Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-22T18:06:43.388Z Has data issue: false hasContentIssue false

A neuroscience perspective on sexual risk behavior in adolescence and emerging adulthood

Published online by Cambridge University Press:  27 November 2015

Elizabeth C. Victor*
Affiliation:
Duke University
Ahmad R. Hariri
Affiliation:
Duke University
*
Address correspondence and reprint requests to: Elizabeth Victor, Department of Psychology & Neuroscience, 417 Chapel Drive Box 90086, Duke University, Durham, NC 27708-0086; E-mail: [email protected].

Abstract

Late adolescence and emerging adulthood (specifically ages 15–24) represent a period of heightened sexual risk taking resulting in the greatest annual rates of sexually transmitted infections and unplanned pregnancies in the US population. Ongoing efforts to prevent such negative consequences are likely to benefit from a deepening of our understanding of biological mechanisms through which sexual risk taking emerges and biases decision making during this critical window. Here we present a neuroscience framework from which a mechanistic examination of sexual risk taking can be advanced. Specifically, we adapt the neurodevelopmental triadic model, which outlines how motivated behavior is governed by three systems: approach, avoidance, and regulation, to sexual decision making and subsequent risk behavior. We further propose a testable hypothesis of the triadic model, wherein relatively decreased threat-related amygdala reactivity and increased reward-related ventral striatum reactivity leads to sexual risk taking, which is particularly exaggerated during adolescence and young adulthood when there is an overexpression of dopaminergic neurons coupled with immature top-down prefrontal cortex regulation. We conclude by discussing how future research based on our adapted triadic model can inform ongoing efforts to improve intervention and prevention efforts.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aalsma, M. C., Woodrome, S. E., Downs, S. M., Hensel, D. J., Zimet, G. D., & Fortenberry, J. D. (2013). Developmental trajectories of religiosity, sexual conservatism and sexual behavior among female adolescents. Journal of Adolescence, 36, 11931204.CrossRefGoogle ScholarPubMed
Abbey, A., Saenz, C., & Buck, P. O. (2005). The cumulative effects of acute alcohol consumption, individual differences and situational perceptions on sexual decision making. Journal of Studies on Alcohol, 66, 8290.Google Scholar
Adleman, N. (2002). A developmental fMRI study of the stroop color-word task. NeuroImage, 16, 6175.Google Scholar
Aharon, I., Etcoff, N., Ariely, D., Chabris, C. F., O'Connor, E., & Breiter, H. C. (2001). Beautiful faces have variable reward value: fMRI and behavioral evidence. Neuron, 32, 537551.Google Scholar
Albert, D., Chein, J., & Steinberg, L. (2013). The teenage brain peer influences on adolescent decision making. Current Directions in Psychological Science, 22, 114120.Google Scholar
Andersen, S. L., Dumont, N. L., & Teicher, M. H. (1997). Developmental differences in dopamine synthesis inhibition by (+)-7-OH-DPAT. Naunyn-Schmiedeberg's Archives of Pharmacology, 356, 173181.Google Scholar
Andersen, S. L., Thompson, A. P., Krenzel, E., & Teicher, M. H. (2002). Pubertal changes in gonadal hormones do not underlie adolescent dopamine receptor overproduction. Psychoneuroendocrinology, 27, 683691.CrossRefGoogle Scholar
Ariely, D., & Loewenstein, G. (2006). The heat of the moment: The effect of sexual arousal on sexual decision making. Journal of Behavioral Decision Making, 19, 8798.Google Scholar
Bancroft, J., Janssen, E., Carnes, L., Strong, D. A., Goodrich, D., & Long, J. S. (2004). Sexual activity and risk taking in young heterosexual men: The relevance of personality factors. Journal of Sex Research, 41, 181192.Google Scholar
Beauregard, M., Levesque, J., & Bourgouin, P. (2001). Neural correlates of conscious self-regulation of emotion. Journal of Neuroscience, 21, 16.Google Scholar
Belova, M. A., Paton, J. J., & Salzman, C. (2008). Moment to moment tracking of state value in the amygdala. Journal of Neuroscience, 28, 1002310030.Google Scholar
Benes, F. M., Taylor, J. B., & Cunningham, M. C. (2000). Convergence and plasticity of monoaminergic systems in the medial prefrontal cortex during the postnatal period: Implications for the development of psychopathology. Cerebral Cortex, 10, 10141027.Google Scholar
Berkman, E. T., & Falk, E. B. (2013). Beyond brain mapping: Using neural measures to predict real-world outcomes. Current Directions in Psychological Sciences, 22, 4550.Google Scholar
Berkman, E. T., Falk, E. B., & Lieberman, M. D. (2011). In the trenches of real-world self-control: Neural correlates of breaking the link between craving and smoking. Psychological Science, 22, 498506.Google Scholar
Berridge, K. C. (1996). Food reward: Brain substrates of wanting and liking. Neuroscience & Biobehavioral Reviews, 20, 125.CrossRefGoogle ScholarPubMed
Bjork, J. M., Knutson, B., Fong, G. W., Caggiano, D. M., Bennett, S. M., & Hommer, D. W. (2004). Incentive-elicited brain activation in adolescents: Similarities and differences from young adults. Journal of Neuroscience, 24, 17931802.CrossRefGoogle ScholarPubMed
Bjork, J. M., Lynne-Landsman, S. D., Sirocco, K., & Boyce, C. A. (2012). Brain maturation and risk behavior: The promise and the challenges of neuroimaging-based accounts. Child Development Perspectives, 6, 385391.Google Scholar
Bjork, J. M., Smith, A. R., Chen, G., & Hommer, D. W. (2010). Adolescents, adults and rewards: Comparing motivational neurocircuitry recruitment using fMRI. PLOS ONE, 5, e11440.Google Scholar
Bjorklund, A., & Dunnett, S. B. (2007). Dopamine neuron systems in the brain: An update. Trends in Neuroscience, 7, 194202.Google Scholar
Blakemore, S. J. (2008). The social brain in adolescence. Nature Reviews Neuroscience, 9, 267277.CrossRefGoogle ScholarPubMed
Blakemore, S. J., Burnett, S., & Dahl, R. E. (2010). The role of puberty in the developing adolescent brain. Human Brain Mapping, 31, 926933.Google Scholar
Blakemore, S. J., & Robbins, T. W. (2012). Decision-making in the adolescent brain. Nature Neuroscience, 15, 11841191.Google Scholar
Blanton, H., & Gerrard, M. (1997). Effect of sexual motivation on men's risk perception for sexually transmitted disease: There must be 50 ways to justify a lover. Health Psychology, 16, 374379.CrossRefGoogle ScholarPubMed
Carter, C. S. (2003). Developmental consequences of oxytocin. Physiology & Behavior, 79, 383397.Google Scholar
Carter, C. S., & van Veen, V. (2007). Anterior cingulate cortex and conflict detection: An update of theory and data. Cognitive, Affective, and Behavioral Neuroscience, 7, 367379.Google Scholar
Cascio, C. N., Carp, J., O'Donnell, M. B., Tinney, F. J., Bingham, C. R., Shope, J. T., et al. (2014). Buffering social influence: Neural correlates of response inhibition predict driving safety in the presence of a peer. Journal of Cognitive Neuroscience, 27, 8395.Google Scholar
Casey, B., Trainor, R. J., Orendi, J. L., Schubert, A. B., Nystrom, L. E., Giedd, J. N., et al. (1997). A developmental functional MRI study of prefrontal activation during performance of a go-no-go task. Journal of Cognitive Neuroscience, 9, 835847.CrossRefGoogle ScholarPubMed
Casey, B. J., Galvan, A., & Hare, T. A. (2005). Changes in cerebral functional organization during cognitive development. Current Opinion in Neurobiology, 15, 239244. doi:10.1016/j.conb.2005.03.012 Google Scholar
Casey, B. J., Getz, S., & Galvan, A. (2008). The adolescent brain. Developmental Review, 28, 6277.Google Scholar
Casey, B. J., Jones, R. M., & Hare, T. (2008). The adolescent brain. Annals of the New York Academy of Sciences, 1124, 111126.Google Scholar
Casey, B. J., Jones, R. M., & Somerville, L. H. (2011). Braking and accelerating of the adolescent brain. Journal of Research on Adolescence, 21, 2133.Google Scholar
Casey, B. J., Thomas, K. M., Davidson, M. C., Kunz, K., & Franzen, P. L. (2002). Dissociating striatal and hippocampal function developmentally with a stimulus–response compatibility task. Journal of Neuroscience, 22, 86478652.Google Scholar
Casey, B. J., Tottenham, N., & Fossella, J. (2002). Clinical, imaging, lesion, and genetic approaches toward a model of cognitive control. Developmental Psychobiology, 40, 237254.CrossRefGoogle Scholar
Centers for Disease Control and Prevention. (2012). HIV surveillance report. Retrieved January 4, 2013, from http://www.cdc.gov/hiv/surveillance/resources/reports/2010report/pdf/2010_HIV_Surveillance_Report_vol_22.pdf#Page=7 Google Scholar
Chambers, R. A., & Potenza, M. N. (2003). Neurodevelopment, impulsivity, and adolescent gambling. Journal of Gambling Studies, 19, 5384.Google Scholar
Chambers, R. A., Taylor, J. R., & Potenza, M. N. (2003). Developmental neurocircuitry of motivation in adolescence: A critical period of addiction vulnerability. American Journal of Psychiatry, 160, 10411052.Google Scholar
Chein, J., Albert, D., O'Brien, L., Uckert, K., & Steinberg, L. (2011). Peers increase adolescent risk taking by enhancing activity in the brain's reward circuitry. Developmental Science, 14, 110.Google Scholar
Chikazoe, J., Konishi, S., Asari, T., Jimura, K., & Miyashita, Y. (2007). Activation of right inferior frontal gyrus during response inhibition across response modalities. Journal of Cognitive Neuroscience, 19, 6980.Google Scholar
Christakou, A., Brammer, M., & Rubia, K. (2011). Maturation of limbic corticostriatal activation and connectivity associated with developmental changes in temporal discounting. NeuroImage, 54, 13441354.Google Scholar
Chua, H. F., Ho, S. S., Jasinska, A. J., Polk, T. A., Welsh, R. C., Liberzon, I., et al. (2011). Self-related neural response to tailored smoking-cessation messages predicts quitting. Nature Neuroscience, 14, 426427.CrossRefGoogle ScholarPubMed
Clark, L., Bechara, A., Damasio, H., Aitken, M. R., Sahakian, B. J., & Robbins, T. W. (2008). Differential effects of insular and ventromedial prefrontal cortex lesions on risky decision-making. Brain, 131, 13111322.Google Scholar
Clift, S. M., Wilkins, J. C., & Davidson, E. A. F. (1993). Impulsiveness, venturesomeness and sexual risk-taking among heterosexual GUM clinic attenders. Personality and Individual Differences, 15, 403410.Google Scholar
Cloutier, J., Heatherton, T. F., Whalen, P. J., & Kelley, W. M. (2008). Are attractive people rewarding? Sex differences in the neural substrates of facial attractiveness. Journal of Cognitive Neuroscience, 20, 941951.CrossRefGoogle ScholarPubMed
Cohen, J. R., Asarnow, R. F., Sabb, F. W., Bilder, R. M., Bookheimer, S. Y., Knowlton, B. J., et al. (2010). A unique adolescent response to reward prediction errors. Nature Neuroscience, 13, 669671. doi:10.1111/j.0963-7214.2006.00385.x Google Scholar
Coley, R. L., Lombardi, C. M., Lynch, A. D., Mahalik, J. R., & Sims, J. (2013). Sexual partner accumulation from adolescence through early adulthood: The role of family, peer, and school social norms. Journal of Adolescent Health, 53, 9197.Google Scholar
Cools, R., Sheridan, M., Jacobs, E., & D'Esposito, M. (2007). Impulsive personality predicts dopamine-dependent changes in frontostriatal activity during component processes of working memory. Journal of Neuroscience, 27, 55065514.Google Scholar
Costumero, V., Barros-Loscertales, A., Bustamante, J. C., Ventura-Campos, N., Fuentes, P., Rosell-Negre, P., et al. (2013). Reward sensitivity is associated with brain activity during erotic stimulus processing. PLOS ONE, 8, 19.CrossRefGoogle ScholarPubMed
Coulter, C. L., Happe, H. K., & Murrin, L. C. (1996). Postnatal development of the dopamine transporter: A quantitative autoradiographic study. Developmental Brain Research, 92, 172181.Google Scholar
Crone, E. A., & Dahl, R. E. (2012). Understanding adolescence as a period of social–affective engagement and goal flexibility. Nature Reviews Neuroscience, 13, 636650.Google Scholar
Crone, E. A., Zanolie, K., Van Leijenhorst, L., Westenberg, P. M., & Rombouts, S. A. (2008). Neural mechanisms supporting flexible performance adjustment during development. Cognitive, Affective, and Behavioral Neuroscience, 8, 165177.Google Scholar
Cservenka, A., Herting, M. M., Mackiewicz, S., Hudson, K. A., & Nagel, B. J. (2013). High and low sensation seeking adolescents show distinct patterns of brain activity during reward processing. NeuroImage, 66, 184193.Google Scholar
Davis, F. C., Knodt, A. R., Sporns, O., Lahey, B. B., Zald, D. H., Brigidi, B. D., et al. (2013). Impulsivity and the modular organization of resting-state neural networks. Cerebral Cortex, 23, 14441452.Google Scholar
Deckel, A. W., & Hesselbrock, V. (1996). Behavioral and cognitive measurements predict scores on the MAST: A 3-year prospective study. Alcoholism: Clinical and Experimental Research, 20, 11731178.Google Scholar
Deckman, T., & DeWall, C. (2011). Negative urgency and risky sexual behaviors: A clarification of the relationship between impulsivity and risky sexual behavior. Personality and Individual Differences, 51, 674678. doi.org/10.1016/j.paid.2011.06.004 Google Scholar
Demos, K. E., Heatherton, T. F., & Kelley, W. (2012). Individual differences in nucleus accumbens activity to food and sexual images predict weight gain and sexual behavior. Journal of Neuroscience, 32, 55495552.Google Scholar
Depue, R. A., & Collins, P. F. (1999). Neurobiology of the structure of personality: Dopamine, facilitation of incentive motivation, and extraversion. Behavioral and Brain Sciences, 22, 491517.Google Scholar
Di Martino, A., Scheres, A., Margulies, D. S., Kelly, A. M., Uddin, L. Q., Shehzad, Z., et al. (2008). Functional connectivity of human striatum: A resting state FMRI study. Cerebral Cortex, 18, 27352747.Google Scholar
Dreher, J. C., Kohn, P., Kolachana, B., Weinberger, D. R., & Berman, K. F. (2009). Variation in dopamine genes influences responsivity of the human reward system. Proceedings of the National Academy of Science, 106, 617622.Google Scholar
Durston, S., Davidson, M. C., Tottenham, N., Galvan, A., Spicer, J., Fossella, J. A., et al. (2006). A shift from diffuse to focal cortical activity with development. Developmental Science, 9, 120.Google Scholar
Eaton, D. K., Kann, L., Kinchen, S., Shanklin, S., Ross, J., Hawkins, J., et al. (2008, June 6). Youth risk behavior surveillance—United States, 2007 (surveillance summaries). Morbidity and Mortality Weekly Report, 57(SS-4), 1136.Google Scholar
Eisenegger, C., Haushofer, J., & Fehr, E. (2010). The role of testosterone in social interaction. Trends in Cognitive Science, 15, 263271.Google Scholar
Eldreth, D., Hardin, M. G., Pavletic, N., & Ernst, M. (2013). Adolescent transformations of behavioral and neural processes as potential targets for prevention. Prevention Science, 14, 257266.Google Scholar
Eley, T. C., Lichtenstein, P., & Moffitt, T. E. (2003). A longitudinal behavioral genetic analysis of the etiology of aggressive and nonaggressive antisocial behavior. Development and Psychopathology, 15, 383402.Google Scholar
Ernst, M., & Fudge, J. L. (2009). A developmental neurobiological model of motivated behavior: Anatomy, connectivity and ontogeny of the triadic nodes. Neuroscience & Biobehavioral Reviews, 33, 367382.CrossRefGoogle ScholarPubMed
Ernst, M., Nelson, E. E., Jazbec, S., McClure, E. B., Monk, C. S., Leibenluft, E., et al. (2005). Amygdala and nucleus accumbens in responses to receipt and omission of gains in adults and adolescents. NeuroImage, 25, 12791291.CrossRefGoogle ScholarPubMed
Ernst, M., & Paulus, M. P. (2005). Neurobiology of decision-making: A selective review from a neurocognitive and clinical perspective. Biological Psychiatry, 58, 597604.Google Scholar
Ernst, M., Pine, D. S., & Hardin, M. (2006). Triadic model of the neurobiology of motivated behavior in adolescence. Psychological Medicine, 36, 299312.Google Scholar
Ernst, M., Romeo, R. D., & Andersen, S. L. (2009). Neurobiology of the development of motivated behaviors in adolescence: A window into a neural systems model. Pharmacology Biochemistry and Behavior, 93, 199211.Google Scholar
Eshel, N., Nelson, E. E., Blair, R. J., Pine, D. S., & Ernst, M. (2007). Neural substrates of choice selection in adults and adolescents: Development of the ventrolateral prefrontal and anterior cingulate cortices. Neuropsychologia, 45, 12701279.CrossRefGoogle ScholarPubMed
Fair, D. A., Cohen, A. L., Power, J. D., Dosenbach, N. U., Church, J. A., Miezin, F. M., et al. (2009). Functional brain networks develop from a “local to distributed” organization. PLOS Computational Biology, 5, e1000381.Google Scholar
Falk, E. B., Cascio, C. N., O'Donnell, M. B., Carp, J., Tinney, F. J. Jr., Bingham, C. R., et al. (2014). Neural responses to exclusion predict susceptibility to social influence. Journal of Adolescent Health, 54, S22S31.Google Scholar
Fareri, D. S., Martin, L. N., & Delgado, M. R. (2008). Reward-related processing in the human brain: Developmental considerations. Development and Psychopathology, 20, 11911211.Google Scholar
Farris, C., Akers, A. Y., Downs, J. S., & Forbes, E. E. (2013). Translational research applications for the study of adolescent sexual decision-making. Clinical and Translational Science, 6, 7881.Google Scholar
Figner, B., Mackinlay, R. J., Wilkening, F., & Weber, E. U. (2009). Affective and deliberative processes in risky choice: Age differences in risk taking in the Columbia Card Task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 709730.Google Scholar
Fink, B., & Penton-Voak, I. (2002). Evolutionary psychology of facial attractiveness. Current Directions in Psychological Science, 11, 154158.Google Scholar
Fischhoff, B. (2008). Assessing adolescent decision-making competence. Developmental Review, 28, 1228.Google Scholar
Forbes, E. E., Ryan, N. D., Phillips, M. L., Manuck, S., Worthman, C. M., Moyles, D. L., et al. (2010). Healthy adolescents' neural response to reward: Associations with puberty, positive affect, and depressive symptoms. Journal of the American Academy of Child & Adolescent Psychiatry, 49, 162172.Google ScholarPubMed
Galvan, A. (2013). The teenage brain: Sensitivity to rewards. Current Directions in Psychological Sciences, 22, 8893.CrossRefGoogle Scholar
Galvan, A., Hare, T. A., Parra, C. E., Penn, J., Voss, H., Glover, G., et al. (2006). Earlier development of the accumbens relative to orbitofrontal cortex might underlie risk-taking behavior in adolescents. Journal of Neuroscience, 26, 68856892.Google Scholar
Galvan, A., Hare, T., Voss, H., Glover, G., & Casey, B. J. (2007). Risk-taking and the adolescent brain: Who is at risk? Developmental Science, 10, F8F14.Google Scholar
Gardner, M., & Steinberg, L. (2005). Peer influence on risk taking, risk preference, and risky decision making in adolescence and adulthood: An experimental study. Developmental Psychology, 41, 625635.Google Scholar
Gavin, L., MacKay, A. P., Brown, K., Harrier, S., Ventura, S. J., Kann, L., et al. (2009). Sexual and reproductive health of persons aged 10–24 years—United States, 2002–2007. Morbidity and Mortality Weekly Report, 58, 161.Google Scholar
Geier, C. F., Garver, K., Terwilliger, R., & Luna, B. (2009). Development of working memory maintenance. Journal of Neurophysiology, 101, 8499.Google Scholar
Geier, C. F., Terwilliger, R., Teslovich, T., Velanova, K., & Luna, B. (2010). Immaturities in reward processing and its influence on inhibitory control in adolescence. Cerebral Cortex, 20, 16131629.Google Scholar
George, W. H., Davis, K. C., Norris, J., Heiman, J. R., Stoner, S. A., Schacht, R. L., et al. (2009). Indirect effects of acute alcohol intoxication on sexual risk-taking: The roles of subjective and physiological sexual arousal. Archives of Sexual Behavior, 38, 498513.Google Scholar
Georgiadis, J. R., Kringelbach, M. L., & Pfaus, J. G. (2012). Sex for fun: A synthesis of human and animal neurobiology. Nature Reviews Urology, 9, 486498.Google Scholar
Giedd, J. N. (2004). Structural magnetic resonance imaging of the adolescent brain. Annals of the New York Academy of Sciences, 1021, 7785.Google Scholar
Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., et al. (1999). Brain development during childhood and adolescence: A longitudinal MRI study. Nature Neuroscience, 2, 861863.Google Scholar
Goldenberg, D., Telzer, E. H., Lieberman, M. D., Fuligni, A., & Galvan, A. (2013). Neural mechanisms of impulse control in sexually risky adolescents. Developmental Cognitive Neuroscience, 6, 2329.Google Scholar
Gordon, I., Martin, C., Feldman, R., & Leckman, J. F. (2011). Oxytocin and social motivation. Developmental Cognitive Neuroscience, 1, 471493. doi:10.1016/j.dcn.2011.07.007 Google Scholar
Gunther Moor, B., van Leijenhorst, L., Rombouts, S. A. R. B., Crone, E. A., & van der Molen, M. W. (2010). Do You Like Me? Neural Correlates of Social Evaluation and Developmental Trajectories . Social Neuroscience, 5, 461482.Google Scholar
Guttmacher Institute. (2014). American teens’ sexual and reproductive health. New York: Author. Retrieved from http://www.guttmacher.org/pubs/FB-ATSRH.html Google Scholar
Guyer, A. E., Monk, C. S., McClure-Tone, E. B., Nelson, E. E., Roberson-Nay, R., Adler, A. D., et al. (2008). A developmental examination of amygdala response to facial expressions. Journal of Cognitive Neuroscience, 20, 15651582.Google Scholar
Hamann, S., Herman, R. A., Nolan, C. L., & Wallen, K. (2004). Men and women differ in amygdala response to visual sexual stimuli. Nature Neuroscience, 7, 411416.Google Scholar
Harden, K. P. (2014). A sex-positive framework for research on adolescent sexuality. Perspectives on Psychological Science, 9, 455469.Google Scholar
Harden, K. P., & Mendle, J. E. (2011). Adolescent sexual activity and the development of delinquent behavior: The role of relationship context. Journal of Youth and Adolescence, 40, 825838.Google Scholar
Hardin, M. G., Mandell, D., Mueller, S. C., Dahl, R. E., Pine, D. S., & Ernst, M. (2009). Inhibitory control in anxious and healthy adolescents is modulated by incentive and incidental affective stimuli. Child Psychology and Psychiatry, 50, 15501558.CrossRefGoogle ScholarPubMed
Hare, T. A., Tottenham, N., Galvan, A., Voss, H. U., Glover, G. H., & Casey, B. J. (2008). Biological substrates of emotional reactivity and regulation in adolescence during an emotional go-nogo task. Biological Psychiatry, 63, 927934.Google Scholar
Hariri, A. R. (2009). The neurobiology of individual differences. Annual Review of Neuroscience, 32, 225247.CrossRefGoogle ScholarPubMed
Haycock, J. W., Becker, L., Ang, L., Furukawa, Y., Hornykiewicz, O., & Kish, S. J. (2003). Marked disparity between age-related changes in dopamine and other presynaptic dopaminergic markers in human striatum. Journal of Neurochemistry, 87, 574585.Google Scholar
Hayden, B. Y., Parikh, P. C., Deaner, R. O., & Platt, M. L. (2007). Economic principles motivating social attention in humans. Proceedings of the Royal Society B: Biological Sciences, 274, 17511756.Google Scholar
Heatherton, T. F., & Wagner, D. D. (2011). Cognitive neuroscience of self-regulation failure. Trends in Cognitive Science, 15, 132139.Google Scholar
Hedner, T., Iversen, K., & Lundborg, P. (1984). Central GABA mechanisms during postnatal development in the rat: Neurochemical characteristics. Journal of Neural Transmission, 59, 105118.Google Scholar
Holroyd, C. B., & Coles, M. G. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679709.Google Scholar
Huebner, D. M., Neilands, T. B., Rebchook, G. M., & Kregels, S. M. (2011). Sorting through chickens and eggs: A longitudinal examination of the associations between attitudes, norms, and sexual risk behavior. Health Psychology, 30, 110118.Google Scholar
Hwang, K., Velanova, K., & Luna, B. (2010). Strengthening of top-down frontal cognitive control networks underlying the development of inhibitory control: A functional magnetic resonance imaging effective connectivity study. Journal of Neuroscience, 30, 1553515545.Google Scholar
Janssen, E., Goodrich, D., Petrocelli, J. V., & Bancroft, J. (2009). Psychophysiological response patterns and risky sexual behavior in heterosexual and homosexual men. Archives of Sexual Behavior, 38, 538550.Google Scholar
Johnston, L. D., O'Malley, P. M., Bachman, J. G., & Schulenberg, J. E. (2010). HIV/AIDS: Risk and protective behaviors among American young adults, 2004–2008 (NIH Publication No. 10-7586). Bethesda, MD: National Institute on Drug Abuse.Google Scholar
Karama, S., Lecours, A. R., Leroux, J. M., Bourgouin, P., Beaudoin, G., Joubert, S., et al. (2002). Areas of brain activation in males and females during viewing of erotic film excerpts. Human Brain Mapping, 16, 113.Google Scholar
Kellam, S. G., Brown, C. H., Poduska, J. M., Ialongo, N. S., Wang, W., Toyinbo, P., et al. (2008). Effects of a universal classroom behavior management program in first and second grades on young adult behavioral, psychiatric, and social outcomes. Drug and Alcohol Dependence, 95, S5S28.Google Scholar
Killgore, W. D., Oki, M., & Yurgelun-Todd, D. A. (2011). Sex-specific developmental changes in amygdala responses to affective faces. NeuroReport, 12, 427433.Google Scholar
Kimberg, D. Y., D'Esposito, M., & Farah, M. J. (1997). Effects of bromocriptine on human subjects depend on working memory capacity. NeuroReport, 8, 35813585.Google Scholar
Kotchick, B. A., Shaffer, A., Forehand, R., & Miller, K. S. (2001). Adolescent sexual risk behavior: A multi-system perspective. Clinical Psychology Review, 21, 493519.Google Scholar
Kringelbach, M. L. (2005). The human orbitofrontal cortex: Linking reward to hedonic experience. Nature Reviews Neuroscience, 6, 691702.Google Scholar
LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155184.Google Scholar
Lee, S. S., Lahey, B. B., Waldman, I., Van Hulle, C. A., Rathouz, P., Pehlam, W. E., et al. (2007). Association of dopamine transporter genotype with disruptive behavior disorders in an eight-year longitudinal study of children and adolescents. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 144, 310317.Google Scholar
Lewis, D. A. (1997). Development of the prefrontal cortex during adolescence: Insights into vulnerable neural circuits in schizophrenia. Neuropsychopharmacology, 16, 385398.CrossRefGoogle ScholarPubMed
Li, N. P., Bailey, J. M., Kenrick, D. T., & Linsenmeier, J. A. (2002). The necessities and luxuries of mate preferences: Testing the tradeoffs. Journal of Personality and Social Psychology, 82, 947955.Google Scholar
Libertus, M. E., Brannon, E. M., & Pelphrey, K. (2009). Developmental changes in category-specific brain responses to numbers and letters in working memory task. NeuroImage, 44, 14041414.CrossRefGoogle ScholarPubMed
Lidow, M. S., & Rakic, P. (1992). Scheduling of monoaminergic neurotransmitter receptor expression in the primate neocortex during postnatal development. Cerebral Cortex, 2, 401416.Google Scholar
Lindgren, K., Shoda, Y., & George, W. H. (2007). Sexual or friendly? Associations about women, men, and self. Psychology of Women Quarterly, 31, 190201.Google Scholar
Liston, C., Matalon, S., Hare, T. A., Davidson, M. C., & Casey, B. J. (2006). Anterior cingulate and posterior parietal cortices are sensitive to dissociable forms of conflict in a task-switching paradigm. Neuron, 50, 643653.Google Scholar
Luciana, M., & Collins, P. F. (2012). Incentive motivation, cognitive control, and the adolescent brain: Is it time for a paradigm shift? Child Development Perspectives, 6, 392399.Google Scholar
Luciana, M., & Segalowitz, S. J. (2014). Some challenges for the triadic model for the study of adolescent motivated behavior. Brain and Cognition, 89, 118121.Google Scholar
Luciana, M., Wahlstrom, D., Porter, J. N., & Collins, P. F. (2012). Dopaminergic modulation of incentive motivation in adolescence: Age-related changes in signaling, individual differences, and implications for the development of self-regulation. Developmental Psychology, 48, 844861.Google Scholar
Luna, B., & Sweeney, J. A. (2001). Studies of brain and cognitive maturation through childhood and adolescence: A strategy for testing neurodevelopmental hypotheses. Schizophrenia Bulletin, 27, 443455.Google Scholar
Macapagal, K. R., Janssen, E., Fridberg, D. J., Finn, P. R., & Heiman, J. R. (2011). The effects of impulsivity, sexual arousability, and abstract intellectual ability on men's and women's go/no-go task performance. Archives of Sexual Behavior, 40, 9951006.CrossRefGoogle ScholarPubMed
MacDonald, T. K., MacDonald, G., Zanna, M. P., & Fong, G. (2000). Alcohol, sexual arousal, and intentions to use condoms in young men: Applying alcohol myopia theory to risky sexual behavior. Health Psychology, 19, 290298.Google Scholar
McCarthy, B., & Casey, T. (2008). Love, sex, and crime: Adolescent romantic relationships and offending. American Sociological Review, 73, 944969.Google Scholar
McCarthy, B., & Grodsky, E. (2011). Sex and school: Adolescent sexual intercourse and education. Social Problems, 58, 213234.Google Scholar
Mendle, J., Ferrero, J., Moore, S., & Harden, K. P. (2013). Depression and adolescent sexual activity in romantic and non-romantic relational contexts: A genetically-informative sibling comparison. Journal of Abnormal Psychology, 122, 5163.CrossRefGoogle Scholar
Moll, G. H., Mehnert, C., Wicker, M., Bock, N., Rothenberger, A., Rüther, E., et al. (2000). Age-associated changes in the densities of presynaptic monoamine transporters in different regions of the rat brain from early juvenile life to late adulthood. Developmental Brain Research, 119, 251257.Google Scholar
Monk, C. S., McClure, E. B., Nelson, E. E., Zarahn, E., Bilder, R. M., Leibenluft, E., et al. (2003). Adolescent immaturity in attention-related brain engagement to emotional facial expressions. NeuroImage, 20, 420428.Google Scholar
Monti, P. M., Miranda, R., Nixon, K., Sher, K. J., Swartzwelder, H. S., Tapert, S. F., et al. (2005). Adolescence: booze, brains, and behavior. Alcoholism: Clinical and Experimental Research, 29, 207220.Google Scholar
Morrison, S. E., & Salzman, C. D. (2010). Re-valuing the amygdala. Current Opinion in Neurobiology, 20, 221230.Google Scholar
Nelson, C. A., Bloom, F. E., Cameron, J. L., Amaral, D., Dahl, R. E., & Pine, D. (2002). An integrative, multidisciplinary approach to the study of brain–behavior relations in the context of typical and atypical development. Development and Psychopathology, 14, 499520.Google Scholar
Nemoda, Z., Szekely, A., & Sasvari-Szekely, M. (2011). Psychopathological aspects of dopaminergic gene polymorphisms in adolescence and young adulthood. Neuroscience & Biobehavioral Reviews, 35, 16651686.Google Scholar
Nikolova, Y. S., & Hariri, A. R. (2012). Neural responses to threat and reward interact to predict stress-related problem drinking: A novel protective role of the amygdala. Biology of Mood and Anxiety Disorders, 2, 13.Google Scholar
Nikolova, Y. S., Mihic, A. D., & Hariri, A. R. (2013). Interactions between neural circuits for threat and reward predict problem alcohol use. Poster presented at the 43rd Annual Meeting of the Society for Neuroscience, San Diego, CA, November.Google Scholar
Noar, S. M., Zimmerman, R. S., Palmgreen, P., Lustria, M., & Horosewski, M. L. (2006). Integrating personality and psychosocial theoretical approaches to understanding safer sexual behavior: Implications for message design. Health Communication, 19, 165174.Google Scholar
Ochsner, K. N., & Gross, J. J. (2005). The cognitive control of emotion. Trends in Cognitive Sciences, 9, 242249.Google Scholar
O'Donnell, P. (2010). Adolescent maturation of cortical dopamine. Neurotoxicity Research, 18, 306312.Google Scholar
Op de Macks, Z. A., Gunther Moor, B., Overgaauw, S., Guroglu, B., Dahl, R. E., & Crone, E. A. (2011). Testosterone levels correspond with increased ventral striatum activation in response to monetary rewards in adolescents. Developmental Cognitive Neuroscience, 1, 506516. doi:10.1016/j.dcn.2011.06.003 Google Scholar
Padmanabhan, A., Geier, C. F., Ordaz, S. J., Teslovich, T., & Luna, B. (2011). Developmental changes in brain function underlying the influence of reward processing on inhibitory control. Developmental Cognitive Neuroscience, 4, 517529.Google Scholar
Padmanabhan, A., & Luna, B. (2014). Developmental imaging genetics: Linking dopamine function to adolescent behavior. Brain and Cognition, 89C, 2738.Google Scholar
Paus, T., Zijdenbos, A., Worsley, K., Collins, D. L., Blumenthal, J., Giedd, J. N., et al. (1999). Structural maturation of neural pathways in children and adolescents: In vivo study. Science, 283, 19081911.Google Scholar
Peake, S. J., Dishion, T. J., Stormshak, E. A., Moore, W. E., & Pfeifer, J. H. (2013). Risk taking and social exclusion in adolescence: Neural mechanisms underlying peer influences on decision-making. NeuroImage, 82, 2334.Google Scholar
Peper, J. S., & Dahl, R. E. (2013). The teenage brain: Surging hormones—Brain-behavior interactions during puberty. Current Directions in Psychological Science, 22, 134139.Google Scholar
Perlman, W. R., Webster, M. J., Kleinman, J. E., & Weickert, C. S. (2004). Reduced glucocorticoid and estrogen receptor alpha messenger ribonucleic acid levels in the amygdala of patients with major mental illness. Biological Psychiatry, 56, 844852.Google Scholar
Pfaus, J. G., Kippin, T. E., Coria-Avila, G. A., Gelez, H., Afonso, V. M., Ismail, N., et al. (2012). Who, what, where, when (and maybe even why?): How the experience of sexual reward connects sexual desire, preference, and performance. Archives of Sexual Behavior, 41, 3162.Google Scholar
Pfeifer, J. H., & Allen, N. B. (2012). Arrested development? Reconsidering dual-systems models of brain function in adolescence and disorders. Trends in Cognitive Sciences, 16, 322329.Google Scholar
Pfeifer, J. H., Masten, C. L., Moore, W. E., Oswald, T. M., Mazziotta, J. C., Iacoboni, M., et al. (2011). Entering adolescence: Resistance to peer influence, risky behavior, and neural changes in emotion reactivity. Neuron, 69, 10291036.Google Scholar
Phelps, E. A. (2006). Emotion and cognition: Insights from studies of the human amygdala. Annual Review of Psychology, 57, 2753.Google Scholar
Pinkerton, S. D., & Abramson, P. R. (1995). Decision making and personality factors in sexual risk-taking for HIV/AIDS: A theoretical integration. Personality and Individual Differences, 19, 713723.Google Scholar
Poduska, J. M., Kellam, S. G., Wang, W., Brown, C. H., Ialongo, N. S., & Toyinbo, P. (2008). Impact of the Good Behavior Game, a universal classroom-based behavior intervention, on young adult service use for problems with emotions, behavior, or drugs or alcohol. Drug and Alcohol Dependence, 95, S29S44.Google Scholar
Postuma, R. B., & Dagher, A. (2006). Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cerebral Cortex, 16, 15081521.CrossRefGoogle ScholarPubMed
Prause, N., Staley, C., & Finn, P. (2011). The effects of acute ethanol consumption on sexual response and sexual risk-taking intent. Archives of Sexual Behavior, 40, 373384.CrossRefGoogle ScholarPubMed
Prevost, C., Pessiglione, M., Metereau, E., Clery-Melin, M., & Dreher, J. (2010). Separate valuation subsystems for delay and effort decision costs. Journal of Neuroscience, 30, 1408014090.Google Scholar
Pulido, C., Brown, S. A., Cummins, K., Paulus, M. P., & Tapert, S. F. (2010). Alcohol cue reactivity task development. Addictive Behaviors, 35, 8490.Google Scholar
Reece, M., Herbenick, D., Schick, V., Sanders, S. A., Dodge, B., & Fortenberry, J. D. (2010). Condom use rates in a national probability sample of males and females ages 14–94 in the United States. Journal of Sexual Medicine, 7, 266276.Google Scholar
Reyna, V. F., & Farley, F. (2006). Risk and rationality in adolescent decision-making: Implications for theory, practice, and public policy. Psychological Science in the Public Interest, 7, 144.Google Scholar
Rhodes, G. (2006). The evolutionary psychology of facial beauty. Annual Review of Psychology, 57, 199226.Google Scholar
Richards, J. M., Plate, R. C., & Ernst, M. (2013). A systematic review of fMRI reward paradigms used in studies of adolescents vs. adults: The impact of task design and implications for understanding neurodevelopment. Neuroscience & Biobehavioral Reviews, 37, 976991.Google Scholar
Robinson, D. L., Zitzman, D. L., Smith, K. J., & Spear, L. P. (2011). Fast dopamine release events in the nucleus accumbens of early adolescent rats. Neuroscience, 176, 296307.Google Scholar
Rodrigo, M. J., Padron, I., de Vega, M., & Ferstl, E. C. (2014). Adolescents’ risky decision-making activates neural networks related to social cognition and cognitive control processes. Frontiers in Human Neuroscience, 8, 116.Google Scholar
Romeo, R. D., Wagner, C. K., Jansen, H. T., Diedrich, S. L., & Sisk, C. L. (2002). Estradiol induces hypothalamic progesterone receptors but does not activate mating behavior in male hamsters (Mesocricetus auratus) before puberty. Behavioral Neuroscience, 116, 198205.Google Scholar
Romer, D. (2010). Adolescent risk taking, impulsivity, and brain development: Implications for prevention. Developmental Psychobiology, 52, 263276.Google Scholar
Romer, D., Black, M., Ricardo, I., Feigelman, S., Kaljee, L., Galbraith, J., et al. (1994). Social influences on the sexual behavior of youth at risk for HIV exposure. American Journal of Public Health, 84, 977985.Google Scholar
Rosen, R., & Beck, J. (1988). Patterns of sexual response. In Rosen, R. & Beck, J. (Eds.), Patterns of sexual arousal: Psychophysiological processes and clinical applications (pp. 2352). New York: Guilford Press.Google Scholar
Roselli, C. E., Klosterman, S., & Resko, J. A. (2001). Anatomic relationships between aromatase and androgen receptor mRNA expression in the hypothalamus and amygdala of adult male cynomolgus monkeys. Journal of Comparative Neurology, 439, 208223.Google Scholar
Rosenberg, D. R., & Lewis, D. A. (1995). Postnatal maturation of the dopaminergic innervation of monkey prefrontal and motor cortices: A tyrosine hydroxylase immunohistochemical analysis. Journal of Comparative Neurology, 358, 383400.Google Scholar
Rosenkranz, J. A., & Grace, A. A. (2001). Dopamine attenuates prefrontal cortical suppression of sensory inputs to the basolateral amygdala of rats. Journal of Neuroscience, 21, 40904103.Google Scholar
Rupp, H. A., James, T. W., Ketterson, E. D., Sengelaub, D. R., Janssen, E., & Heiman, J. R. (2009). The role of the anterior cingulate cortex in women's sexual decision making. Neuroscience Letters, 449, 4247.Google Scholar
Scherf, K. S., Behrmann, M., & Dahl, R. E. (2012). Facing changes and changing faces in adolescence: A new model for investigating adolescent-specific interactions between pubertal, brain and behavioral development. Developmental Cognitive Neuroscience, 2, 199219.Google Scholar
Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275, 15931599.Google Scholar
Seeman, P., Bzowej, N. H., Guan, H. C., Bergeron, C., Becker, L. E., Reynolds, G. P., et al. (1987). Human brain dopamine receptors in children and aging adults. Synapse, 1, 399404.Google Scholar
Segalowitz, S. J., Santesso, D. L., Willoughby, T., Reker, D. L., Campbell, K., Chalmers, H., et al. (2012). Adolescent peer interaction and trait surgency weaken medial prefrontal cortex responses to failure. Social, Cognitive and Affective Neuroscience, 7, 115124.Google Scholar
Sercombe, H. (2014). Risk, adaption, and the functional teenage brain. Brain and Cognition, 89, 6169.Google Scholar
Sescousse, G., Caldu, X., Segura, B., & Dreher, J. (2013). Processing of primary and secondary rewards: A quantitative meta-analysis and review of human functional neuroimaging studies. Neuroscience & Biobehavioral Reviews, 37, 681696.Google Scholar
Sieving, R. E., Eisenberg, M. E., Ptetingell, S., & Skay, C. (2006). Friends’ influence on adolescents’ first sexual intercourse. Perspectives on Sexual and Reproductive Health, 38, 1319.Google Scholar
Sisk, C. L., & Zehr, J. L. (2005). Pubertal hormones organize the adolescent brain and behavior. Frontiers in Neuroendocrinology, 26, 163174.Google Scholar
Somerville, L. H., & Casey, B. J. (2010). Developmental neurobiology of cognitive control and motivational systems. Current Opinion in Neurobiology, 20, 236241.Google Scholar
Somerville, L. H., Hare, T., & Casey, B. J. (2011). Frontostriatal maturation predicts cognitive control failure to appetitive cues in adolescents. Journal of Cognitive Neuroscience, 23, 21232134.Google Scholar
Somerville, L. H., Jones, R. M., & Casey, B. J. (2010). A time of change: Behavioral and neural correlates of adolescent sensitivity to appetitive and aversive environmental cues. Brain Cognition, 72, 124133.Google Scholar
Sowell, E. R., Thompson, P. M., Leonard, C. M., Welcome, S. E., Kan, E., & Toga, A. W. (2004). Longitudinal mapping of cortical thickness and brain growth in normal children. Journal of Neuroscience, 24, 82238231.Google Scholar
Sowell, E. R., Thompson, P. M., Tessner, K. D., & Toga, A. W. (2001). Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: Inverse relationships during post adolescent brain maturation. Journal of Neuroscience, 20, 88198829.CrossRefGoogle Scholar
Spear, L. P. (2000). The adolescent brain and age-related behavioral manifestations. Neuroscience & Biobehavioral Reviews, 24, 417463.Google Scholar
Spielberg, J. M., Olino, T. M., Forbes, E. F., & Dahl, R. E. (2014). Exciting fear in adolescence: Does pubertal development alter threat processing? Developmental Cognitive Neuroscience, 8, 8695.Google Scholar
Sprecher, S., Sullivan, Q., & Hatfield, E. (1994). Mate selection preferences: Gender differences examined in a national sample. Journal of Personality and Social Psychology, 66, 10741080.Google Scholar
Stanton, S. J., Liening, S. H., & Schultheiss, O. C. (2011). Testosterone is positively associated with risk taking in the Iowa Gambling Task. Hormones and Behavior, 59, 252256.Google Scholar
Steinberg, L. (2004). Risk taking in adolescence: What changes, and why? Annals of the New York Academy of Sciences, 1021, 5158.Google Scholar
Steinberg, L. (2008). A social neuroscience perspective on adolescent risk-taking. Developmental Review, 28, 78106.Google Scholar
Steinberg, L., Graham, D., O'Brien, L., Woolard, J., Cauffman, E., & Banich, M. (2009). Age differences in future orientation and delay discounting. Child Development, 80, 2844.Google Scholar
Stoleru, S., Fonteille, V., Cornelius, C., Joyal, C., & Moulier, V. (2012). Functional neuroimaging studies of sexual arousal and orgasm in healthy men and women: A review and meta-analysis. Neuroscience & Biobehavioral Reviews, 36, 14811509.Google Scholar
Suleiman, A. B., & Brindis, C. D. (2014). Adolescent school-based sex education: Using developmental neuroscience to guide new directions for policy and practice. Sexuality Research and Social Policy, 11, 137152.Google Scholar
Tarazi, F. I., Tomasini, E. C., & Baldessarini, R. J. (1998). Postnatal development of dopamine D4-like receptors in rat forebrain regions: Comparisons with D2-like receptors. Developmental Brain Research, 110, 227233.Google Scholar
Tarter, R. E., Kirisci, L., Mezzich, A., Cornelius, J. R., Pajer, K., Vanyukov, M., et al. (2003). Neurobehavioral disinhibition in childhood predicts early age at onset of substance use disorder. American Journal of Psychiatry, 160, 10781085.Google Scholar
van den Bos, W., Guroglu, B., van den Bulk, B. G., Rombouts, S. A., & Crone, E. A. (2009). Better than expected or as bad as you thought? The neurocognitive development of probabilistic feedback processing. Frontiers in Human Neuroscience, 15, 111.Google Scholar
van Duijvenvoorde, A. C., Zanolie, K., Rombouts, S. A., Raijmakers, M. E., & Crone, E. A. (2008). Evaluating the negative or valuing the positive? Neural mechanisms supporting feedback-based learning across development. Journal of Neuroscience, 28, 94959503.Google Scholar
van Honk, J., Schutter, D. J., Hermans, E. J., Putman, P., Tuiten, A., & Koppeschaar, H. (2004). Testosterone shifts the balance between sensitivity for punishment and reward in healthy young women. Psychoneuroendocrinology, 29, 937943.Google Scholar
Van Leijenhorst, L., Moor, B. G., Op de Macks, Z. A., Rombouts, S. A., Westernberg, P. M., & Crone, E. A. (2010). Adolescent risky decision-making: Neurocognitive development of reward and control regions. NeuroImage, 51, 345355.Google Scholar
Van Leijenhorst, L., Zanolie, K., Van Meel, C. S., Westenberg, P. M., Rombouts, S. A., & Crone, E. A. (2010). What motivates the adolescent? Brain regions mediating reward sensitivity across adolescence. Cerebral Cortex, 20, 6169.Google Scholar
Velanova, K., Wheeler, M. E., & Luna, B. (2008). Maturational changes in anterior cingulate and frontoparietal recruitment support the development of error processing and inhibitory control. Cerebral Cortex, 18, 25052522.Google Scholar
Vermeersch, H., T'Sjoen, G., Kaufman, J. M., & Vincke, J. (2008a). Estradiol, testosterone, differential association and aggressive and non-aggressive risk-taking in adolescent girls. Psychoneuroendocrinology, 33, 897908. doi:10.1016/j.psyneuen.2008.03.016 Google Scholar
Vermeersch, H., T'Sjoen, G., Kaufman, J. M., & Vincke, J. (2008b). The role of testosterone in aggressive and non-aggressive risktaking in adolescent boys. Hormones and Behavior, 53, 463471. doi:10.1016/j.yhbeh.2007.11.021 Google Scholar
Vermeersch, H., T'Sjoen, G., Kaufman, J. M., & Vincke, J. (2009). The relationship between sex steroid hormones and behavioural inhibition (BIS) and behavioural activation (BAS) in adolescent boys and girls. Personality and Individual Differences, 47, 37.Google Scholar
Wahlstrom, D., Collins, P., White, T., & Luciana, M. (2010). Developmental changes in dopamine neurotransmission in adolescence: Behavioral implications and issues in assessment. Brain and Cognition, 72, 146159.Google Scholar
Whalen, P. J., & Phelps, E. A. (2009). The human amygdala. New York: Guilford Press.Google Scholar
Williams, L. M., Brown, K. J., Palmer, D., Liddell, B. J., Kemp, A. H., Olivieri, G., et al. (2006). The mellow years?: Neural basis of improving emotional stability over age. Journal of Neuroscience, 26, 64226430.Google Scholar
Willoughby, T., Good, M., Adachi, P. J. C., Hamza, C., & Tavernier, R. (2013). Examining the link between adolescent brain development and risk taking from a social–developmental perspective. Brain and Cognition, 83, 315323.Google Scholar
Willoughby, T., Tavernier, R., Hamza, C., Adachi, P. J. C., & Good, M. (2014). The triadic systems model perspective and adolescent risk taking. Brain and Cognition, 89, 114115.Google Scholar
Wilson, M., & Daly, M. (2004). Do pretty women inspire men to discount the future? Proceedings of the Royal Society B: Biological Sciences, 271, S177S179.Google Scholar
Wise, R. A. (2004). Dopamine, learning and motivation. Nature Reviews Neuroscience, 5, 483494.Google Scholar
Wood, R. I. (2004). Reinforcing aspects of androgens. Physiology & Behavior, 83, 279289.Google Scholar
Zald, D. H., Cowan, R. L., Riccardi, P., Baldwin, R. M., Ansari, M. S., Li, R., et al. (2008). Midbrain dopamine receptor availability is inversely associated with novelty-seeking traits in humans. Journal of Neuroscience, 28, 1437214378.Google Scholar
Zuckerman, M. (1994). Behavioral expressions and biosocial bases of sensation seeking. Cambridge: Cambridge University Press.Google Scholar
Zuckerman, M., & Kuhlman, D. M. (2000). Personality and risk-taking: Common biosocial factors. Journal of Personality, 68, 9991029.Google Scholar