Psychology, 1, 18.Google Scholar
Churchwell, J. C., Morris, A. M., Heurtelou, N. M., & Kesner, R. P. (2009). Interactions between the prefrontal cortex and amygdala during delay discounting and reversal. Behavioral Neuroscience, 123, 11851196.Google Scholar
Clarke, H. F., Walker, S. C., Crofts, H. S., Dalley, J. W., Robbins, T. W., & Roberts, A. C. (2005). Prefrontal serotonin depletion affects reversal learning but not attentional set shifting. Journal of Neuroscience, 25, 532538.Google Scholar
Coccaro, E. F., McCloskey, M. S., Fitzgerald, D. A., & Phan, K. L. (2007). Amygdala and orbitofrontal reactivity to social threat in individuals with impulsive aggression. Biological Psychiatry, 62, 168178.Google Scholar
Cohen, J. R., Asarnow, R. F., Sabb, F. W., Bilder, R. M., Bookheimer, S. Y., Knowlton, B. J., et al. (2010). A unique adolescent response to reward prediction errors. Nature Neuroscience, 13, 669671.Google Scholar
Copeland, W. E., Shanahan, L., Costello, E. J., & Angold, A. (2009). Childhood and adolescent psychiatric disorders as predictors of young adult disorders. Archives of General Psychiatry, 66, 764772.Google Scholar
Cowen, P., & Sherwood, A. C. (2013). The role of serotonin in cognitive function: Evidence from recent studies and implications for understanding depression. Journal of Psychopharmacology, 27, 575583.CrossRefGoogle ScholarPubMed
Crowell, S. E., Baucom, B. R., McCauley, E., Potapova, N. V., Fitelson, M., Barth, H., et al. (2013). Mechanisms of contextual risk for adolescent self-injury: Invalidation and conflict escalation in mother–child interactions. Journal of Clinical Child & Adolescent Psychology, 42, 467480.Google Scholar
Crowley, T. J., Dalwani, M. S., Mikulich-Gilbertson, S. K., Du, Y. P., Lejuez, C. W., Raymond, K. M., et al. (2010). Risky decisions and their consequences: Neural processing by boys with antisocial substance disorder. PLOS ONE, 5, e12835.CrossRefGoogle ScholarPubMed
Cummings, C. M., Caporino, N. E., & Kendall, P. C. (2014). Comorbidity of anxiety and depression in children and adolescents: 20 years after. Psychological Bulletin, 140, 816845.CrossRefGoogle ScholarPubMed
Cushion, T. D., Paciorkowski, A. R., Pilz, D. T., Mullins, J. G., Seltzer, L. E., Marion, R. W., et al. (2014). De novo mutations in the beta-tubulin gene TUBB2A cause simplified gyral patterning and infantile-onset epilepsy. American Journal of Human Genetics, 94, 634641.Google Scholar
Dalley, J. W., & Roiser, J. P. (2012). Dopamine, serotonin and impulsivity. Neuroscience, 215, 4258.Google Scholar
Daubert, E. A., & Condron, B. G. (2010). Serotonin: A regulator of neuronal morphology and circuitry. Trends in Neurosciences, 33, 424434.Google Scholar
Dazzan, P., Soulsby, B., Mechelli, A., Wood, S. J., Velakoulis, D., Phillips, L. J., et al. (2012). Volumetric abnormalities predating the onset of schizophrenia and affective psychoses: An MRI study in subjects at ultrahigh risk of psychosis. Schizophrenia Bulletin, 38, 10831091.Google Scholar
De Bellis, M. D., Narasimhan, A., Thatcher, D. L., Keshavan, M. S., Soloff, P., & Clark, D. B. (2005). Prefrontal cortex, thalamus, and cerebellar volumes in adolescents and young adults with adolescent-onset alcohol use disorders and comorbid mental disorders. Alcoholism: Clinical and Experimental Research, 29, 15901600.CrossRefGoogle Scholar
De Bellis, M. D., Van Voorhees, E., Hooper, S. R., Gibler, N., Nelson, L., Hege, S. G., et al. (2008). Diffusion tensor measures of the corpus callosum in adolescents with adolescent onset alcohol use disorders. Alcoholism: Clinical and Experimental Research, 32, 395404.Google Scholar
De Brito, S. A., Mechelli, A., Wilke, M., Laurens, K. R., Jones, A. P., Barker, G. J., et al. (2009). Size matters: Increased grey matter in boys with conduct problems and callous-unemotional traits. Brain, 132, 843852.Google Scholar
Delgado, M. R., Nearing, K. I., LeDoux, J. E., & Phelps, E. A. (2008). Neural circuitry underlying the regulation of conditioned fear and its relation to extinction. Neuron, 59, 829838.Google Scholar
Demeyer, I., De Lissnyder, E., Koster, E. H., & De Raedt, R. (2012). Rumination mediates the relationship between impaired cognitive control for emotional information and depressive symptoms: A prospective study in remitted depressed adults. Behaviour Research and Therapy, 50, 292297.Google Scholar
Der-Avakian, A., & Markou, A. (2012). The neurobiology of anhedonia and other reward-related deficits. Trends in Neurosciences, 35, 6877.Google Scholar
Deserno, L., Sterzer, P., Wüstenberg, T., Heinz, A., & Schlagenhauf, F. (2012). Reduced prefrontal-parietal effective connectivity and working memory deficits in schizophrenia. Journal of Neuroscience, 32, 1220.Google Scholar
Deveney, C. M., Connolly, M. E., Haring, C. T., Bones, B. L., Reynolds, R. C., Kim, P., et al. (2013). Neural mechanisms of frustration in chronically irritable children. American Journal of Psychiatry, 170, 11861194.Google Scholar
Diamond, A. (2002). Normal development of prefrontal cortex from birth to young adulthood: Cognitive functions, anatomy, and biochemistry. In Stuss, D. & Knight, R. (Eds.), Principles of frontal lobe function (pp. 466503). New York: Oxford University Press.Google Scholar
Diamond, A. (2007). Consequences of variations in genes that affect dopamine in prefrontal cortex. Cerebral Cortex, 17, i161i170.Google Scholar
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135168.Google Scholar
Diamond, A., & Lee, K. (2011). Interventions shown to aid executive function development in children 4 to 12 years old. Science, 333, 959964.Google Scholar
Dickstein, S. G., Bannon, K., Castellanos, F. X., & Milham, M. P. (2006). The neural correlates of attention deficit hyperactivity disorder: An ALE meta-analysis. Journal of Child Psychology and Psychiatry, 47, 10511062.CrossRefGoogle ScholarPubMed
Drabick, D. A., Ollendick, T. H., & Bubier, J. L. (2010). Co-occurrence of ODD and anxiety: Shared risk processes and evidence for a dual-pathway model. Clinical Psychology: Science and Practice, 17, 307318.Google Scholar
Duncan, N. W., Wiebking, C., Tiret, B., Marjanska, M., Hayes, D. J., Lyttleton, O., et al. (2013). Glutamate concentration in the medial prefrontal cortex predicts resting-state cortical–subcortical functional connectivity in humans. PLOS ONE, 8, e60312.Google Scholar
Durston, S., Davidson, M. C., Tottenham, N., Galvan, A., Spicer, J., Fossella, J. A., et al. (2006). A shift from diffuse to focal cortical activity with development. Developmental Science, 9, 18.Google Scholar
Eakin, L., Minde, K., Hechtman, L., Ochs, E., Krane, E., Bouffard, R., et al. (2004). The marital and family functioning of adults with ADHD and their spouses. Journal of Attention Disorders, 8, 110.Google Scholar
Eiland, L., & Romeo, R. D. (2013). Stress and the developing adolescent brain. Neuroscience, 249, 162171.Google Scholar
Eisenberg, N., Losoya, S., Fabes, R. A., Guthrie, I. K., Reiser, M., Murphy, B., et al. (2001). Parental socialization children's dysregulated expression of emotion and externalizing problems. Journal of Family Psychology, 15, 183205.Google Scholar
Eisenberg, N., Spinrad, T. L., & Eggum, N. D. (2010). Emotion-related self-regulation and its relation to children's maladjustment. Annual Review of Clinical Psychology, 6, 495525.Google Scholar
Eldreth, D. A., Matochik, J. A., Cadet, J. L., & Bolla, K. I. (2004). Abnormal brain activity in prefrontal brain regions in abstinent marijuana users. NeuroImage, 23, 914920.Google Scholar
El Marroun, H., Tiemeier, H., Franken, I. H., Jaddoe, W. V., van der Lugt, A., Verhulst, F. C., et al. (2015). Prenatal cannabis and tobacco exposure in relation to brain morphology: A prospective neuroimaging study in young children. Biological Psychiatry. Advance online publication.Google ScholarPubMed
Elston, G. N., Oga, T., & Fujita, I. (2009) Spinogenesis and pruning scales across functional hierarchies. Journal of Neuroscience, 29, 32713275.Google Scholar
Enge, S., Fleischhauer, M., Lesch, K. P., Reif, A., & Strobel, A. (2011). Serotonergic modulation in executive functioning: Linking genetic variations to working memory performance. Neuropsychologia, 49, 37763785.Google Scholar
Ernst, M., & Fudge, J. L. (2009). A developmental neurobiological model of motivated behavior: Anatomy, connectivity and ontogeny of the triadic nodes. Neuroscience & Biobehavioral Reviews, 33, 367382.CrossRefGoogle ScholarPubMed
Ernst, M., Nelson, E. E., Jazbec, S., McClure, E. B., Monk, C. S., Leibenluft, E., et al. (2005). Amygdala and nucleus accumbens in responses to receipt and omission of gains in adults and adolescents. NeuroImage, 25, 12791291.Google Scholar
Eshel, N., Nelson, E. E., Blair, R. J., Pine, D. S., & Ernst, M. (2007). Neural substrates of choice selection in adults and adolescents: Development of the ventrolateral prefrontal and anterior cingulate cortices. Neuropsychologia, 45, 12701279.CrossRefGoogle ScholarPubMed
Eshel, N., & Roiser, J. P. (2010). Reward and punishment processing in depression. Biological Psychiatry, 68, 118124.Google Scholar
Evans, G. W., & Schamberg, M. A. (2009). Childhood poverty, chronic stress, and adult working memory. Proceedings of the National Academy of Sciences, 106, 65456549.Google Scholar
Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007). Anxiety and cognitive performance: Attentional control theory. Emotion, 7, 336353.Google Scholar
Farley, J. P., & Kim-Spoon, J. (2014). The development of adolescent self-regulation: Reviewing the role of parent, peer, friend, and romantic relationships. Journal of Adolescence, 37, 433440.Google Scholar
Feldman, G. C., Joormann, J., & Johnson, S. L. (2008). Responses to positive affect: A self-report measure of rumination and dampening. Cognitive Therapy and Research, 32, 507525.Google Scholar
Finger, E. C., Marsh, A. A., Blair, K. S., Reid, M. E., Sims, C., Ng, P., et al. (2011). Disrupted reinforcement signaling in the orbitofrontal cortex and caudate in youths with conduct disorder or oppositional defiant disorder and a high level of psychopathic traits. American Journal of Psychiatry, 168, 152162.Google Scholar
Fino, E., Melogno, S., Iliceto, P., D'Aliesio, S., Pinto, M. A., Candilera, G., et al. (2014). Executive functions, impulsivity, and inhibitory control in adolescents: A structural equation model. Advances in Cognitive Psychology, 10, 3238.Google Scholar
Fisher, P. M., Meltzer, C. C., Price, J. C., Coleman, R. L., Ziolko, S. K., Becker, C., et al. (2009). Medial prefrontal cortex 5-HT2A density is correlated with amygdala reactivity, response habituation, and functional coupling. Cerebral Cortex, 19, 24992507.Google Scholar
Fite, P. J., Colder, C. R., Lochman, J. E., & Wells, K. C. (2007). Pathways from proactive and reactive aggression to substance use. Psychology of Addictive Behaviors, 21, 355364.Google Scholar
Flanagan, K. S., Erath, S. A., & Bierman, K. L. (2008). Unique associations between peer relations and social anxiety in early adolescence. Journal of Clinical Child & Adolescent Psychology, 37, 759769.Google Scholar
Floresco, S. B. (2013). Prefrontal dopamine and behavioral flexibility: Shifting from an “inverted-U” toward a family of functions. Frontiers in Neuroscience, 7, 112.Google Scholar
Forbes, E. E., & Dahl, R. E. (2005). Neural systems of positive affect: Relevance to understanding child and adolescent depression. Development and Psychopathology, 17, 827850.Google Scholar
Forbes, E. E., & Dahl, R. E. (2012). Research review: Altered reward function in adolescent depression: what, when and how? Journal of Child Psychology and Psychiatry, 53, 315.Google Scholar
Forbes, E. E., Hariri, A. R., Martin, S. L., Silk, J. S., Moyles, D. L., Fisher, P. M., et al. (2009). Altered striatal activation predicting real-world positive affect in adolescent major depressive disorder. American Journal of Psychiatry, 166, 6473.Google Scholar
Fusar-Poli, P., Deste, G., Smieskova, R., Barlati, S., Yung, A. R., Howes, O., et al. (2012). Cognitive functioning in prodromal psychosis: A meta-analysis. Archives of General Psychiatry, 69, 562571.Google Scholar
Fusar-Poli, P., McGuire, P., & Borgwardt, S. (2012). Mapping prodromal psychosis: A critical review of neuroimaging studies. European Psychiatry, 27, 181191.Google Scholar
Galvan, A., Hare, T. A., Parra, C., Penn, J., Voss, H., Glover, G., et al. (2006). Earlier development of the accumbens relative to orbitofrontal cortex might underlie risk-taking behavior in adolescents. Journal of Neuroscience, 26, 68856892.Google Scholar
Gard, D. E., Kring, A. M., Gard, M. G., Horan, W. P., & Green, M. F. (2007). Anhedonia in schizophrenia: Distinctions between anticipatory and consummatory pleasure. Schizophrenia Research, 93, 253260.Google Scholar
Gee, D. G., & Casey, B. J. (2015). The impact of developmental timing for stress and recovery. Neurobiology of Stress, 1, 184194.Google Scholar
Gee, D. G., Humphreys, K. L., Flannery, J., Goff, B., Telzer, E. H., Shapiro, M., et al. (2013). A developmental shift from positive to negative connectivity in human amygdala-prefrontal circuitry. Journal of Neuroscience, 33, 45844593.Google Scholar
George, O., & Koob, G. F. (2010). Individual differences in prefrontal cortex function and the transition from drug use to drug dependence. Neuroscience & Biobehavioral Reviews, 35, 232247.Google Scholar
Geschwind, D. H., & Flint, J. (2015). Genetics and genomics of psychiatric disease. Science, 349, 14891494.Google Scholar
Giedd, J. N. (2004). Structural magnetic resonance imaging of the adolescent brain. Annals of the New York Academy of Sciences, 1021, 7785.Google Scholar
Gill, M. (2012). Developmental psychopathology: The role of structural variation in the genome. Development and Psychopathology, 24, 13191334.Google Scholar
Gilliom, M., Shaw, D. S., Beck, J. E., Schonberg, M. A., & Lukon, J. L. (2002). Anger regulation in disadvantaged preschool boys: Strategies, antecedents, and the development of self-control. Developmental Psychology, 38, 222235.Google Scholar
Goldsmith, H. H., Pollak, S. D., & Davidson, R. J. (2008). Developmental neuroscience perspectives on emotion regulation. Child Development Perspectives, 2, 132140.Google Scholar
Goto, Y., Yang, C. R., & Otani, S. (2010). Functional and dysfunctional synaptic plasticity in prefrontal cortex: Roles in psychiatric disorders. Biological Psychiatry, 67, 199207.Google Scholar
Govindan, R., Behen, M., Helder, E., Makki, M., & Chugani, H. (2010). Looking at comorbidity through the neuroscientific memory research: A brain-network perspective. Cerebral Cortex, 20, 561569.Google Scholar
Grabenhorst, F., & Rolls, E. T. (2011). Value, pleasure and choice in the ventral prefrontal cortex. Trends in Cognitive Sciences, 15, 5667.Google Scholar
Gradin, V. B., Kumar, P., Waiter, G., Ahearn, T., Stickle, C., Milders, M., et al. (2011). Expected value and prediction error abnormalities in depression and schizophrenia. Brain, 134, 17511764.Google Scholar
Gross, J. J., & John, O. P. (2003). Individual differences in two emotion regulation processes: Implications for affect, relationships, and well-being. Journal of Personality and Social Psychology, 85, 348362.Google Scholar
Gross, J. J., & Thompson, R. A. (2007). Emotion regulation: Conceptual foundations. In Gross, J. J. (Ed.), Handbook of emotion regulation (pp. 324). New York: Guilford Press.Google Scholar
Gruber, S. A., Sagar, K. A., Dahlgren, M. K., Racine, M., & Lukas, S. E. (2012). Age of onset of marijuana use and executive function. Psychology of Addictive Behaviors, 26, 496506.CrossRefGoogle ScholarPubMed
Gruber, S. A., Silveri, M. M., Dahlgren, M. K., & Yurgelun-Todd, D. (2011). Why so impulsive? White matter alterations are associated with impulsivity in chronic marijuana smokers. Experimental and Clinical Psychopharmacology, 19, 231242.Google Scholar
Gullone, E., Hughes, E. K., King, N. J., & Tonge, B. (2010). The normative development of emotion regulation strategy use in children and adolescents: A 2-year follow-up study. Journal of Child Psychology and Psychiatry, 51, 567574.Google Scholar
Gur, R. E., Cowell, P. E., Latshaw, A., Turetsky, B. I., Grossman, R. I., Arnold, S. E., et al. (2000). Reduced dorsal and orbital prefrontal gray matter volumes in schizophrenia. Archives of General Psychiatry, 57, 761768.Google Scholar
Guyer, A. E., Lau, J. Y., McClure-Tone, E. B., Parrish, J., Shiffrin, N. D., Reynolds, R. C., et al. (2008). Amygdala and ventrolateral prefrontal cortex function during anticipated peer evaluation in pediatric social anxiety. Archives of General Psychiatry, 65, 13031312.Google Scholar
Haber, S. N., & Knutson, B. (2010). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35, 426.Google Scholar
Hackman, D. A., & Farah, M. J. (2009). Socioeconomic status and the developing brain. Trends in Cognitive Sciences, 13, 6573.Google Scholar
Hagmann, P., Sporns, O., Madan, N., Cammoun, L., Pienaar, R., Wedeen, V. J., et al. (2010). White matter maturation reshapes structural connectivity in the late developing human brain. Proceedings of the National Academy of Sciences, 107, 1906719072.Google Scholar
Halligan, S. L., Cooper, P. J., Fearon, P., Wheeler, S. L., Crosby, M., & Murray, L. (2013). The longitudinal development of emotion regulation capacities in children at risk for externalizing disorders. Development and Psychopathology, 25, 391406.CrossRefGoogle ScholarPubMed
Hanson, J. L., Adluru, N., Chung, M. K., Alexander, A. L., Davidson, R. J., & Pollak, S. D. (2013). Early neglect is associated with alterations in white matter integrity and cognitive functioning. Child Development, 84, 15661578.Google Scholar
Hanson, J. L., Chung, M. K., Avants, B. B., Rudolph, K. D., Shirtcliff, E. A., Gee, J. C., et al. (2012). Structural variations in prefrontal cortex mediate the relationship between early childhood stress and spatial working memory. Journal of Neuroscience, 32, 79177925.Google Scholar
Hanson, J. L., Chung, M. K., Avants, B. B., Shirtcliff, E. A., Gee, J. C., Davidson, R. J., et al. (2010). Early stress is associated with alterations in the orbitofrontal cortex: A tenor-based morphometry investigation of brain structure and behavioral risk. Journal of Neuroscience, 30, 74667472.Google Scholar
Hanson, J. L., Hariri, A. R., & Williamson, D. E. (2015). Blunted ventral striatum development in adolescence reflects emotional neglect and predicts depressive symptoms. Biological Psychiatry, 78, 598605.Google Scholar
Hanson, K. L., Winward, J. L., Schweinsburg, A. D., Medina, K. L., Brown, S. A., & Tapert, S. F. (2010). Longitudinal study of cognition among adolescent marijuana users over three weeks of abstinence. Addictive Behaviors, 35, 970976.Google Scholar
Hariri, A. R., Drabant, E. M., & Weinberger, D. R. (2006). Imaging genetics: Perspectives from studies of genetically driven variation in serotonin function and corticolimbic affective processing. Biological Psychiatry, 59, 888897.Google Scholar
Hariri, A. R., Mattay, V. S., Tessitore, A., Kolachana, B., Fera, F., Goldman, D., et al. (2002). Serotonin transporter genetic variation and the response of the human amygdala. Science, 297, 400403.Google Scholar
Hartley, D. E., Elsabagh, S., & File, S. E. (2004). Binge drinking and sex: Effects on mood and cognitive function in healthy young volunteers. Pharmacology Biochemistry and Behavior, 78, 611619.Google Scholar
Hasenfratz, L., Benish-Weisman, M., Steinberg, T., & Knafo-Noam, A. (2015). Temperament and peer problems from early to middle childhood: Gene–environment correlations with negative emotionality and sociability. Development and Psychopathology, 27, 10891109.Google Scholar
Hashimoto, R., Numakawa, T., Ohnishi, T., Kumamaru, E., Yagasaki, Y., Ishimoto, T., et al. (2006). Impact of the DISC1 Ser704Cys polymorphism on risk for major depression, brain morphology and ERK signaling. Human Molecular Genetics, 15, 30243033.CrossRefGoogle ScholarPubMed
Healey, K. L., Morgan, J., Musselman, S. C., Olino, T. M., & Forbes, E. E. (2014). Social anhedonia and medial prefrontal response to mutual liking in late adolescents. Brain and Cognition, 89, 3950.Google Scholar
Heller, A. S., & Casey, B. J. (2016). The neurodynamics of emotion: Delineating typical and atypical emotional processes during adolescence. Developmental Science, 19, 318.Google Scholar
Heller, A. S., Johnstone, T., Shackman, A. J., Light, S. N., Peterson, M. J., Kolden, G. G., et al. (2009). Reduced capacity to sustain positive emotion in major depression reflects diminished maintenance of fronto-striatal brain activation. Proceedings of the National Academy of Sciences, 106, 2244522450.Google Scholar
Hermens, D. F., Lagopoulos, J., Tobias-Webb, J., De Regt, T., Dore, G., Juckes, L., et al. (2013). Pathways to alcohol-induced brain impairment in young people: A review. Cortex, 49, 317.Google Scholar
Hirayasu, Y., Tanaka, S., Shenton, M. E., Salisbury, D. F., DeSantis, M. A., Levitt, J. J., et al. (2001). Prefrontal gray matter volume reduction in first episode schizophrenia. Cerebral Cortex, 11, 374381.Google Scholar
Hirvonen, J., Goodwin, R. S., Li, C. T., Terry, G. E., Zoghbi, S. S., Morse, C., et al. (2012). Reversible and regionally selective downregulation of brain cannabinoid CB1 receptors in chronic daily cannabis smokers. Molecular Psychiatry, 17, 642649.Google Scholar
Hofmann, W., Schmeichel, B. J., & Baddeley, A. D. (2012). Executive functions and self-regulation. Trends in Cognitive Sciences, 16, 174180.Google Scholar
Holmes, A., & Wellman, C. L. (2009). Stress-induced prefrontal reorganization and executive dysfunction in rodents. Neuroscience & Biobehavioral Reviews, 33, 773783.Google Scholar
Holmes, C. J., Kim-Spoon, J., & Deater-Deckard, K. (2015). Linking executive function and peer problems from early childhood through middle adolescence. Journal of Abnormal Child Psychology, 44, 112.Google Scholar
Homayoun, H., & Moghaddam, B. (2007). NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. Journal of Neuroscience, 27, 1149611500.Google Scholar
Hoptman, M. J., D'Angelo, D., Catalano, D., Mauro, C. J., Shehzad, Z. E., Kelly, A. M. C., et al. (2010). Amygdalofrontal functional disconnectivity and aggression in schizophrenia. Schizophrenia Bulletin, 36, 10201028.Google Scholar
Hoza, B., Gerdes, A. C., Mrug, S., Hinshaw, S. P., Bukowski, W. M., Gold, J. A., et al. (2005). Peer-assessed outcomes in the multimodal treatment study of children with attention deficit hyperactivity disorder. Journal of Clinical Child and Adolescent Psychology, 34, 7486.Google Scholar
Huebner, T., Vloet, T. D., Marx, I., Konrad, K., Fink, G. R., Herpertz, S. C., et al. (2008). Morphometric brain abnormalities in boys with conduct disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 47, 540547.Google Scholar
Hughes, C., Ensor, R., Wilson, A., & Graham, A. (2009). Tracking executive function across the transition to school: A latent variable approach. Developmental Neuropsychology, 35, 2036.Google Scholar
Huizinga, M., Dolan, C. V., & van der Molen, M. W. (2006). Age-related change in executive function: Developmental trends and a latent variable analysis. Neuropsychologia, 44, 20172036.Google Scholar
Hulvershorn, L. A., Cullen, K., & Anand, A. (2011). Toward dysfunctional connectivity: A review of neuroimaging findings in pediatric major depressive disorder. Brain Imaging and Behavior, 5, 307328.CrossRefGoogle ScholarPubMed
Iafrati, J., Orejarena, M. J., Lassalle, O., Bouamrane, L., & Chavis, P. (2014). Reelin, an extracellular matrix protein linked to early onset psychiatric diseases, drives postnatal development of the prefrontal cortex via GluN2B-NMDARs and the mTOR pathway. Molecular Psychiatry, 19, 417426.CrossRefGoogle ScholarPubMed
Insel, T. R. (2014). Brain somatic mutations: The dark matter of psychiatric genetics? Molecular Psychiatry, 19, 156158.Google Scholar
Insel, T. R., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., et al. (2010). Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. American Journal of Psychiatry, 167, 748751.Google Scholar
Jackson, M. E., Homayoun, H., & Moghaddam, B. (2004). NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex. Proceedings of the National Academy of Sciences, 101, 84678472.Google Scholar
Jacobus, J., McQueeny, T., Bava, S., Schweinsburg, B. C., Frank, L. R., Yang, T. T., et al. (2009). White matter integrity in adolescents with histories of marijuana use and binge drinking. Neurotoxicology and Teratology, 31, 349355.Google Scholar
Jager, G., Block, R. I., Luijten, M., & Ramsey, N. F. (2010). Cannabis use and memory brain function in adolescent boys: A cross-sectional multicenter functional magnetic resonance imaging study. Journal of the American Academy of Child & Adolescent Psychiatry, 49, 561572.Google Scholar
Johnston, L. D., O'Malley, P. M., Bachman, J. G., & Schulenberg, J. E. (2011). Monitoring the future national results on adolescent drug use: Overview of key findings, 2010. Ann Arbor, MI: University of Michigan, Institute for Social Research.Google Scholar
Kamiya, A., Tomoda, T., Chang, J., Takaki, M., Zhan, C., Morita, M., et al. (2006). DISC1–NDEL1/NUDEL protein interaction, an essential component for neurite outgrowth, is modulated by genetic variations of DISC1. Human Molecular Genetics, 15, 33133323.Google Scholar
Kazdin, A. E., & Whitley, M. K. (2006). Comorbidity, case complexity, and effects of evidence-based treatment for children referred for disruptive behavior. Journal of Consulting and Clinical Psychology, 74, 455467.Google Scholar
Keedwell, P. A., Andrew, C., Williams, S. C., Brammer, M. J., & Phillips, M. L. (2005). A double dissociation of ventromedial prefrontal cortical responses to sad and happy stimuli in depressed and healthy individuals. Biological Psychiatry, 58, 495503.Google Scholar
Kehagia, A. A., Murray, G. K., & Robbins, T. W. (2010). Learning and cognitive flexibility: Frontostriatal function and monoaminergic modulation. Current Opinion in Neurobiology, 20, 199204.Google Scholar
Kerestes, R., Davey, C. G., Stephanou, K., Whittle, S., & Harrison, B. J. (2014). Functional brain imaging studies of youth depression: A systematic review. NeuroImage: Clinical, 4, 209231.Google Scholar
Kerner, B., Rao, A. R., Christensen, B., Dandekar, S., Yourshaw, M., & Nelson, S. F. (2013). Rare genomic variants link bipolar disorder with anxiety disorders to CREB-regulated intracellular signaling pathways. Frontiers in Psychiatry, 4, 111.Google Scholar
Kessler, R. C., Avenevoli, S., McLaughlin, K. A., Green, J. G., Lakoma, M. D., Petukhova, M., et al. (2012). Lifetime co-morbidity of DSM-IV disorders in the US national comorbidity survey replication adolescent supplement (NCS-A). Psychological Medicine, 42, 19972010.Google Scholar
Kessler, R. C., Chiu, W. T., Demler, O., & Walters, E. E. (2005). Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62, 617627.CrossRefGoogle ScholarPubMed
Kim, J., & Cicchetti, D. (2010). Longitudinal pathways linking child maltreatment, emotion regulation, peer relations, and psychopathology. Journal of Child Psychology and Psychiatry, 51, 706716.Google Scholar
Kim, M. J., Loucks, R. A., Palmer, A. L., Brown, A. C., Solomon, K. M., Marchante, A. N., et al. (2011). The structural and functional connectivity of the amygdala: From normal emotion to pathological anxiety. Behavioural Brain Research, 223, 403410.Google Scholar
Kim, P., Evans, G. W., Angstadt, M., Ho, S. S., Sripada, C. S., Swain, J. E., et al. (2013). Effects of childhood poverty and chronic stress on emotion regulatory brain function in adulthood. Proceedings of the National Academy of Sciences, 110, 1844218447.Google Scholar
Kim, S. N., Kang, D. H., Yun, J. Y., Lee, T. Y., Jung, W. H., Jang, J. H., et al. (2013). Impact of the BDNF Val66Met polymorphism on regional brain gray matter volumes: Relevance to the stress response. Psychiatry Investigation, 10, 173179.Google Scholar
Kim, Y. R., & Lee, K. U. (2011). Understanding of neural mechanism of mood disorders: Focused on neuroimaging findings. Korean Journal of Biological Psychiatry, 18, 1524.Google Scholar
Kolb, B., & Gibb, R. (2011). Brain plasticity and behaviour in the developing brain. Journal of the Canadian Academy of Child & Adolescent Psychiatry, 20, 265276.Google Scholar
Kolb, B., Mychasiuk, R., Muhammad, A., Li, Y., Frost, D. O., & Gibb, R. (2012). Experience and the developing prefrontal cortex. Proceedings of the National Academy of Sciences, 109(Suppl. 2), 1718617193.Google Scholar
Kretschmer, T., Dijkstra, J. K., Ormel, J., Verhulst, F. C., & Veenstra, R. (2013). Dopamine receptor D4 gene moderates the effect of positive and negative peer experiences on later delinquency: The Tracking Adolescents’ Individual Lives Survey study. Development and Psychopathology, 25, 11071117.Google Scholar
Kring, A. M., & Elis, O. (2013). Emotion deficits in people with schizophrenia. Annual Review of Clinical Psychology, 9, 409433.Google Scholar
Krugel, L. K., Biele, G., Mohr, P. N., Li, S. C., & Heekeren, H. R. (2009). Genetic variation in dopaminergic neuromodulation influences the ability to rapidly and flexibly adapt decisions. Proceedings of the National Academy of Sciences, 106, 1795117956.Google Scholar
Kubicki, M., Shenton, M. E., Salisbury, D. F., Hirayasu, Y., Kasai, K., Kikinis, R., et al. (2002). Voxel-based morphometric analysis of gray matter in first episode schizophrenia. NeuroImage, 17, 17111719.Google Scholar
Laakso, A., Wallius, E., Kajander, J., Bergman, J., Eskola, O., Solin, O., et al. (2003). Personality traits and striatal dopamine synthesis capacity in healthy subjects. American Journal of Psychiatry, 160, 904910.Google Scholar
Ladd, G. W. (2006). Peer rejection, aggressive or withdrawn behavior, and psychological maladjustment from ages 5 to 12: An examination of four predictive models. Child Development, 77, 822846.Google Scholar
Laird, R. D., Jordan, K. Y., Dodge, K. A., Pettit, G. S., & Bates, J. E. (2001). Peer rejection in childhood, involvement with antisocial peers in early adolescence, and the development of externalizing behavior problems. Development and Psychopathology, 13, 337354.Google Scholar
Lapiz-Bluhm, M. D. S., Soto-Piña, A. E., Hensler, J. G., & Morilak, D. A. (2009). Chronic intermittent cold stress and serotonin depletion induce deficits of reversal learning in an attentional set-shifting test in rats. Psychopharmacology, 202, 329341.Google Scholar
Lawson, G. M., Hook, C. J., Hackman, D. A., & Farah, M. J. (2014). Socioeconomic status and neurocognitive development: Executive function. In Griffin, J. A., Freund, L. S., & McCardle, P. (Eds.), Executive function in preschool children: Integrating measurement, neurodevelopment, and translational research. Washington, DC: American Psychological Association.Google Scholar
Lenroot, R. K., & Giedd, J. N. (2006). Brain development in children and adolescents: Insights from anatomical magnetic resonance imaging. Neuroscience & Biobehavioral Reviews, 30, 718729.Google Scholar
Lenroot, R. K., Gogtay, N., Greenstein, D. K., Wells, E. M., Wallace, G. L., Clasen, L. S., et al. (2007). Sexual dimorphism of brain developmental trajectories during childhood and adolescence. NeuroImage, 36, 10651073.Google Scholar
Lesch, K. P., & Waider, J. (2012). Serotonin in the modulation of neural plasticity and networks: Implications for neurodevelopmental disorders. Neuron, 76, 175191.Google Scholar
Lewis, M. (2013). The development of emotion regulation: Integrating normative and individual differences through developmental neuroscience. In Zelazo, P. (Ed.), The Oxford handbook of developmental psychology (Vol. 2, pp. 8197). New York: Oxford University Press.Google Scholar
Lewis, M. D., Granic, I., & Lamm, C. (2006). Behavioral differences in aggressive children linked with neural mechanisms of emotion regulation. Annals of the New York Academy of Sciences, 1094, 164177.Google Scholar
Lewis, M. D., Todd, R., & Xu, X. (2010). The development of emotion regulation: A neuropsychological perspective. In Lamb, M., Freund, A., & Lerner, R. M. (Eds.), The handbook of life-span development (pp. 5178). Hoboken, NJ: Wiley.Google Scholar
Lisdahl, K. M., & Price, J. S. (2012). Increased marijuana use and gender predict poorer cognitive functioning in adolescents and emerging adults. Journal of the International Neuropsychological Society, 18, 678688.Google Scholar
Lopez-Larson, M. P., Bogorodzki, P., Rogowska, J., McGlade, E., King, J. B., Terry, J., et al. (2011). Altered prefrontal and insular cortical thickness in adolescent marijuana users. Behavioural Brain Research, 220, 164172.Google Scholar
Luciana, M. (2013). Adolescent brain development in normality and psychopathology. Development and Psychopathology, 25(4, Pt. 2), 13251345.Google Scholar
Luna, B., Garver, K. E., Urban, T. A., Lazar, N. A., & Sweeney, J. A. (2004). Maturation of cognitive processes from late childhood to adulthood. Child Development, 75, 13571372.Google Scholar
Luna, B., Thulborn, K. R., Munoz, D. P., Merriam, E. P., Garver, K. E., Minshew, N. J., et al. (2001). Maturation of widely distributed brain function subserves cognitive development. NeuroImage, 13, 786793.Google Scholar
Lunt, L., Bramham, J., Morris, R. G., Bullock, P. R., Selway, R. P., Xenitidis, K., et al. (2012). Prefrontal cortex dysfunction and “jumping to conclusions”: Bias or deficit? Journal of Neuropsychology, 6, 6578.Google Scholar
Lupien, S. J., Gillin, C. J., & Hauger, R. L. (1999). Working memory is more sensitive than declarative memory to the acute effects of corticosteroids: A dose-response study in humans. Behavioral Neuroscience, 113, 420430.Google Scholar
Lyvers, M. (2000). “Loss of control” in alcoholism and drug addiction: A neuroscientific interpretation. Experimental and Clinical Psychopharmacology, 8, 225249.Google Scholar
Maier, S. F., Amat, J., Baratta, M. V., Paul, E., & Watkins, L. R. (2006). Behavioral control, the medial prefrontal cortex, and resilience. Dialogues in Clinical Neuroscience, 8, 397406.Google Scholar
Maier, S. F., & Watkins, L. R. (2010). Role of the medial prefrontal cortex in coping and resilience. Brain Research, 1355, 5260.Google Scholar
Malhotra, A. K., Kestler, L. J., Mazzanti, C., Bates, J. A., Goldberg, T., & Goldman, D. (2002). A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. American Journal of Psychiatry, 159, 652654.Google Scholar
Maniam, J., Antoniadis, C., & Morris, M. J. (2014). Early-life stress, HPA axis adaptation, and mechanisms contributing to later health outcomes. Frontiers in Endocrinology, 5, 117.Google Scholar
Marsh, A. A., Finger, E. C., Fowler, K. A., Jurkowitz, I. T. N., Schechter, J. C., Henry, H. Y., et al. (2011). Reduced amygdala-orbitofrontal connectivity during moral judgments in youths with disruptive behavior disorders and psychopathic traits. Psychiatry Research: Neuroimaging, 194, 279286.Google Scholar
Marsh, R., Maia, T. V., & Peterson, B. S. (2009). Functional disturbances within frontostriatal circuits across multiple childhood psychopathologies. American Journal of Psychiatry, 166, 664674.Google Scholar
Marsh, R., Zhu, H., Schultz, R. T., Quackenbush, G., Royal, J., Skudlarski, P., et al. (2006). A developmental fMRI study of self-regulatory control. Human Brain Mapping, 27, 848863.Google Scholar
Martin-Soelch, C. (2009). Is depression associated with dysfunction of the central reward system? Biochemical Society Transactions, 37, 313317.Google Scholar
Masten, A. S., & Cicchetti, D. (2010). Developmental cascades. Development and Psychopathology, 22, 491495.Google Scholar
McEwen, B. S., & Gianaros, P. J. (2011). Stress- and allostasis-induced brain plasticity. Annual Review of Medicine, 62, 431445.Google Scholar
McQueeny, T., Schweinsburg, B. C., Schweinsburg, A. D., Jacobus, J., Bava, S., Frank, L. R., et al. (2009). Altered white matter integrity in adolescent binge drinkers. Alcoholism: Clinical and Experimental Research, 33, 12781285.Google Scholar
McRae, K., Gross, J. J., Weber, J., Robertson, E. R., Sokol-Hessner, P., Ray, R. D., et al. (2012). The development of emotion regulation: An fMRI study of cognitive reappraisal in children, adolescents and young adults. Social Cognitive and Affective Neuroscience, 7, 1122.Google Scholar
Medina, K. L., McQueeny, T., Nagel, B. J., Hanson, K. L., Schweinsburg, A. D., & Tapert, S. F. (2008). Prefrontal cortex volumes in adolescents with alcohol use disorders: Unique gender effects. Alcoholism: Clinical and Experimental Research, 32, 386394.Google Scholar
Mesholam-Gately, R. I., Giuliano, A. J., Goff, K. P., Faraone, S. V., & Seidman, L. J. (2009). Neurocognition in first-episode schizophrenia: A meta-analytic review. Neuropsychology, 23, 315336.Google Scholar
Meyer, S. E., Bearden, C. E., Lux, S. R., Gordon, J. L., Johnson, J. K., O'Brien, M. P., et al. (2005). The psychosis prodrome in adolescent patients viewed through the lens of DSM-IV. Journal of Child and Adolescent Psychopharmacology, 15, 434451.Google Scholar
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167202.Google Scholar
Mills, K., Goddings, A., Clasen, L. S., Giedd, J., & Blakemore, S. (2014). The developmental mismatch in structural brain maturation during adolescence. Developmental Neuroscience, 36, 147160.Google Scholar
Miyake, A., & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions four general conclusions. Current Directions in Psychological Science, 21, 814.Google Scholar
Mizoguchi, K., Ishige, A., Takeda, S., Aburada, M., & Tabira, T. (2004). Endogenous glucocorticoids are essential for maintaining prefrontal cortical cognitive function. Journal of Neuroscience, 24, 54925499.Google Scholar
Mochcovitch, M. D., da Rocha Freire, R. C., Garcia, R. F., & Nardi, A. E. (2014). A systematic review of fMRI studies in generalized anxiety disorder: Evaluating its neural and cognitive basis. Journal of Affective Disorders, 167, 336342.Google Scholar
Moilanen, K. L., Shaw, D. S., & Maxwell, K. L. (2010). Developmental cascades: Externalizing, internalizing, and academic competence from middle childhood to early adolescence. Development and Psychopathology, 22, 635653.Google Scholar
Monk, C. S., Telzer, E. H., Mogg, K., Bradley, B. P., Mai, X., Louro, H. M., et al. (2008). Amygdala and ventrolateral prefrontal cortex activation to masked angry faces in children and adolescents with generalized anxiety disorder. Archives of General Psychiatry, 65, 568576.Google Scholar
Morgan, J. K., Shaw, D. S., Olino, T. M., Musselman, S. C., Kurapati, N. T., & Forbes, E. E. (2015). History of depression and frontostriatal connectivity during reward processing in late adolescent boys. Journal of Clinical Child and Adolescent Psychology, 45, 5968.Google Scholar
Morris, A. S., Silk, J. S., Steinberg, L., Myers, S. S., & Robinson, L. R. (2007). The role of the family context in the development of emotion regulation. Social Development, 16, 361388.Google Scholar
Mrug, S., Hoza, B., & Gerdes, A. C. (2001). Children with attention-deficit/hyperactivity disorder: Peer relationships and peer-oriented interventions. New Directions for Child and Adolescent Development, 2001, 5178.Google Scholar
Mrug, S., & McCay, R. (2013). Parental and peer disapproval of alcohol use and its relationship to adolescent drinking: Age, gender, and racial differences. Psychology of Addictive Behaviors, 27, 604614.Google Scholar
Mulders, P. C., van Eijndhoven, P. F., Schene, A. H., Beckmann, C. F., & Tendolkar, I. (2015). Resting-state functional connectivity in major depressive disorder: A review. Neuroscience & Biobehavioral Reviews, 56, 330344.Google Scholar
Murmu, M. S., Salomon, S., Biala, Y., Weinstock, M., Braun, K., & Bock, J. (2006). Changes of spine density and dendritic complexity in the prefrontal cortex in offspring of mothers exposed to stress during pregnancy. European Journal of Neuroscience, 24, 14771487.Google Scholar
Nelson, E. E., Lau, J. Y., & Jarcho, J. M. (2014). Growing pains and pleasures: How emotional learning guides development. Trends in Cognitive Sciences, 18, 99108.Google Scholar
Nikulina, V., & Widom, C. S. (2013). Child maltreatment and executive functioning in middle adulthood: A prospective examination. Neuropsychology, 27, 417427.Google Scholar
Nolen-Hoeksema, S., & Watkins, E. R. (2011). A heuristic for developing transdiagnostic models of psychopathology explaining multifinality and divergent trajectories. Perspectives on Psychological Science, 6, 589609.Google Scholar
Obradović, J., Burt, K. B., & Masten, A. S. (2009). Testing a dual cascade model linking competence and symptoms over 20 years from childhood to adulthood. Journal of Clinical Child and Adolescent Psychology, 39, 90102.Google Scholar
O'Driscoll, C., Laing, J., & Mason, O. (2014). Cognitive emotion regulation strategies, alexithymia and dissociation in schizophrenia: A review and meta-analysis. Clinical Psychology Review, 34, 482495.Google Scholar
Opmeer, E. M., van Tol, M. J., Kortekaas, R., van der Wee, N. J., Woudstra, S., van Buchem, M. A., et al. (2015). DISC1 gene and affective psychopathology: A combined structural and functional MRI study. Journal of Psychiatric Research, 61, 150157.Google Scholar
Packard, M. G., & Knowlton, B. J. (2002). Learning and memory functions of the basal ganglia. Annual Review of Neuroscience, 25, 563593.Google Scholar
Padmanabhan, A., Geier, C. F., Ordaz, S. J., Teslovich, T., & Luna, B. (2011). Developmental changes in brain function underlying the influence of reward processing on inhibitory control. Developmental Cognitive Neuroscience, 1, 517529.Google Scholar
Panzarella, C., Alloy, L. B., & Whitehouse, W. G. (2006). Expanded hopelessness theory of depression: On the mechanisms by which social support protects against depression. Cognitive Therapy and Research, 30, 307333.Google Scholar
Pasupathy, A., & Miller, E. K. (2005). Different time courses of learning-related activity in the prefrontal cortex and striatum. Nature, 433, 873876.Google Scholar
Patterson, G. R., DeBaryshe, B. D., & Ramsey, E. (1989). A developmental perspective on antisocial behavior. In Gauvain, M. & Cole, M. (Eds.), Readings on the development of children (pp. 329335). Washington, DC: American Psychological Association.Google Scholar
Pechtel, P., & Pizzagalli, D. A. (2011). Effects of early life stress on cognitive and affective function: An integrated review of human literature. Psychopharmacology, 214, 5570.Google Scholar
Pedersen, S., Vitaro, F., Barker, E. D., & Borge, A. I. (2007). The timing of middle-childhood peer rejection and friendship: Linking early behavior to early-adolescent adjustment. Child Development, 78, 10371051.Google Scholar
Peper, J. S., & Dahl, R. E. (2013). The teenage brain: Surging hormones—Brain-behavior interactions during puberty. Current Directions in Psychological Science, 22, 134139.Google Scholar
Perlman, S. B., & Pelphrey, K. A. (2011). Developing connections for affective regulation: Age-related changes in emotional brain connectivity. Journal of Experimental Child Psychology, 108, 607620.Google Scholar
Pezawas, L., Verchinski, B. A., Mattay, V. S., Callicott, J. H., Kolachana, B. S., Straub, R. E., et al. (2004). The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. Journal of Neuroscience, 24, 1009910102.Google Scholar
Poduri, A., Evrony, G. D., Cai, X., & Walsh, C. A. (2013). Somatic mutation, genomic variation, and neurological disease. Science, 341, 1237758.Google Scholar
Pollak, S. D., Nelson, C. A., Schlaak, M. F., Roeber, B. J., Wewerka, S. S., Wiik, K. L., et al. (2010). Neurodevelopmental effects of early deprivation in post-institutionalized children. Child Development, 81, 224236.Google Scholar
Porteous, D. J., Thomson, P., Brandon, N. J., & Millar, J. K. (2006). The genetics and biology of DISC1—An emerging role in psychosis and cognition. Biological Psychiatry, 60, 123131.Google Scholar
Prata, D. P., Mechelli, A., Fu, C. H. Y., Picchioni, M., Kane, F., Kalidindi, S., et al. (2008). Effect of disrupted-in-schizophrenia-1 on pre-frontal cortical function. Molecular Psychiatry, 13, 915917.Google Scholar
Prencipe, A., Kesek, A., Cohen, J., Lamm, C., Lewis, M. D., & Zelazo, P. D. (2011). Development of hot and cool executive function during the transition to adolescence. Journal of Experimental Child Psychology, 108, 621637.Google Scholar
Price, J. L., & Drevets, W. C. (2010). Neurocircuitry of mood disorders. Neuropsychopharmacology, 35, 192216.Google Scholar
Puig, M. V., & Gulledge, A. T. (2011). Serotonin and prefrontal cortex function: neurons, networks, and circuits. Molecular Neurobiology, 44, 449464.Google Scholar
Puig, M. V., Rose, J., Schmidt, R., & Freund, N. (2014). Dopamine modulation of learning and memory in the prefrontal cortex: Insights from studies in primates, rodents, and birds. Frontiers in Neural Circuits, 8, 115.Google Scholar
Ramnani, N., & Owen, A. M. (2004). Anterior prefrontal cortex: Insights into function from anatomy and neuroimaging. Nature Reviews Neuroscience, 5, 184194.Google Scholar
Raver, C. C., Blair, C., & Willoughby, M. (2013). Poverty as a predictor of 4-year-olds’ executive function: New perspectives on models of differential susceptibility. Developmental Psychology, 49, 292304.Google Scholar
Razza, R. A., & Blair, C. (2009). Associations among false-belief understanding, executive function, and social competence: A longitudinal analysis. Journal of Applied Developmental Psychology, 30, 332343.Google Scholar
Reichardt, L. F. (2006). Neurotrophin-regulated signalling pathways. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 361, 15451564.Google Scholar
Robbins, T. W., & Everitt, B. J. (1999). Drug addiction: Bad habits add up. Nature, 398, 567570.Google Scholar
Roberts, A. C. (2011). The importance of serotonin for orbitofrontal function. Biological Psychiatry, 69, 11851191.Google Scholar
Rogers, R. D., Owen, A. M., Middleton, H. C., Williams, E. J., Pickard, J. D., Sahakian, B. J., et al. (1999). Choosing between small, likely rewards and large, unlikely rewards activates inferior and orbital prefrontal cortex. Journal of Neuroscience, 19, 90299038.Google Scholar
Rogers, R. D., Ramnani, N., Mackay, C., Wilson, J. L., Jezzard, P., Carter, C. S., et al. (2004). Distinct portions of anterior cingulate cortex and medial prefrontal cortex are activated by reward processing in separable phases of decision-making cognition. Biological Psychiatry, 55, 594602.Google Scholar
Romeo, R. D. (2013). The teenage brain: The stress response and the adolescent brain. Current Directions in Psychological Science, 22, 140145.Google Scholar
Rubia, K., Halari, R., Cubillo, A., Smith, A. B., Mohammad, A. M., Brammer, M., et al. (2011). Methylphenidate normalizes fronto-striatal underactivation during interference inhibition in medication-naive boys with attention-deficit hyperactivity disorder. Neuropsychopharmacology, 36, 15751586.Google Scholar
Rubia, K., Smith, A. B., Halari, R., Matsukura, F., Mohammad, M., Taylor, E., et al. (2009). Disorder-specific dissociation of orbitofrontal dysfunction in boys with pure conduct disorder during reward and ventrolateral prefrontal dysfunction in boys with pure ADHD during sustained attention. American Journal of Psychiatry, 166, 8394.Google Scholar
Rubia, K., Smith, A. B., Woolley, J., Nosarti, C., Heyman, I., Taylor, E., et al. (2006). Progressive increase of frontostriatal brain activation from childhood to adulthood during event-related tasks of cognitive control. Human Brain Mapping, 27, 973993.Google Scholar
Rubin, K. H., Bukowski, W. M., & Parker, J. G. (2006). Peer interactions, relationships, and groups. In Damon, W. & Lerner, R. M. (Eds.), Handbook of child psychology (pp. 571645). Hoboken, NJ: Wiley.Google Scholar
Rubin, K. H., Coplan, R. J., & Bowker, J. C. (2009). Social withdrawal in childhood. Annual Review of Psychology, 60, 141171.Google Scholar
Rubin, K. H., & Ross, H. S. (Eds.). (1982). Peer relationships and social skills in childhood. New York: Springer–Verlag.Google Scholar
Rubino, T., & Parolaro, D. (2008). Long lasting consequences of cannabis exposure in adolescence. Molecular and Cellular Endocrinology, 286, S108S113.Google Scholar
Rutter, M., Kim-Cohen, J., & Maughan, B. (2006). Continuities and discontinuities in psychopathology between childhood and adult life. Journal of Child Psychology and Psychiatry, 47, 276295.Google Scholar
Salzwedel, A. P., Grewen, K. M., Vachet, C., Gerig, G., Lin, W., & Gao, W. (2015). Prenatal drug exposure affects neonatal brain functional connectivity. Journal of Neuroscience, 35, 58605869.Google Scholar
Scharinger, C., Rabl, U., Sitte, H. H., & Pezawas, L. (2010). Imaging genetics of mood disorders. NeuroImage, 53, 810821.Google Scholar
Schmitt, J. A. J., Wingen, M., Ramaekers, J. G., Evers, E. A. T., & Riedel, W. J. (2006). Serotonin and human cognitive performance. Current Pharmaceutical Design, 12, 24732486.Google Scholar
Schoemaker, K., Mulder, H., Deković, M., & Matthys, W. (2013). Executive functions in preschool children with externalizing behavior problems: A meta-analysis. Journal of Abnormal Child Psychology, 41, 457471.Google Scholar
Schweinsburg, A. D., McQueeny, T., Nagel, B. J., Eyler, L. T., & Tapert, S. F. (2010). A preliminary study of functional magnetic resonance imaging response during verbal encoding among adolescent binge drinkers. Alcohol, 44, 111117.Google Scholar
Séguin, J. R., & Zelazo, P. D. (2005). Executive function in early physical aggression. In Archer, J., Tremblay, R. E., Hartup, W. W., & Willard, W. (Eds.), Developmental origins of aggression (pp. 307392). New York: Guilford Press.Google Scholar
Seidman, L. J., Valera, E. M., & Makris, N. (2005). Structural brain imaging of attention-deficit/hyperactivity disorder. Biological Psychiatry, 57, 12631272.Google Scholar
Shaw, P., Eckstrand, K., Sharp, W., Blumenthal, J., Lerch, J. P., Greenstein, D., et al. (2007). Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proceedings of the National Academy of Sciences, 104, 1964919654.Google Scholar
Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., et al. (2006). Intellectual ability and cortical development in children and adolescents. Nature, 440, 676679.Google Scholar
Shaw, P., Malek, M., Watson, B., Greenstein, D., de Rossi, P., & Sharp, W. (2013). Trajectories of cerebral cortical development in childhood and adolescence and adult attention-deficit/hyperactivity disorder. Biological Psychiatry, 74, 599606.Google Scholar
Shaw, P., Malek, M., Watson, B., Sharp, W., Evans, A., & Greenstein, D. (2012). Development of cortical surface area and gyrification in attention-deficit/hyperactivity disorder. Biological Psychiatry, 72, 191197.Google Scholar
Sheline, Y. I., Barch, D. M., Price, J. L., Rundle, M. M., Vaishnavi, S. N., Snyder, A. Z., et al. (2009). The default mode network and self-referential processes in depression. Proceedings of the National Academy of Sciences, 106, 19421947.Google Scholar
Shollenbarger, S. G., Price, J., Wieser, J., & Lisdahl, K. (2015). Poorer frontolimbic white matter integrity is associated with chronic cannabis use, FAAH genotype, and increased depressive and apathy symptoms in adolescents and young adults. NeuroImage: Clinical, 8, 117125.Google Scholar
Silvers, J. A., McRae, K., Gabrieli, J. D., Gross, J. J., Remy, K. A., & Ochsner, K. N. (2012). Age-related differences in emotional reactivity, regulation, and rejection sensitivity in adolescence. Emotion, 12, 12351247.Google Scholar
Simon, J. J., Cordeiro, S. A., Weber, M. A., Friederich, H. C., Wolf, R. C., Weisbrod, M., et al. (2015). Reward system dysfunction as a neural substrate of symptom expression across the general population and patients with schizophrenia. Schizophrenia Bulletin, 41, 13701378.Google Scholar
Sinclair, D., Purves-Tyson, T. D., Allen, K. M., & Weickert, C. S. (2014). Impacts of stress and sex hormones on dopamine neurotransmission in the adolescent brain. Psychopharmacology, 231, 15811599.Google Scholar
Smith, A. K., Parets, S. E., & Kim, A. W. (2014). Epigenetics of psychopathology. In Rhee, S. H. & Ronald, A. (Eds.), Behavior genetics of psychopathology (pp. 283309). New York: Springer.Google Scholar
Snyder, H. R. (2013). Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: A meta-analysis and review. Psychological Bulletin, 139, 81132.Google Scholar
Snyder, H. R., Kaiser, R. H., Whisman, M. A., Turner, A. E., Guild, R. M., & Munakata, Y. (2014). Opposite effects of anxiety and depressive symptoms on executive function: The case of selecting among competing options. Cognition & Emotion, 28, 893902.Google Scholar
Snyder, H. R., Miyake, A., & Hankin, B. L. (2015). Advancing understanding of executive function impairments and psychopathology: Bridging the gap between clinical and cognitive approaches. Frontiers in Psychology, 6, 328.Google Scholar
Somerville, L. H., Jones, R. M., & Casey, B. J. (2010). A time of change: Behavioral and neural correlates of adolescent sensitivity to appetitive and aversive environmental cues. Brain and Cognition, 72, 124133.Google Scholar
Sowell, E. R., Thompson, P. M., Welcome, S. E., Henkenius, A. L., Toga, A. W., & Peterson, B. S. (2003). Cortical abnormalities in children and adolescents with attention-deficit hyperactivity disorder. Lancet, 362, 16991707.Google Scholar
Spear, L. P. (2000). The adolescent brain and age-related behavioral manifestations. Neuroscience & Biobehavioral Reviews, 24, 417463.Google Scholar
Squeglia, L. M., Jacobus, J., & Tapert, S. F. (2009). The influence of substance use on adolescent brain development. Clinical EEG and Neuroscience, 40, 3138.Google Scholar
Squeglia, L. M., Jacobus, J., & Tapert, S. F. (2014). The effect of alcohol use on human adolescent brain structures and systems. Handbook of Clinical Neurology, 125, 501510.Google Scholar
Steinberg, L. (2005). Cognitive and affective development in adolescence. Trends in Cognitive Sciences, 9, 6974.Google Scholar
Steinberg, L. (2008). A social neuroscience perspective on adolescent risk-taking. Developmental Review, 28, 78106.Google Scholar
Steinberg, L. (2010). A behavioral scientist looks at the science of adolescent brain development. Brain and Cognition, 72, 160164.Google Scholar
Steingard, R. J., Renshaw, P. F., Hennen, J., Lenox, M., Cintron, C. B., Young, A. D., et al. (2002). Smaller frontal lobe white matter volumes in depressed adolescents. Biological Psychiatry, 52, 413417.Google Scholar
Stelzel, C., Basten, U., Montag, C., Reuter, M., & Fiebach, C. J. (2010). Frontostriatal involvement in task switching depends on genetic differences in D2 receptor density. Journal of Neuroscience, 30, 1420514212.Google Scholar
Stenseng, F., Belsky, J., Skalicka, V., & Wichstrøm, L. (2015). Social exclusion predicts impaired self-regulation: A 2-year longitudinal panel study including the transition from preschool to school. Journal of Personality, 83, 212220.Google Scholar
Stuss, D. T., & Knight, R. T. (2013). Principles of frontal lobe function. Oxford: Oxford University Press.Google Scholar
Sui, L., Wang, Y., Ju, L. H., & Chen, M. (2012). Epigenetic regulation of reelin and brain-derived neurotrophic factor genes in long-term potentiation in rat medial prefrontal cortex. Neurobiology of Learning and Memory, 97, 425440.Google Scholar
Sullivan, E. V., Lim, K. O., Mathalon, D., Marsh, L., Beal, D. M., Harris, D., et al. (1998). A profile of cortical gray matter volume deficits characteristic of schizophrenia. Cerebral Cortex, 8, 117124.Google Scholar
Suveg, C., Shaffer, A., Morelen, D., & Thomassin, K. (2011). Links between maternal and child psychopathology symptoms: Mediation through child emotion regulation and moderation through maternal behavior. Child Psychiatry and Human Development, 42, 507520.Google Scholar
Swartz, J. R., & Monk, C. S. (2014). The role of corticolimbic circuitry in the development of anxiety disorders in children and adolescents. In Anderson, S. L. & Pine, D. S. (Eds.), The neurobiology of childhood (pp. 133148). Heidelberg: Springer–Verlag.Google Scholar
Tamnes, C. K., Østby, Y., Fjell, A. M., Westlye, L. T., Due-Tønnessen, P., & Walhovd, K. B. (2010). Brain maturation in adolescence and young adulthood: Regional age-related changes in cortical thickness and white matter volume and microstructure. Cerebral Cortex, 20, 534548.Google Scholar
Tamnes, C. K., Walhovd, K. B., Grydeland, H., Holland, D., Østby, Y., Dale, A. M., et al. (2013). Longitudinal working memory development is related to structural maturation of frontal and parietal cortices. Journal of Cognitive Neuroscience, 25, 16111623.Google Scholar
Tan, P. Z., Lee, K. H., Dahl, R. E., Nelson, E. E., Stroud, L. J., Siegle, G. J., et al. (2014). Associations between maternal negative affect and adolescent's neural response to peer evaluation. Developmental Cognitive Neuroscience, 8, 2839.Google Scholar
Tau, G., & Peterson, B. (2010). Normal development of brain circuits. Neuropsychopharmacology, 35, 147168.Google Scholar
Taylor, S. E., Eisenberger, N. I., Saxbe, D., Lehman, B. J., & Lieberman, M. D. (2006). Neural responses to emotional stimuli are associated with childhood family stress. Biological Psychiatry, 60, 296301.Google Scholar
Thompson, R. A., & Goodman, M. (2009). Development of self, relationships, and socioemotional competence: Foundations for early school success. In Barbarin, O. A. & Wasik, B. H. (Eds.), Handbook of child development and early education: Research to practice (pp. 147171). New York: Guilford Press.Google Scholar
Tottenham, N., Hare, T. A., & Casey, B. J. (2011). Behavioral assessment of emotion discrimination, emotion regulation, and cognitive control in childhood, adolescence, and adulthood. Frontiers in Psychology, 2, 39.Google Scholar
Townshend, J. M., & Duka, T. (2005). Binge drinking, cognitive performance and mood in a population of young social drinkers. Alcoholism: Clinical and Experimental Research, 29, 317325.Google Scholar
Treadway, M. T., Peterman, J. S., Zald, D. H., & Park, S. (2015). Impaired effort allocation in patients with schizophrenia. Schizophrenia Research, 161, 382385.Google Scholar
Treadway, M. T., & Pizzagalli, D. A. (2014). Imaging the pathophysiology of major depressive disorder—From localist models to circuit-based analysis. Biology of Mood and Anxiety Disorders, 4, 113.Google Scholar
Trentacosta, C. J., & Shaw, D. S. (2009). Emotional self-regulation, peer rejection, and antisocial behavior: Developmental associations from early childhood to early adolescence. Journal of Applied Developmental Psychology, 30, 356365.Google Scholar
Trotman, H. D., Holtzman, C. W., Ryan, A. T., Shapiro, D. I., MacDonald, A. N., Goulding, S. M., et al. (2013). The development of psychotic disorders in adolescence: A potential role for hormones. Hormones and Behavior, 64, 411419.Google Scholar
Unschuld, P. G., Buchholz, A. S., Varvaris, M., van Zijl, P. C. M., Ross, C. A., Pekar, J. J., et al. (2014). Prefrontal brain network connectivity indicates degree of both schizophrenia risk and cognitive dysfunction. Schizophrenia Bulletin, 40, 653664.Google Scholar
Valiente, C., Eisenberg, N., Spinrad, T. L., Haugen, R. G., Thompson, M. S., & Kupfer, A. (2013). Effortful control and impulsivity as concurrent and longitudinal predictors of academic achievement. Journal of Early Adolescence, 33, 946972.Google Scholar
van Ewijk, H., Heslenfeld, D. J., Zwiers, M. P., Buitelaar, J. K., & Oosterlaan, J. (2012). Diffusion tensor imaging in attention deficit/hyperactivity disorder: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews, 36, 10931106.Google Scholar
Van Leijenhorst, L., Moor, B. G., de Macks, Z. A. O., Rombouts, S. A., Westenberg, P. M., & Crone, E. A. (2010). Adolescent risky decision-making: Neurocognitive development of reward and control regions. NeuroImage, 51, 345355.Google Scholar
Vijayakumar, N., Whittle, S., Yücel, M., Dennison, M., Simmons, J., & Allen, N. B. (2014). Thinning of the lateral prefrontal cortex during adolescence predicts emotion regulation in females. Social Cognitive and Affective Neuroscience, 9, 18451854.Google Scholar
Vijayraghavan, S., Wang, M., Birnbaum, S. G., Williams, G. V., & Arnsten, A. F. (2007). Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nature Neuroscience, 10, 376384.Google Scholar
Volman, I., Verhagen, L., den Ouden, H. E., Fernández, G., Rijpkema, M., Franke, B., et al. (2013). Reduced serotonin transporter availability decreases prefrontal control of the amygdala. Journal of Neuroscience, 33, 89748979.Google Scholar
Wagner, S., Baskaya, Ö., Dahmen, N., Lieb, K., & Tadić, A. (2010). Modulatory role of the brain-derived neurotrophic factor Val66Met polymorphism on the effects of serious life events on impulsive aggression in borderline personality disorder. Genes, Brain and Behavior, 9, 97102.Google Scholar
Walhovd, K. B., Tamnes, C. K., & Fjell, A. M. (2014). Brain structural maturation and the foundations of cognitive behavioral development. Current Opinion in Neurology, 27, 176184.Google Scholar
Waltz, J. A., Frank, M. J., Robinson, B. M., & Gold, J. M. (2007). Selective reinforcement learning deficits in schizophrenia support predictions from computational models of striatal-cortical dysfunction. Biological Psychiatry, 62, 756764.Google Scholar
Weems, C. F. (2008). Developmental trajectories of childhood anxiety: Identifying continuity and change in anxious emotion. Developmental Review, 28, 488502.Google Scholar
Weinstock, M. (2008). The long-term behavioural consequences of prenatal stress. Neuroscience & Biobehavioral Reviews, 32, 10731086.Google Scholar
Wenzel, A. J., & Gunnar, M. R. (2013). Protective role of executive function skills in high-risk environments. In Masten, A. S. (Ed.), Resilience, encyclopedia on early childhood development. Retrieved from http://www.child-encyclopedia.com/resilience/according-experts/protective-role-executive-function-skills-high-risk-environments Google Scholar
Whittle, S., Simmons, J. G., Dennison, M., Vijayakumar, N., Schwartz, O., Yap, M. B., et al. (2014). Positive parenting predicts the development of adolescent brain structure: A longitudinal study. Developmental Cognitive Neuroscience, 8, 717.Google Scholar
Wichers, M., Kenis, G., Jacobs, N., Mengelers, R., Derom, C., Vlietinck, R., et al. (2008). The BDNF Val66Met x 5-HTTLPR x Child Adversity interaction and depressive symptoms: An attempt at replication. American Journal of Medical Genetics, 147B, 120123.Google Scholar
Wiebe, S. A., Sheffield, T., Nelson, J. M., Clark, C. A., Chevalier, N., & Espy, K. A. (2011). The structure of executive function in 3-year-olds. Journal of Experimental Child Psychology, 108, 436452.Google Scholar
Woodward, N. D., Waldie, B., Rogers, B., Tibbo, P., Seres, P., & Purdon, S. E. (2009). Abnormal prefrontal cortical activity and connectivity during response selection in first episode psychosis, chronic schizophrenia, and unaffected siblings of individuals with schizophrenia. Schizophrenia Research, 109, 182190.Google Scholar
Yap, M. B. H., Allen, N. B., & Ladouceur, C. D. (2008). Maternal socialization of positive affect: The impact of invalidation on adolescent emotion regulation and depressive symptomatology. Child Development, 79, 14151431.Google Scholar
Yeo, R. A., Hill, D. E., Campbell, R. A., Vigil, J., Petropoulos, H., Hart, B., et al. (2003). Proton magnetic resonance spectroscopy investigation of the right frontal lobe in children with attention-deficit/hyperactivity disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 42, 303310.Google Scholar
Yurgelun-Todd, D. (2007). Emotional and cognitive changes during adolescence. Current Opinion in Neurobiology, 17, 251257.Google Scholar
Zeman, J., Cassano, M., Perry-Parrish, C., & Stegall, S. (2006). Emotion regulation in children and adolescents. Journal of Developmental and Behavioral Pediatrics, 27, 155168.Google Scholar
Zetsche, U., D'Avanzato, C., & Joormann, J. (2012). Depression and rumination: Relation to components of inhibition. Cognition and Emotion, 26, 758767.Google Scholar
Zhang, H., Li, L., Wu, M., Chen, Z., Hu, X., Chen, Y., et al. (2016). Brain gray matter alterations in first episodes of depression: A meta-analysis of whole-brain studies. Neuroscience & Biobehavioral Reviews, 60, 4350.Google Scholar
Zhang, X., & Ho, S. M. (2011). Epigenetics meets endocrinology. Journal of Molecular Endocrinology, 46, R11R32.Google Scholar