Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-10T22:32:33.512Z Has data issue: false hasContentIssue false

Post-error adjustment among children aged 7 years with a familial high risk of schizophrenia or bipolar disorder: A population-based cohort study

Published online by Cambridge University Press:  17 May 2021

Birgitte Klee Burton*
Affiliation:
Child and Adolescent Mental Health Centre, Mental Health Services Capital Region, Research Unit, Copenhagen University Hospital, Hellerup, Denmark Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
Anders Petersen
Affiliation:
Centre for Visual Cognition, Department of Psychology, University of Copenhagen, Copenhagen, Denmark
Heike Eichele
Affiliation:
Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
Nicoline Hemager
Affiliation:
The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark Copenhagen Research Center for Mental Health – CORE, Mental Health Centre Copenhagen, Copenhagen University Hospital, Mental Health Services Capital Region, Hellerup, Denmark
Katrine S. Spang
Affiliation:
Child and Adolescent Mental Health Centre, Mental Health Services Capital Region, Research Unit, Copenhagen University Hospital, Hellerup, Denmark Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
Ditte Ellersgaard
Affiliation:
The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark Copenhagen Research Center for Mental Health – CORE, Mental Health Centre Copenhagen, Copenhagen University Hospital, Mental Health Services Capital Region, Hellerup, Denmark
Camilla Jerlang Christiani
Affiliation:
Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark Copenhagen Research Center for Mental Health – CORE, Mental Health Centre Copenhagen, Copenhagen University Hospital, Mental Health Services Capital Region, Hellerup, Denmark
Aja Greve
Affiliation:
The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark Psychosis Research Unit, Aarhus University Hospital Psychiatry, Aarhus, Denmark
Ditte Gantriis
Affiliation:
The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark Psychosis Research Unit, Aarhus University Hospital Psychiatry, Aarhus, Denmark
Jens Richardt M. Jepsen
Affiliation:
Child and Adolescent Mental Health Centre, Mental Health Services Capital Region, Research Unit, Copenhagen University Hospital, Hellerup, Denmark The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark Copenhagen Research Center for Mental Health – CORE, Mental Health Centre Copenhagen, Copenhagen University Hospital, Mental Health Services Capital Region, Hellerup, Denmark Centre for Neuropsychiatric Schizophrenia Research & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Copenhagen University Hospital, Psychiatric Hospital Centre Glostrup, Glostrup, Denmark
Ole Mors
Affiliation:
The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark Psychosis Research Unit, Aarhus University Hospital Psychiatry, Aarhus, Denmark
Merete Nordentoft
Affiliation:
Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark Copenhagen Research Center for Mental Health – CORE, Mental Health Centre Copenhagen, Copenhagen University Hospital, Mental Health Services Capital Region, Hellerup, Denmark
Anne AE Thorup
Affiliation:
Child and Adolescent Mental Health Centre, Mental Health Services Capital Region, Research Unit, Copenhagen University Hospital, Hellerup, Denmark Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
Kerstin Jessica Plessen
Affiliation:
Child and Adolescent Mental Health Centre, Mental Health Services Capital Region, Research Unit, Copenhagen University Hospital, Hellerup, Denmark The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark Division of Child and Adolescent Psychiatry, Department of Psychiatry, University Medical Center, University of Lausanne, Lausanne, Switzerland
Signe Vangkilde
Affiliation:
Child and Adolescent Mental Health Centre, Mental Health Services Capital Region, Research Unit, Copenhagen University Hospital, Hellerup, Denmark Centre for Visual Cognition, Department of Psychology, University of Copenhagen, Copenhagen, Denmark
*
Author for Correspondence: Birgitte Klee Burton, PhD, Specialist in Child and Adolescent Psychiatry, Child and Adolescent Mental Health Centre, Mental Health Services Capital Region, Research Unit, Copenhagen University Hospital, Gentofte Hospitalsvej 3A, 1st floor, 2900 Hellerup, Denmark; E-mail: [email protected]

Abstract

The cognitive control system matures gradually with age and shows age-related sex differences. To gain knowledge concerning error adaptation in familial high-risk groups, investigating error adaptation among the offspring of parents with severe mental disorders is important and may contribute to the understanding of cognitive functioning in at-risk individuals. We identified an observational cohort through Danish registries and measured error adaptation using an Eriksen flanker paradigm. We tested 497 7-year-old children with a familial high risk of schizophrenia (N = 192) or bipolar disorder (N = 116) for deficits in error adaptation compared with a control group (N = 189). We investigated whether error adaptation differed between high-risk groups compared with controls and sex differences in the adaptation to errors, irrespective of high-risk status. Overall, children exhibited post-error slowing (PES), but the slowing of responses did not translate to significant improvements in accuracy. No differences were detected between either high-risk group compared with the controls. Boys showed less PES and PES after incongruent trials than girls. Our results suggest that familial high risk of severe mental disorders does not influence error adaptation at this early stage of cognitive control development. Error adaptation behavior at age 7 years shows specific sex differences.

Type
Regular Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahamse, E., Ruitenberg, M., Duthoo, W., Sabbe, B., Morrens, M., & Van Dijck, J. P. (2016). Conflict adaptation in schizophrenia: Reviewing past and previewing future efforts. Cognitive Neuropsychiatry, 21, 197212. doi:10.1080/13546805.2016.1167679CrossRefGoogle ScholarPubMed
Agnew-Blais, J., & Seidman, L. J. (2013). Neurocognition in youth and young adults under age 30 at familial risk for schizophrenia: A quantitative and qualitative review. Cognitive Neuropsychiatry, 18, 4482. doi:10.1080/13546805.2012.676309CrossRefGoogle Scholar
Alain, C., McNeely, H. E., He, Y., Christensen, B. K., & West, R. (2002). Neurophysiological evidence of error-monitoring deficits in patients with schizophrenia. Cerebral Cortex, 12, 840846. doi:10.1093/cercor/12.8.840CrossRefGoogle ScholarPubMed
Balogh, L., & Czobor, P. (2016). Post-error slowing in patients with ADHD: A meta-analysis. Journal of Attention Disorders, 20, 10041016. doi:10.1177/1087054714528043CrossRefGoogle ScholarPubMed
Bora, E., & Özerdem, A. (2017). A meta-analysis of neurocognition in youth with familial high risk for bipolar disorder. European Psychiatry, 44, 1723. doi:10.1016/j.eurpsy.2017.02.483CrossRefGoogle ScholarPubMed
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624652. doi:10.1037/0033-295x.108.3.624CrossRefGoogle ScholarPubMed
Burton, B. K., Hjorthoj, C., Jepsen, J. R., Thorup, A., Nordentoft, M., & Plessen, K. J. (2016). Research review: Do motor deficits during development represent an endophenotype for schizophrenia? A meta-analysis. Journal of Child Psychology and Psychiatry, 57, 446456. doi:10.1111/jcpp.12479CrossRefGoogle ScholarPubMed
Burton, B. K., Thorup, A. A. E., Jepsen, J. R., Poulsen, G., Ellersgaard, D., Spang, K. S., … Plessen, K. J. (2017). Impairments of motor function among children with a familial risk of schizophrenia or bipolar disorder at 7 years old in Denmark: An observational cohort study. Lancet Psychiatry, 4, 400408. doi:10.1016/S2215-0366(17)30103-7CrossRefGoogle ScholarPubMed
Burton, B. K., Vangkilde, S., Petersen, A., Skovgaard, L. T., Jepsen, J. R., Hemager, N., … Plessen, K. J. (2018). Sustained attention and interference control among 7-year-old children with a familial high risk of schizophrenia or bipolar disorder: A nationwide observational cohort study. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3, 704712. doi:10.1016/j.bpsc.2018.04.012Google ScholarPubMed
Carp, J., & Compton, R. J. (2009). Alpha power is influenced by performance errors. Psychophysiology, 46, 336343. doi:10.1111/j.1469-8986.2008.00773.xCrossRefGoogle ScholarPubMed
Carter, C. S., MacDonald, A. W., Ross, L. L., & Stenger, V. A. (2001). Anterior cingulate cortex activity and impaired self-monitoring of performance in patients with schizophrenia: An event-related fMRI study. The American Journal of Psychiatry, 158, 14231428. doi:10.1176/appi.ajp.158.9.1423CrossRefGoogle ScholarPubMed
Compton, R. J., Heaton, E., & Ozer, E. (2017). Intertrial interval duration affects error monitoring. Psychophysiology, 54, 11511162. doi:10.1111/psyp.12877CrossRefGoogle ScholarPubMed
Cornblatt, B., Obuchowski, M., Roberts, S., Pollack, S., & Erlenmeyer-Kimling, L. (1999). Cognitive and behavioral precursors of schizophrenia. Development and Psychopathology, 11, 487508. doi:10.1017/s0954579499002175CrossRefGoogle ScholarPubMed
Cragg, L. (2016). The development of stimulus and response interference control in midchildhood. Developmental Psychology, 52, 242252. doi:10.1037/dev0000074CrossRefGoogle ScholarPubMed
Danielmeier, C., & Ullsperger, M. (2011). Post-error adjustments. Frontiers in Psychology, 2, 233. doi:10.3389/fpsyg.2011.00233CrossRefGoogle ScholarPubMed
Davies, P. L., Segalowitz, S. J., & Gavin, W. J. (2004). Development of response-monitoring ERPs in 7- to 25-year-olds. Developmental Neuropsychology, 25, 355376. doi:10.1207/s15326942dn2503_6CrossRefGoogle ScholarPubMed
de la Serna, E., Sugranyes, G., Sanchez-Gistau, V., Rodriguez-Toscano, E., Baeza, I., Vila, M., … Castro-Fornieles, J. (2017). Neuropsychological characteristics of child and adolescent offspring of patients with schizophrenia or bipolar disorder. Schizophrenia Research, 183, 110115. doi:10.1016/j.schres.2016.11.007CrossRefGoogle ScholarPubMed
Desmurget, M., Grea, H., Grethe, J. S., Prablanc, C., Alexander, G. E., & Grafton, S. T. (2001). Functional anatomy of nonvisual feedback loops during reaching: A positron emission tomography study. The Journal of Neuroscience, 21, 29192928. doi:10.1523/JNEUROSCI.21-08-02919.2001CrossRefGoogle ScholarPubMed
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135168. doi:10.1146/annurev-psych-113011-143750CrossRefGoogle ScholarPubMed
Duffy, A. (2012). The nature of the association between childhood ADHD and the development of bipolar disorder: A review of prospective high-risk studies. The American Journal of Psychiatry, 169, 12471255. doi:10.1176/appi.ajp.2012.11111725CrossRefGoogle ScholarPubMed
Dupaul, G. J., Power, T. J., & Anastopoulos, A. (1998). ADHD rating scale-IV. New York, NY: Guilford Press.Google Scholar
Dutilh, G., Ravenzwaaij, D., Nieuwenhuis, S., Van Der Mass, H. L. J., Forstmann, B. U., & Wagenmarkers, E. J. (2012). How to measure post-error slowing: A confound and a simple solution. Journal of Mathematical Psychology, 56, 208216. doi:10.1016/j.jmp.2012.04.001CrossRefGoogle Scholar
Eichele, H., Eichele, T., Marquardt, L., Adolfsdottir, S., Hugdahl, K., Sorensen, L., & Plessen, K. J. (2017). Development of performance and ERPs in a flanker task in children and adolescents with Tourette syndrome: A follow-up study. Frontiers in Neuroscience, 11, 305. doi:10.3389/fnins.2017.00305CrossRefGoogle Scholar
Ellersgaard, D., Jessica Plessen, K., Richardt Jepsen, J., Soeborg Spang, K., Hemager, N., Klee Burton, B., … Elgaard Thorup, A. A. (2018). Psychopathology in 7-year-old children with familial high risk of developing schizophrenia spectrum psychosis or bipolar disorder: The Danish high risk and resilience study – VIA 7, a population-based cohort study. World Psychiatry, 17, 210219. doi:10.1002/wps.20527CrossRefGoogle ScholarPubMed
Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon identification of a target letter in a nonsearch task. Perception and Psychophysics, 16, 143149. doi:10.3758/bf03203267CrossRefGoogle Scholar
Fischer, A. G., Danielmeier, C., Villringer, A., Klein, T. A., & Ullsperger, M. (2016). Gender influences on brain responses to errors and post-error adjustments. Scientific Reports, 6, 24435. doi:10.1038/srep24435CrossRefGoogle ScholarPubMed
Giedd, J. N., Castellanos, F. X., Rajapakse, J. C., Vaituzis, A. C., & Rapoport, J. L. (1997). Sexual dimorphism of the developing human brain. Progress in Neuropsychopharmacology and Biological Psychiatry, 21, 11851201. doi:10.1016/s0278-5846(97)00158-9CrossRefGoogle ScholarPubMed
Giedd, J. N., Raznahan, A., Mills, K. L., & Lenroot, R. K. (2012). Review: Magnetic resonance imaging of male/female differences in human adolescent brain anatomy. Biology of Sex Differences, 3, 19. doi:10.1186/2042-6410-3-19CrossRefGoogle ScholarPubMed
Gogos, A., Ney, L. J., Seymour, N., Van Rheenen, T. E., & Felmingham, K. L. (2019). Sex differences in schizophrenia, bipolar disorder, and post-traumatic stress disorder: Are gonadal hormones the link? British Journal of Pharmacology, 176, 41194135. doi:10.1111/bph.14584CrossRefGoogle ScholarPubMed
Grabowska, A. (2017). Sex on the brain: Are gender-dependent structural and functional differences associated with behavior? Journal of Neuroscience Research, 95, 200212. doi:10.1002/jnr.23953CrossRefGoogle ScholarPubMed
Gur, R. C., Turetsky, B. I., Matsui, M., Yan, M., Bilker, W., Hughett, P., & Gur, R. E. (1999). Sex differences in brain gray and white matter in healthy young adults: Correlations with cognitive performance. The Journal of Neuroscience, 19, 40654072. doi:10.1523/JNEUROSCI.19-10-04065.1999CrossRefGoogle ScholarPubMed
Hajcak, G., McDonald, N., & Simons, R. F. (2003). To err is autonomic: Error-related brain potentials, ANS activity, and post-error compensatory behavior. Psychophysiology, 40, 895903. doi:10.1111/1469-8986.00107CrossRefGoogle ScholarPubMed
Hemager, N., Plessen, K. J., Thorup, A., Christiani, C., Ellersgaard, D., Spang, K. S., … Jepsen, J. R. M. (2018). Assessment of neurocognitive functions in 7-year-old children at familial high risk for schizophrenia or bipolar disorder: The Danish high risk and resilience study VIA 7. JAMA Psychiatry, 75, 844852. doi:10.1001/jamapsychiatry.2018.1415CrossRefGoogle ScholarPubMed
Hemager, N., Vangkilde, S., Thorup, A., Christiani, C., Ellersgaard, D., Spang, K. S., … Plessen, K. J. (2019). Visual attention in 7-year-old children at familial high risk of schizophrenia or bipolar disorder: The Danish high risk and resilience study VIA 7. Journal of Affective Disorders, 258, 5665. doi:10.1016/j.jad.2019.07.079CrossRefGoogle ScholarPubMed
Henderson, S., Sugden, D., & Barnett, A. (2007). The movement assessment battery for children. London: The Psychological Corporation.Google Scholar
Jentzsch, I., & Dudschig, C. (2009). Why do we slow down after an error? Mechanisms underlying the effects of posterror slowing. Quarterly Journal Experimental Psychology, 62, 209218. doi:10.1080/17470210802240655CrossRefGoogle ScholarPubMed
Kaczkurkin, A. N., Raznahan, A., & Satterthwaite, T. D. (2019). Sex differences in the developing brain: Insights from multimodal neuroimaging. Neuropsychopharmacology, 44, 7185. doi:10.1038/s41386-018-0111-zCrossRefGoogle ScholarPubMed
Kerns, J. G., Cohen, J. D., MacDonald, A. W., Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303, 10231026. doi:10.1126/science.1089910CrossRefGoogle ScholarPubMed
Kerns, J. G., Cohen, J. D., MacDonald, A. W., Johnson, M. K., Stenger, V. A., Aizenstein, H., & Carter, C. S. (2005). Decreased conflict- and error-related activity in the anterior cingulate cortex in subjects with schizophrenia. The American Journal of Psychiatry, 162, 18331839. doi:10.1176/appi.ajp.162.10.1833CrossRefGoogle ScholarPubMed
Ladouceur, C. D., Dahl, R. E., & Carter, C. S. (2007). Development of action monitoring through adolescence into adulthood: ERP and source localization. Developmental Science, 10, 874891. doi:10.1111/j.1467-7687.2007.00639.xCrossRefGoogle ScholarPubMed
Larson, M. J., South, M., & Clayson, P. E. (2011). Sex differences in error-related performance monitoring. Neuroreport, 22, 4448. doi:10.1097/WNR.0b013e3283427403CrossRefGoogle ScholarPubMed
Laurens, K. R., Ngan, E. T., Bates, A. T., Kiehl, K. A., & Liddle, P. F. (2003). Rostral anterior cingulate cortex dysfunction during error processing in schizophrenia. Brain, 126, 610622. doi:10.1093/brain/awg056CrossRefGoogle ScholarPubMed
Lenroot, R. K., Gogtay, N., Greenstein, D. K., Wells, E. M., Wallace, G. L., Clasen, L. S., … Giedd, J. N. (2007). Sexual dimorphism of brain developmental trajectories during childhood and adolescence. Neuroimage, 36, 10651073. doi:10.1016/j.neuroimage.2007.03.053CrossRefGoogle ScholarPubMed
Makransky, G., & Bilenberg, N. (2014). Psychometric properties of the parent and teacher ADHD rating scale (ADHD-RS): Measurement invariance across gender, age, and informant. Assessment, 21, 694705. doi:10.1177/1073191114535242CrossRefGoogle ScholarPubMed
Marco-Pallares, J., Camara, E., Munte, T. F., & Rodriguez-Fornells, A. (2008). Neural mechanisms underlying adaptive actions after slips. Journal of Cognitive Neuroscience, 20, 15951610. doi:10.1162/jocn.2008.20117CrossRefGoogle ScholarPubMed
Mathalon, D. H., Fedor, M., Faustman, W. O., Gray, M., Askari, N., & Ford, J. M. (2002). Response-monitoring dysfunction in schizophrenia: An event-related brain potential study. Journal of Abnormal Psychology, 111, 2241. doi:10.1037//0021-843X.111.1.22CrossRefGoogle ScholarPubMed
McCarthy, M. M., Nugent, B. M., & Lenz, K. M. (2017). Neuroimmunology and neuroepigenetics in the establishment of sex differences in the brain. Nature Reviews Neuroscience, 18, 471484. doi:10.1038/nrn.2017.61CrossRefGoogle ScholarPubMed
Mors, O., Perto, G. P., & Mortensen, P. B. (2011). The Danish psychiatric central research register. Scandinavian Journal of Public Health, 39, 5457. doi:10.1177/1403494810395825CrossRefGoogle ScholarPubMed
Murray, R. M., & Lewis, S. W. (1987). Is schizophrenia a neurodevelopmental disorder? British Medical Journal, 295, 681682. doi:10.1136/bmj.295.6600.681CrossRefGoogle ScholarPubMed
Niendam, T. A., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D. C., & Carter, C. S. (2012). Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cognitive, Affective, & Behavioral Neuroscience, 12, 241268. doi:10.3758/s13415-011-0083-5CrossRefGoogle ScholarPubMed
Notebaert, W., Houtman, F., Opstal, F. V., Gevers, W., Fias, W., & Verguts, T. (2009). Post-error slowing: An orienting account. Cognition, 111, 275279. doi:10.1016/j.cognition.2009.02.002CrossRefGoogle ScholarPubMed
Overbye, K., Walhovd, K. B., Paus, T., Fjell, A. M., Huster, R. J., & Tamnes, C. K. (2019). Error processing in the adolescent brain: Age-related differences in electrophysiology, behavioral adaptation, and brain morphology. Developmental Cognitive Neuroscience, 38, 100665. doi:10.1016/j.dcn.2019.100665CrossRefGoogle ScholarPubMed
Patino, L. R., Adler, C. M., Mills, N. P., Strakowski, S. M., Fleck, D. E., Welge, J. A., & Delbello, M. P. (2013). Conflict monitoring and adaptation in individuals at familial risk for developing bipolar disorder. Bipolar Disorders, 15, 264271. doi:10.1111/bdi.12059CrossRefGoogle ScholarPubMed
Pedersen, C. B., Gotzsche, H., Moller, J. O., & Mortensen, P. B. (2006). The Danish civil registration system. A cohort of eight million persons. Danish Medical Journal, 53, 441449. doi:10.3109/17453674.2016.1151122Google ScholarPubMed
Perez, V. B., Ford, J. M., Roach, B. J., Woods, S. W., McGlashan, T. H., Srihari, V. H., … Mathalon, D. H. (2012). Error monitoring dysfunction across the illness course of schizophrenia. Journal of Abnormal Psychology, 121, 372387. doi:10.1037/a0025487CrossRefGoogle ScholarPubMed
Plessen, K. J., Allen, E. A., Eichele, H., Van, W. H., Hovik, M. F., Sorensen, L., … Eichele, T. (2015). Reduced error signalling in medication-naive children with ADHD: Associations with behavioural variability and post-error adaptations. Journal of Psychiatry and Neuroscience, 40, 140353. doi:10.1503/jpn.140353Google Scholar
Polli, F. E., Barton, J. J., Vangel, M., Goff, D. C., Iguchi, L., & Manoach, D. S. (2006). Schizophrenia patients show intact immediate error-related performance adjustments on an antisaccade task. Schizophrenia Research, 82, 191201. doi:10.1016/j.schres.2005.10.003CrossRefGoogle Scholar
Purcell, B. A., & Kiani, R. (2016). Neural mechanisms of post-error adjustments of decision policy in parietal cortex. Neuron, 89, 658671. doi:10.1016/j.neuron.2015.12.027CrossRefGoogle ScholarPubMed
Rabbitt, P. M. (1966). Error correction time without external error signals. Nature, 212, 438. doi:10.1038/212438a0CrossRefGoogle ScholarPubMed
Rabbitt, P. M. (1968). Three kinds of error-signalling responses in a serial choice task. Quarterly Journal of Experimental Psychology, 20, 179188. doi:10.1080/14640746808400146CrossRefGoogle Scholar
Rasic, D., Hajek, T., Alda, M., & Uher, R. (2014). Risk of mental illness in offspring of parents with schizophrenia, bipolar disorder, and major depressive disorder: A meta-analysis of family high-risk studies. Schizophrenia Bulletin, 40, 2838. doi:10.1093/schbul/sbt114CrossRefGoogle ScholarPubMed
Reichenberg, A., Caspi, A., Harrington, H., Houts, R., Keefe, R., & Caspi, A. A. (2010). Static and dynamic cognitive deficits in childhood schizophrenia: A 30-year study. The American Journal of Psychiatry, 167, 160169. doi:10.1176/appi.ajp.2009.09040574CrossRefGoogle ScholarPubMed
Ruigrok, A. N., Salimi-Khorshidi, G., Lai, M. C., Baron-Cohen, S., Lombardo, M. V., Tait, R. J., & Suckling, J. (2014). A meta-analysis of sex differences in human brain structure. Neuroscience & Biobehavioral Reviews, 39, 3450. doi:10.1016/j.neubiorev.2013.12.004CrossRefGoogle ScholarPubMed
Sambataro, F., Mattay, V. S., Thurin, K., Safrin, M., Rasetti, R., Blasi, G., … Weinberger, D. R. (2013). Altered cerebral response during cognitive control: A potential indicator of genetic liability for schizophrenia. Neuropsychopharmacology, 38, 846853. doi:10.1038/npp.2012.250CrossRefGoogle ScholarPubMed
Saunders, K. E., Goodwin, G. M., & Rogers, R. D. (2016). Borderline personality disorder, but not euthymic bipolar I disorder, is associated with prolonged post-error slowing in sensorimotor performance. Journal of Affective Disorders, 198, 163170. doi:10.1521/pedi_2015_29_216CrossRefGoogle Scholar
Shaffer, D., Gould, M. S., Brasic, J., Ambrosini, P., Fisher, P., Bird, H., & Aluwahlia, S. (1983). A children's global assessment scale (CGAS). Archives of General Psychiatry, 40, 12281231. doi:10.1001/archpsyc.1983.01790100074010CrossRefGoogle ScholarPubMed
Sugranyes, G., De La Serna, E., Borras, R., Sanchez-Gistau, V., Pariente, J. C., Romero, S., … Castro-Fornieles, J. (2017). Clinical, cognitive, and neuroimaging evidence of a neurodevelopmental continuum in offspring of probands with schizophrenia and bipolar disorder. Schizophrenia Bulletin, 43, 12081219. doi:10.1093/schbul/sbx002CrossRefGoogle ScholarPubMed
Tamnes, C. K., Walhovd, K. B., Torstveit, M., Sells, V. T., & Fjell, A. M. (2013). Performance monitoring in children and adolescents: A review of developmental changes in the error-related negativity and brain maturation. Developmental Cognitive Neuroscience, 6, 113. doi:10.1016/j.dcn.2013.05.001CrossRefGoogle ScholarPubMed
Taylor, S. F., Stern, E. R., & Gehring, W. J. (2007). Neural systems for error monitoring: Recent findings and theoretical perspectives. Neuroscientist, 13, 160172. doi:10.1177/1073858406298184CrossRefGoogle ScholarPubMed
Thakkar, K. N., Congdon, E., Poldrack, R. A., Sabb, F. W., London, E. D., Cannon, T. D., & Bilder, R. M. (2014). Women are more sensitive than men to prior trial events on the stop-signal task. British Journal of Psychology, 105, 254272. doi:10.1111/bjop.12034CrossRefGoogle ScholarPubMed
Thorup, A. A., Jepsen, J. R., Ellersgaard, D. V., Burton, B. K., Christiani, C. J., Hemager, N., … Nordentoft, M. (2015). The Danish high risk and resilience study – VIA 7 – a cohort study of 520 7-year-old children born of parents diagnosed with either schizophrenia, bipolar disorder or neither of these two mental disorders. BMC Psychiatry, 15, 233. doi:10.1186/s12888-015-0616-5CrossRefGoogle ScholarPubMed
Ullsperger, M. (2006). Performance monitoring in neurological and psychiatric patients. International Journal of Psychophysiology, 59, 5969. doi:10.1016/j.ijpsycho.2005.06.010CrossRefGoogle ScholarPubMed
Ullsperger, M., & Danielmeier, C. (2016). Reducing speed and sight: How adaptive is post-error slowing? Neuron, 89, 430432. doi:10.1016/j.neuron.2016.01.035CrossRefGoogle ScholarPubMed
Ullsperger, M., Danielmeier, C., & Jocham, G. (2014). Neurophysiology of performance monitoring and adaptive behavior. Physiological Reviews, 94, 3579. doi:10.1152/physrev.00041.2012CrossRefGoogle ScholarPubMed
Ullsperger, M., Harsay, H. A., Wessel, J. R., & Ridderinkhof, K. R. (2010). Conscious perception of errors and its relation to the anterior insula. Brain Structure and Function, 214, 629643. doi:10.1007/s00429-010-0261-1CrossRefGoogle Scholar
Van De Voorde, S., Roeyers, H., & Wiersema, J. R. (2010). Error monitoring in children with ADHD or reading disorder: An event-related potential study. Biological Psychology, 84, 176185. doi:10.1016/j.biopsycho.2010.01.011CrossRefGoogle ScholarPubMed
van Meel, C. S., Heslenfeld, D. J., Rommelse, N. N., Oosterlaan, J., & Sergeant, J. A. (2012). Developmental trajectories of neural mechanisms supporting conflict and error processing in middle childhood. Developmental Neuropsychology, 37, 358378. doi:10.1080/87565641.2011.653062CrossRefGoogle ScholarPubMed
van Veen, V., & Carter, C. S. (2006). Error detection, correction, and prevention in the brain: A brief review of data and theories. Clinical EEG Neuroscience, 37, 330335. doi:10.1177/155005940603700411CrossRefGoogle Scholar
Weinberger, D. R. (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry, 44, 660669. doi:10.1001/archpsyc.1987.01800190080012CrossRefGoogle ScholarPubMed
Wessel, J. R. (2018). An adaptive orienting theory of error processing. Psychophysiology, 55, e13041. doi:10.1111/psyp.13041CrossRefGoogle ScholarPubMed
Wierenga, L. M., Sexton, J. A., Laake, P., Giedd, J. N., & Tamnes, C. K. (2018). A key characteristic of sex differences in the developing brain: Greater variability in brain structure of boys than girls. Cerebral Cortex, 28, 27412751. doi:10.1093/cercor/bhx154CrossRefGoogle ScholarPubMed