Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-12-01T01:16:13.152Z Has data issue: false hasContentIssue false

Neurodevelopment and executive function in autism

Published online by Cambridge University Press:  07 October 2008

Kirsten O'Hearn*
Affiliation:
University of Pittsburgh
Miya Asato
Affiliation:
University of Pittsburgh
Sarah Ordaz
Affiliation:
University of Pittsburgh
Beatriz Luna
Affiliation:
University of Pittsburgh
*
Address correspondence and reprint requests to: Kirsten O'Hearn, Loeffler Building, Room 112, University of Pittsburgh, 121 Meyran Avenue, Pittsburgh, PA 15213; E-mail: [email protected].

Abstract

Autism is a neurodevelopmental disorder characterized by social and communication deficits, and repetitive behavior. Studies investigating the integrity of brain systems in autism suggest a wide range of gray and white matter abnormalities that are present early in life and change with development. These abnormalities predominantly affect association areas and undermine functional integration. Executive function, which has a protracted development into adolescence and reflects the integration of complex widely distributed brain function, is also affected in autism. Evidence from studies probing response inhibition and working memory indicate impairments in these core components of executive function, as well as compensatory mechanisms that permit normative function in autism. Studies also demonstrate age-related improvements in executive function from childhood to adolescence in autism, indicating the presence of plasticity and suggesting a prolonged window for effective treatment. Despite developmental gains, mature executive functioning is limited in autism, reflecting abnormalities in wide-spread brain networks that may lead to impaired processing of complex information across all domains.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abell, F., Krams, M., Ashburner, J., Passingham, R., Friston, K., Frackowiak, R., et al. (1999). The neuroanatomy of autism: A voxel-based whole brain analysis of structural scans. NeuroReport, 10, 16471651.CrossRefGoogle ScholarPubMed
Acosta, M. T., & Pearl, P. L. (2003). The neurobiology of autism: New pieces of the puzzle. Current Neurology and Neuroscience Reports, 3, 149156.CrossRefGoogle ScholarPubMed
Adleman, N. E., Menon, V., Blasey, C. M., White, C. D., Warsofsky, I. S., Glover, G. H., et al. (2002). A developmental fMRI study of the Stroop color-word task. NeuroImage, 16, 6175.CrossRefGoogle ScholarPubMed
Akshoomoff, N. A., & Courchesne, E. (1992). A new role for the cerebellum in cognitive operations. Behavioral Neuroscience, 106, 731738.CrossRefGoogle ScholarPubMed
Alexander, A. L., Lee, J. E., Lazar, M., Boudos, R., DuBray, M. B., Oakes, T. R., et al. (2007). Diffusion tensor imaging of the corpus callosum in Autism. NeuroImage, 34, 6173.CrossRefGoogle ScholarPubMed
Allen, G., & Courchesne, E. (2003). Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: An fMRI study of autism. American Journal of Psychiatry, 160, 262273.CrossRefGoogle ScholarPubMed
Amaral, D. G., Schumann, C. M., & Nordahl, C. W. (2008). Neuroanatomy of autism. Trends in Neurosciences, 31, 137145.CrossRefGoogle ScholarPubMed
American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th ed., text revision). Washington, DC: Author.Google Scholar
Asato, M. R., & Hardan, A. Y. (2004). Neuropsychiatric problems in tuberous sclerosis complex. Journal of Child Neurology, 19, 241249.CrossRefGoogle ScholarPubMed
Asato, M. R., Sweeney, J. A., & Luna, B. (2006). Cognitive processes in the development of TOL performance. Neuropsychologia, 44, 22592269.CrossRefGoogle ScholarPubMed
Ashtari, M., Cervellione, K. L., Hasan, K. M., Wu, J., McIlree, C., Kester, H., et al. (2007). White matter development during late adolescence in healthy males: A cross-sectional diffusion tensor imaging study. NeuroImage, 35, 501510.CrossRefGoogle Scholar
Aylward, E. H., Minshew, N. J., Field, K., Sparks, B. F., & Singh, N. (2002). Effects of age on brain volume and head circumference in autism. Neurology, 59, 175183.CrossRefGoogle ScholarPubMed
Aylward, E. H., Minshew, N. J., Goldstein, G., Honeycutt, N. A., Augustine, A. M., Yates, K. O., et al. (1999). MRI volumes of amygdala and hippocampus in non-mentally retarded autistic adolescents and adults. Neurology, 53, 21452150.CrossRefGoogle ScholarPubMed
Baddeley, A. (1986). Working memory. New York: Oxford University Press.Google ScholarPubMed
Baddeley, A. (1992). Working memory. Science, 255, 556559.CrossRefGoogle ScholarPubMed
Bailey, A., Luthert, P., Dean, A., Harding, B., Janota, I., Montgomery, M., et al. (1998). A clinicopathological study of autism. Brain, 121, 889905.CrossRefGoogle ScholarPubMed
Barkley, R. A. (1997). Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychological Bulletin, 121, 6594.CrossRefGoogle ScholarPubMed
Barnea-Goraly, N., Kwon, H., Menon, V., Eliez, S., Lotspeich, L., & Reiss, A. L. (2004). White matter structure in autism: Preliminary evidence from diffusion tensor imaging. Biological Psychiatry, 55, 323326.CrossRefGoogle ScholarPubMed
Barnea-Goraly, N., Menon, V., Eckert, M., Tamm, L., Bammer, R., Karchemskiy, A., et al. (2005). White matter development during childhood and adolescence: A cross-sectional diffusion tensor imaging study. Cerebral Cortex, 15, 18481854.CrossRefGoogle ScholarPubMed
Ben Bashat, D., Ben Sira, L., Graif, M., Pianka, P., Hendler, T., Cohen, Y., et al. (2005). Normal white matter development from infancy to adulthood: Comparing diffusion tensor and high b value diffusion weighted MR images. Journal of Magnetic Resonance Imaging, 21, 503511.CrossRefGoogle Scholar
Benes, F. M. (1989). Myelination of cortical-hippocampal relays during late adolescence. Schizophrenia Bulletin, 15, 585593.CrossRefGoogle ScholarPubMed
Benes, F. M., Turtle, M., Khan, Y., & Farol, P. (1994). Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Archives of General Psychiatry, 51, 477484.CrossRefGoogle ScholarPubMed
Bennetto, L., Pennington, B. F., & Rogers, S. J. (1996). Intact and impaired memory functions in autism. Child Development, 67, 18161835.CrossRefGoogle ScholarPubMed
Bjorklund, D. F., & Harnishfeger, K. K. (1995). The evolution of inhibition mechanisms and their role in human cognition and behavior. In Dempster, F. N. & Brainerd, C. J. (Eds.), Interference & inhibition in cognition (pp. 141173). San Diego, CA: Academic Press.CrossRefGoogle Scholar
Booth, J. R., Burman, D. D., Meyer, J. R., Lei, Z., Trommer, B. L., Davenport, N. D., et al. (2003). Neural development of selective attention and response inhibition. NeuroImage, 20, 737751.CrossRefGoogle ScholarPubMed
Booth, J. R., Burman, D. D., Meyer, J. R., Lei, Z., Trommer, B. L., Davenport, N. D., et al. (2005). Larger deficits in brain networks for response inhibition than for visual selective attention in attention deficit hyperactivity disorder (ADHD). Journal of Child Psychology and Psychiatry and Allied Disciplines, 46, 94111.CrossRefGoogle ScholarPubMed
Brian, J. A., Tipper, S. P., Weaver, B., & Bryson, S. E. (2003). Inhibitory mechanisms in autism spectrum disorders: Typical selective inhibition of location versus facilitated perceptual processing. Journal of Child Psychology and Psychiatry, 44, 552560.CrossRefGoogle ScholarPubMed
Bunge, S. A., Dudukovic, N. M., Thomason, M. E., Vaidya, C. J., & Gabrieli, J. D. (2002). Immature frontal lobe contributions to cognitive control in children: Evidence from fMRI. Neuron, 33, 301311.CrossRefGoogle ScholarPubMed
Burman, D. D., & Bruce, C. J. (1997). Suppression of task-related saccades by electrical stimulation in the primate's frontal eye field. Journal of Neurophysiology, 77, 22522267.CrossRefGoogle ScholarPubMed
Carlson, S., Martinkauppi, S., Raemae, P., Salli, E., Korvenoja, K., & Aronen, H. J. (1998). Distribution of cortical activation during visuospatial n-back tasks as revealed by functional magnetic resonance imaging. Cerebral Cortex, 8, 743752.CrossRefGoogle ScholarPubMed
Carper, R. A., & Courchesne, E. (2005). Localized enlargement of the frontal cortex in early autism. Biological Psychiatry, 57, 126133.CrossRefGoogle ScholarPubMed
Cascio, C. J., Gerig, G., & Piven, J. (2007). Diffusion tensor imaging: Application to the study of the developing brain. Journal of the American Academy of Child & Adolescent Psychiatry, 46, 213223.CrossRefGoogle Scholar
Case, R. (1992). The role of the frontal lobes in the regulation of cognitive development. Brain and Cognition, 20, 5173.CrossRefGoogle ScholarPubMed
Casey, B. J., Cohen, J. D., Jezzard, P., Turner, R., Noll, D. C., Trainor, R. J., et al. (1995). Activation of prefrontal cortex in children during a nonspatial working memory task with functional MRI. NeuroImage, 2, 221229.CrossRefGoogle ScholarPubMed
Casey, B. J., Cohen, J. D., O'Craven, K., Davidson, R. J., Irwin, W., Nelson, C., et al. (1998). Reproducibility of fMRI results across four institutions using a spatial working memory task. NeuroImage, 8, 249261.CrossRefGoogle ScholarPubMed
Casey, B. J., Trainor, R. J., Orendi, J. L., Schubert, A. B., ystrom, L. E., Giedd, J. N., et al. (1997). A developmental functional MRI study of prefrontal activation during performance of a go-no-go task. Journal of Cognitive Neuroscience, 9, 835847.CrossRefGoogle ScholarPubMed
Castellanos, F. X., Marvasti, F. F., Ducharme, J. L., Walter, J. M., Israel, M. E., Krain, A., et al. (2000). Executive function oculomotor tasks in girls with ADHD. Journal of the American Academy of Child & Adolescent Psychiatry, 39, 644650.CrossRefGoogle ScholarPubMed
Castelli, F., Frith, C., Happe, F., & Frith, U. (2002). Autism, Asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes. Brain, 125, 18391849.CrossRefGoogle ScholarPubMed
Caviness, V. S., Kennedy, D. N., Bates, J. F., & Makris, N. (1996). The developing human brain: A morphometric profile. In Thatcher, R. W., Reid Lyon, G., Rumsey, J., & Krasnegor, N. A. (Eds.), Developmental neuroimaging: Mapping the development of brain and behavior (pp. 314). New York: Academic Press.Google Scholar
Cherkassky, V. L., Kana, R. K., Keller, T. A., & Just, M. A. (2006). Functional connectivity in a baseline resting-state network in autism. NeuroReport, 17, 16871690.CrossRefGoogle Scholar
Cicchetti, D. V., & Cannon, T. D. (1999). Neurodevelopmental processes in the ontogenesis and epigenesis of psychopathology. Development and Psychopathology, 11, 375393.CrossRefGoogle ScholarPubMed
Ciesielski, K. T., Lesnik, P. G., Savoy, R. L., Grant, E. P., & Ahlfors, S. P. (2006). Developmental neural networks in children performing a categorical n-back task. NeuroImage, 33, 980990.CrossRefGoogle ScholarPubMed
Conklin, H. M., Luciana, M., Hooper, C. J., & Yarger, R. S. (2007). Working memory performance in typically developing children and adolescents: Behavioral evidence of protracted frontal lobe development. Developmental Neuropsychology, 31, 103128.CrossRefGoogle ScholarPubMed
Connolly, J. D., Goodale, M. A., DeSouza, J. F. X., Menon, R. S., & Vilis, T. (2000). A comparison of frontoparietal fMRI activation during anti-saccades and anti-pointing. Journal of Neurophysiology, 84, 16451655.CrossRefGoogle ScholarPubMed
Cornelissen, F. W., Kimmig, H., Schira, M., Rutschmann, R. M., Maguire, R. P., Broerse, A., et al. (2002). Event-related fMRI responses in the human frontal eye fields in a randomized pro- and antisaccade task. Experimental Brain Research, 145, 270274.CrossRefGoogle Scholar
Courchesne, E. (1997). Brainstem, cerebellar and limbic neuroanatomical abnormalities in autism. Current Opinion in Neurobiology, 7, 269278.CrossRefGoogle ScholarPubMed
Courchesne, E., Carper, R., & Akshoomoff, N. (2003). Evidence of brain overgrowth in the first year of life in autism. Journal of the American Medical Association, 290, 337344.CrossRefGoogle ScholarPubMed
Courchesne, E., Karns, C. M., Davis, H. R., Ziccardi, R., Carper, R. A., Tigue, Z. D., et al. (2001). Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study. Neurology, 57, 245254.CrossRefGoogle ScholarPubMed
Courchesne, E., Pierce, K., Schumann, C. M., Redcay, E., Buckwalter, J. A., Kennedy, D. P., et al. (2007). Mapping early brain development in autism. Neuron, 56, 399413.CrossRefGoogle ScholarPubMed
Courchesne, E., Redcay, E., Morgan, J. T., & Kennedy, D. P. (2005). Autism at the beginning: Microstructural and growth abnormalities underlying the cognitive and behavioral phenotype of autism. Development and Psychopathology, 17, 577597.CrossRefGoogle ScholarPubMed
Courchesne, E., Yeung-Courchesne, R., Press, G. A., Hesselink, J. R., & Jernigan, T. L. (1988). Hypoplasia of cerebellar vermal lobules VI and VII in autism. New England Journal of Medicine, 318, 13491354.CrossRefGoogle ScholarPubMed
Courtney, S. M., Petit, L., Maisog, J. M., Ungerleider, L. G., & Haxby, J. V. (1998). An area specialized for spatial working memory in human frontal cortex. Science, 279, 13471351.CrossRefGoogle ScholarPubMed
Crone, E. A., Wendelken, C., Donohue, S., van Leijenhorst, L., & Bunge, S. A. (2006). Neurocognitive development of the ability to manipulate information in working memory. Proceedings of the National Academy of Sciences of the United States of America, 103, 93159320.CrossRefGoogle ScholarPubMed
Curtis, C. E., & D'Esposito, M. (2003). Success and failure suppressing reflexive behavior. Journal of Cognitive Neuroscience, 15, 409418.CrossRefGoogle ScholarPubMed
Curtis, C. E., Rao, V. Y., & D'Esposito, M. (2004). Maintenance of spatial and motor codes during oculomotor delayed response tasks. Journal of Neuroscience, 24, 39443952.CrossRefGoogle ScholarPubMed
D'Esposito, M., Detre, J. A., Alsop, D. C., Shin, R. K., Atlas, S., & Grossman, M. (1995). The neural basis of the central executive system of working memory. Nature, 378, 279281.CrossRefGoogle ScholarPubMed
Damasio, H., Maurer, R. G., Damasio, A. R., & Chui, H. C. (1980). Computerized tomographic scan findings in patients with autistic behavior. Archives of Neurology, 37, 504510.CrossRefGoogle ScholarPubMed
Dawson, G., Webb, S., Schellenberg, G. D., Dager, S., Friedman, S., Aylward, E., et al. (2008). Defining the broader phenotype of autism: Genetic, brain, and behavioral perspectives. Development and Psychopathology, 14, 581611.CrossRefGoogle Scholar
DeLuca, C. R., Wood, S. J., Anderson, V., Bucanan, J., Proffitt, T. M., & Mahony, K. (2003). Normative data from the CANTAB: I. Development of executive function over the lifespan. Journal of Clinical & Experimental Neuropsychology, 25, 242254.CrossRefGoogle Scholar
Demetriou, A., Christou, C., Spanoudis, G., & Platsidou, M. (2002). The development of mental processing: Efficiency, working memory, and thinking. Monographs of the Society for Research in Child Development, 67, 1156.CrossRefGoogle ScholarPubMed
Dempster, F. N. (1981). Memory span: Sources of individual and developmental differences. Psychological Bulletin, 89, 63100.CrossRefGoogle Scholar
Dempster, F. N. (1992). The rise and fall of the inhibitory mechanism: Toward a unified theory of cognitive development and aging. Developmental Review, 12, 4575.CrossRefGoogle Scholar
Diamond, A. (1990). Developmental time course in human infants and infant monkeys, and the neural bases of, inhibitory control in reaching. In Diamond, A. (Ed.), The development and neural bases of higher cognitive functions (pp. 637676). New York: New York Academy of Science.Google ScholarPubMed
Diamond, A., & Goldman-Rakic, P. S. (1989). Comparison of human infants and rhesus monkeys on Piaget's AB task: Evidence for dependence on dorsolateral prefrontal cortex. Experimental Brain Research, 74, 2440.CrossRefGoogle ScholarPubMed
Doricchi, F., Perani, D., Incoccia, C., Grassi, F., Cappa, S. F., Bettinardi, V., et al. (1997). Neural control of fast-regular saccades and antisaccades: An investigation using positron emission tomographytomography. Experimental Brain Research, 116, 5062.CrossRefGoogle Scholar
Duncan, J. (1986). Disorganisation of behavior after frontal lobe damage. Cognitive Neuropsychology, 3, 271290.CrossRefGoogle Scholar
Durston, S., Davidson, M. C., Tottenham, N., Galvan, A., Spicer, J., Fossella, J. A., et al. (2006). A shift from diffuse to focal cortical activity with development. Developmental Science, 9, 18.CrossRefGoogle ScholarPubMed
Edin, F., Macoveanu, J., Olesen, P. J., Tegner, J., & Klingberg, T. (2007). Stronger synaptic connectivity as a mechanism behind development of working memory-related brain activity during childhood. Journal of Cognitive Neuroscience, 19, 750760.CrossRefGoogle ScholarPubMed
Egaas, B., Courchesne, E., & Saitoh, O. (1995). Reduced size of corpus callosum in autism. Archives of Neurology, 52, 794801.CrossRefGoogle ScholarPubMed
Eskes, G. A., Bryson, S. E., & McCormick, T. A. (1990). Comprehension of concrete and abstract words in autistic children. Journal of Autism and Developmental Disorders, 20, 6173.CrossRefGoogle ScholarPubMed
Everling, S., Dorris, M. C., Klein, R. M., & Munoz, D. P. (1999). Role of primate superior colliculus in preparation and execution of anti-saccades and pro-saccades. Journal of Neuroscience, 19, 27402754.CrossRefGoogle ScholarPubMed
Fair, D. A., Dosenbach, N. U., Church, J. A., Cohen, A. L., Brahmbhatt, S., Miezin, F. M., et al. (2007). Development of distinct control networks through segregation and integration. Proceedings of the National Academy of Sciences of the United States of America, 104, 1350713512.CrossRefGoogle ScholarPubMed
Filipek, P. A. (1999). Neuroimaging in the developmental disorders: The state of the science. Journal of Child Psychology and Psychiatry and Allied Disciplines, 40, 113128.CrossRefGoogle ScholarPubMed
Filipek, P. A., Richelme, C., Kennedy, D. N., Rademacher, J., Pitcher, D. A., Zidel, S., et al. (1992). Morphometric analysis of the brain in developmental language disorders and autism. Annals of Neurology, 32, 475.Google Scholar
Fischer, B., Biscaldi, M., & Gezeck, S. (1997). On the development of voluntary and reflexive components in human saccade generation. Brain Research, 754, 285297.CrossRefGoogle ScholarPubMed
Ford, K. A., Goltz, H. C., Brown, M. R., & Everling, S. (2005). Neural processes associated with antisaccade task performance investigated with event-related FMRI. Journal of Neurophysiology, 94, 429440.CrossRefGoogle ScholarPubMed
Fukushima, J., Hatta, T., & Fukushima, K. (2000). Development of voluntary control of saccadic eye movements. I. Age-related changes in normal children. Brain & Development, 22, 173180.CrossRefGoogle ScholarPubMed
Funahashi, S., Chafee, M. V., & Goldman-Rakic, P. S. (1993). Prefrontal neuronal activity in rhesus monkeys performing a delayed anti-saccade task. Nature, 365, 753756.CrossRefGoogle ScholarPubMed
Funahashi, S., Inoue, M., & Kubota, K. (1997). Delay-period activity in the primate prefrontal cortex encoding multiple spatial positions and their order of presentation. Behavioural Brain Research, 84, 203223.CrossRefGoogle ScholarPubMed
Garber, H. J., & Ritvo, E. R. (1992). Magnetic resonance imaging of the posterior fossa in autistic adults. American Journal of Psychiatry, 149, 245247.Google ScholarPubMed
Geurts, H. M., Verte, S., Oosterlaan, J., Roeyers, H., & Sergeant, J. A. (2004). How specific are executive functioning deficits in attention deficit hyperactivity disorder and autism? Journal of Child Psychology and Psychiatry and Allied Disciplines, 45, 836854.CrossRefGoogle ScholarPubMed
Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., et al. (1999). Brain development during childhood and adolescence: A longitudinal MRI study. Nature Neuroscience, 2, 861863.CrossRefGoogle ScholarPubMed
Giedd, J. N., Rumsey, J. M., Castellanos, F. X., Rajapakse, J. C., Kaysen, D., Vaituzis, A. C., et al. (1996). A quantitative MRI study of the corpus callosum in children and adolescents. Developmental Brain Research, 91, 274280.CrossRefGoogle ScholarPubMed
Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101, 81748179.CrossRefGoogle ScholarPubMed
Goldberg, M. C., Lasker, A. G., Zee, D. S., Garth, E., Landa, R. J., Tien, A., et al. (2002). Deficits in the initiation of eye movements in the absence of a visual target in adolescents with high functioning autism. Neuropsychologia, 40, 20392049.CrossRefGoogle ScholarPubMed
Goldberg, M. C., Mostofsky, S. H., Cutting, L. E., Mahone, E. M., Astor, B. C., Denckla, M. B., et al. (2005). Subtle executive impairment in children with autism and children with ADHD. Journal of Autism & Developmental Disorders, 35, 279293.CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. S. (1988). Topography of cognition: Parallel distributed networks in primate association cortex. Annual Review of Neuroscience, 11, 137156.CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. S., Chafee, M., & Friedman, H. (1993). Allocation of function in distributed circuits. In Ono, T., Squire, L. R., Raichle, M. E., Perrett, D. I., & Fukuda, M. (Eds.), Brain mechanisms of perception and memory: From neuron to behavior (pp. 445456). New York: Oxford University Press.Google Scholar
Gottlieb, J., & Goldberg, M. E. (1999). Activity of neurons in the lateral intraparietal area of the monkey during an antisaccade task. Nature Neuroscience, 2, 906912.CrossRefGoogle ScholarPubMed
Greenberg, L. M., & Waldman, I. D. (1993). Developmental normative data on the test of variables of attention (T.O.V.A.). Journal of Child Psychology and Psychiatry and Allied Disciplines, 34, 10191030.CrossRefGoogle ScholarPubMed
Greene, C. M., Braet, W., Johnson, K. A., & Bellgrove, M. A. (in press). Imaging the genetics of executive function. Biological Psychology.Google Scholar
Griffith, E. M., Pennington, B. F., Wehner, E. A., & Rogers, S. J. (1999). Executive functions in young children with autism. Child Development, 70, 817832.CrossRefGoogle ScholarPubMed
Guitton, D., Buchtel, H. A., & Douglas, R. M. (1985). Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades. Experimental Brain Research, 58, 455472.CrossRefGoogle ScholarPubMed
Hale, S., Bronik, M. D., & Fry, A. F. (1997). Verbal and spatial working memory in school-age children: Developmental differences in susceptibility to interference. Developmental Psychology, 33, 364371.CrossRefGoogle ScholarPubMed
Hallett, P. E. (1978). Primary and secondary saccades to goals defined by instructions. Vision Research, 18, 12791296.CrossRefGoogle ScholarPubMed
Happe, F., Booth, R., Charlton, R., & Hughs, C. (2006). Executive function deficits in autism spectrum disorders and attention-deficit/hyperactivity disorder: Examining profiles across domains and ages. Brain and Cognition, 61, 2539.CrossRefGoogle ScholarPubMed
Hardan, A. Y., Minshew, N. J., & Keshavan, M. S. (2000). Corpus callosum size in autism. Neurology, 55, 10331036.CrossRefGoogle ScholarPubMed
Hardan, A. Y., Minshew, N. J., Mallikarjuhn, M., & Keshavan, M. S. (2001). Brain volume in autism. Journal of Child Neurology, 16, 421424.CrossRefGoogle ScholarPubMed
Hashimoto, T., Tayama, M., Murakawa, K., Yoshimoto, T., Miyazaki, M., Harada, M., et al. (1995). Development of the brainstem and cerebellum in autistic patients. Journal of Autism and Developmental Disorders, 25, 118.CrossRefGoogle ScholarPubMed
Herbert, M. R., Ziegler, D. A., Deutsch, C. K., O'Brien, L. M., Lange, N., Bakardjiev, A., et al. (2003). Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. Brain, 126, 11821192.CrossRefGoogle ScholarPubMed
Herbert, M. R., Ziegler, D. A., Makris, N., Filipek, P. A., Kemper, T. L., Normandin, J. J., et al. (2004). Localization of white matter volume increase in autism and developmental language disorder. Annals of Neurology, 55, 530540.CrossRefGoogle ScholarPubMed
Hikosaka, O., & Wurtz, R. H. (1983a). Visual and oculomotor function in monkey substantia nigra pars reticulata. I. Relation of visual and auditory responses to saccades. Journal of Neurophysiology, 49, 12301253.CrossRefGoogle ScholarPubMed
Hikosaka, O., & Wurtz, R. H. (1983b). Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses. Journal of Neurophysiology, 49, 12681284.CrossRefGoogle ScholarPubMed
Hill, E. L. (2004). Executive dysfunction in autism. Trends in Cognitive Sciences, 8, 2632.CrossRefGoogle ScholarPubMed
Hughes, C. & Russell, J. (1993). Autistic children's difficulty with mental disengagement from an object: Its implications for theories of autism. Developmental Psychology, 29, 498510.CrossRefGoogle Scholar
Hughes, J. R. (2007). Autism: The first firm finding = underconnectivity? Epilepsy & Behavior, 11, 2024.CrossRefGoogle ScholarPubMed
Hughes, J. R., & Melyn, M. (2005). EEG and seizures in autistic children and adolescents: Further findings with therapeutic implications. Clinical EEG and Neuroscience, 36, 1520.CrossRefGoogle ScholarPubMed
Huttenlocher, P. R. (1990). Morphometric study of human cerebral cortex development. Neuropsychologia, 28, 517527.CrossRefGoogle ScholarPubMed
Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. The Journal of Comparative Neurology, 387, 167178.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Johnson, K. A., Robertson, I. H., Kelly, S. P., Silk, T. J., Barry, E., Daibhis, A., et al. (2007). Dissociation in performance of children with ADHD and high-functioning autism on a task of sustained attention. Neuropsychologia, 45, 22342245.CrossRefGoogle ScholarPubMed
Johnstone, S. J., Pleffer, C. B., Barry, R. J., Clarke, A. R., & Smith, J. L. (2005). Development of inhibitory processing during the go/nogo task: A behavioral and event-related potential study of children and adults. Journal of Psychophysiology, 19, 1123.CrossRefGoogle Scholar
Joseph, R. M., McGrath, L. M., & Tager-Flusberg, H. (2005). Executive dysfunction and its relation to language ability in verbal school-age children with autism. Developmental Neuropsychology, 27, 361378.CrossRefGoogle ScholarPubMed
Just, M. A., Cherkassky, V. L., Keller, T. A., Kana, R. K., & Minshew, N. J. (2007). Functional and anatomical cortical underconnectivity in autism: Evidence from an FMRI study of an executive function task and corpus callosum morphometry. Cerebral Cortex, 17, 951961.CrossRefGoogle ScholarPubMed
Just, M. A., Cherkassky, V. L., Keller, T. A., & Minshew, N. J. (2004). Cortical activation and synchronization during sentence comprehension in high-functioning autism: Evidence of underconnectivity. Brain, 127, 18111821.CrossRefGoogle ScholarPubMed
Kana, R. K., Keller, T. A., Cherkassky, V. L., Minshew, N. J., & Just, M. A. (2006). Sentence comprehension in autism: Thinking in pictures with decreased functional connectivity. Brain, 129, 24842493.CrossRefGoogle ScholarPubMed
Kana, R. K., Keller, T. A., Minshew, N. J., & Just, M. A. (2007). Inhibitory control in high-functioning autism: Decreased activation and underconnectivity in inhibition networks. Biological Psychiatry, 62, 198206.CrossRefGoogle ScholarPubMed
Keller, T. A., Kana, R. K., & Just, M. A. (2007). A developmental study of the structural integrity of white matter in autism. NeuroReport, 18, 2327.CrossRefGoogle ScholarPubMed
Kimmig, H., Greenlee, M. W., Gondan, M., Schira, M., Kassubek, J., & Mergner, T. (2001). Relationship between saccadic eye movements and cortical activity as measured by fMRI: Quantitative and qualitative aspects. Experimental Brain Research, 141, 184194.CrossRefGoogle ScholarPubMed
Klein, C., & Foerster, F. (2001). Development of prosaccade and antisaccade task performance in participants aged 6 to 26 years. Psychophysiology, 38, 179189.CrossRefGoogle ScholarPubMed
Klein, C. H., Raschke, A., & Brandenbusch, A. (2003). Development of pro- and antisaccades in children with attention-deficit hyperactivity disorder (ADHD) and healthy controls. Psychophysiology, 40, 1728.CrossRefGoogle ScholarPubMed
Klingberg, T. (2006). Development of a superior frontal-intraparietal network for visuo-spatial working memory. Neuropsychologia, 44, 21712177.CrossRefGoogle Scholar
Klingberg, T., Forssberg, H., & Westerberg, H. (2002). Increased brain activity in frontal and parietal cortex underlies the development of visuospatial working memory capacity during childhood. Journal of Cognitive Neuroscience, 14, 110.CrossRefGoogle ScholarPubMed
Klingberg, T., Vaidya, C. J., Gabrieli, J. D. E., Moseley, M. E., & Hedehus, M. (1999). Myelination and organization of the frontal white matter in children: A diffusion tensor MRI study. NeuroReport, 10, 28172821.CrossRefGoogle ScholarPubMed
Koshino, H., Carpenter, P. A., Minshew, N. J., Cherkassky, V. L., Keller, T. A., & Just, M. A. (2005). Functional connectivity in an fMRI working memory task in high-functioning autism. NeuroImage, 24, 810821.CrossRefGoogle Scholar
Koshino, H., Kana, R. K., Keller, T. A., Cherkassky, V. L., Minshew, N. J., & Just, M. A. (2008). fMRI investigation of working memory for faces in autism: Visual coding and underconnectivity with frontal areas. Cerebral Cortex, 18, 289300.CrossRefGoogle ScholarPubMed
Lainhart, J. E., Piven, J., Wzorek, M., Landa, R., Santangelo, S. L., Coon, H., et al. (1997). Macrocephaly in children and adults with autism. Journal of the American Academy of Child & Adolescent Psychiatry, 36, 282290.CrossRefGoogle ScholarPubMed
Landa, R. J., & Goldberg, M. C. (2005a). Language, social, and executive functions in high functioning autism: A continuum of performance. Journal of Autism and Developmental Disorders, 35, 557573.CrossRefGoogle ScholarPubMed
Landa, R. J., & Goldberg, M. C. (2005b). Language, social, and executive functions in high functioning autism: A continuum of performance. Journal of Autism and Developmental Disorders, 35, 557573.CrossRefGoogle ScholarPubMed
Lebel, C., Walker, L., Leemans, A., Phillips, L., & Beaulieu, C. (2008). Microstructural maturation of the human brain from childhood to adulthood. NeuroImage, 140, 10441055.CrossRefGoogle Scholar
Lee, J. E., Bigler, E. D., Alexander, A. L., Lazar, M., DuBray, M. B., Chung, M. K., et al. (2007). Diffusion tensor imaging of white matter in the superior temporal gyrus and temporal stem in autism. Neuroscience Letters, 424, 127132.CrossRefGoogle ScholarPubMed
Lenroot, R. K., & Giedd, J. N. (2006). Brain development in children and adolescents: Insights from anatomical magnetic resonance imaging. Neuroscience and Biobehavioral Reviews, 30, 718729.CrossRefGoogle ScholarPubMed
Levin, H. S., Culhane, K. A., Hartmann, J., Evankovich, K., & Mattson, A. J. (1991). Developmental changes in performance on tests of purported frontal lobe functioning. Developmental Neuropsychology, 7, 377395.CrossRefGoogle Scholar
Levitas, A., Hagerman, R. J., Braden, M., Rimland, B., McBogg, P., & Matus, I. (1983). Autism and the fragile X syndrome. Journal of Developmental and Behavioral Pediatrics, 4, 151158.CrossRefGoogle ScholarPubMed
Li, T. Q., & Noseworthy, M. D. (2002). Mapping the development of white matter tracts with diffusion tensor imaging. Developmemtal Science, 5, 293300.Google Scholar
Liston, C., Watts, R., Tottenham, N., Davidson, M. C., Niogi, S., Ulug, A. M., et al. (2006). Frontostriatal microstructure modulates efficient recruitment of cognitive control. Cerebral Cortex, 16, 553560.CrossRefGoogle ScholarPubMed
Lopez, B. R., Lincoln, A. J., Ozonoff, S., & Lai, Z. (2005). Examining the relationship between executive functions and restricted, repetitive symptoms of autistic disorder. Journal of Autism & Developmental Disorders, 35, 445460.CrossRefGoogle ScholarPubMed
Luciana, M., Conklin, H. M., Hooper, C. J., & Yarger, R. S. (2005). The development of nonverbal working memory and executive control processes in adolescents. Child Development, 76, 697712.CrossRefGoogle ScholarPubMed
Luciana, M., & Nelson, C. (1998). The functional emergence of prefrontally-guided working memory systems in four- to eight-year-old children. Neuropsychologia, 36, 273293.CrossRefGoogle ScholarPubMed
Luciana, M., & Nelson, C. A. (2002). Assessment of neuropsychological function through use of the Cambridge Neuropsychological Testing Automated Battery: Performance in 4- to 12-year-old children. Develomental Neuropsychology, 22, 595624.CrossRefGoogle ScholarPubMed
Luna, B., Doll, S., Hegedus, S. J., Minshew, N., & Sweeney, J. (2007). Maturation of executive function in autism. Biological Psychiatry, 61, 474481.CrossRefGoogle ScholarPubMed
Luna, B., Doll, S. K., Hegedus, S. J., Minshew, N. J., & Sweeney, J. A. (2006). Maturation of executive function in autism. Biological Psychiatry, 61, 474481.CrossRefGoogle ScholarPubMed
Luna, B., Garver, K., & Sweeney, J. A. (2000). Development in cognitive and sensorimotor systems from late childhood to adulthood. Paper presented at the 30th Annual Meeting of the Society for Neuroscience.Google Scholar
Luna, B., Garver, K. E., Urban, T. A., Lazar, N. A., & Sweeney, J. A. (2004). Maturation of cognitive processes from late childhood to adulthood. Child Development, 75, 13571372.CrossRefGoogle ScholarPubMed
Luna, B., Minshew, N. J., Garver, K. E., Lazar, N. A., Thulborn, K. R., Eddy, W. F., et al. (2002). Neocortical system abnormalities in autism: An fMRI study of spatial working memory. Neurology, 59, 834840.CrossRefGoogle ScholarPubMed
Luna, B., Thulborn, K. R., Munoz, D. P., Merriam, E. P., Garver, K. E., Minshew, N. J., et al. (2001). Maturation of widely distributed brain function subserves cognitive development. NeuroImage, 13, 786793.CrossRefGoogle ScholarPubMed
Mabbott, D. J., Noseworthy, M., Bouffet, E., Laughlin, S., & Rockel, C. (2006). White matter growth as a mechanism of cognitive development in children. NeuroImage, 33, 936946.CrossRefGoogle ScholarPubMed
Marsh, R., Zhu, H., Schultz, R. T., Quackenbush, G., Royal, J., Skudlarski, P., et al. (2006). A developmental fMRI study of self-regulatory control. Human Brain Mapping, 27, 848863.CrossRefGoogle ScholarPubMed
Matson, J. L., & Nebel-Schwalm, M. S. (2007). Comorbid psychopathology with autism spectrum disorder in children: An overview. Research in Developmental Disabilities, 28, 341352.CrossRefGoogle ScholarPubMed
Matsuda, T., Matsuura, M., Ohkubo, T., Ohkubo, H., Matsushima, E., Inoue, K., et al. (2004). Functional MRI mapping of brain activation during visually guided saccades and antisaccades: Cortical and subcortical networks. Psychiatry Research, 131, 147155.CrossRefGoogle ScholarPubMed
McCarthy, G., Blamire, A. M., Puce, A., Nobre, A. C., Bloch, G., Hyder, F., et al. (1994). Functional magnetic resonance imaging of human prefrontal cortex activation during a spatial working memory task. Proceedings of the National Academy of Science of the United States of America, 91, 86908694.CrossRefGoogle ScholarPubMed
McLaughlin, N. C., Paul, R. H., Grieve, S. M., Williams, L. M., Laidlaw, D., DiCarlo, M., et al. (2007). Diffusion tensor imaging of the corpus callosum: A cross-sectional study across the lifespan. Internation Journal of Developmental Neuroscience, 25, 215221.CrossRefGoogle ScholarPubMed
Menzies, L., Achard, S., Chamberlain, S. R., Fineberg, N., Chen, C., del Campo, N., et al. (2007a). Neurocognitive endophenotypes of obsessive–compulsive disorder. Brain, 130, 32233236.CrossRefGoogle ScholarPubMed
Menzies, L., Chamberlain, S. R., Laird, A. R., Thelen, S. M., Sahakian, B. J., & Bullmore, E. T. (2007b). Integrating evidence from neuroimaging and neuropsychological studies of obsessive–compulsive disorder: The orbitofronto-striatal model revisited. Neuroscience & Biobehavioral Reviews, 3, 525549.Google Scholar
Middleton, F. A., & Strick, P. L. (2001). Cerebellar projections to the prefrontal cortex of the primate. Journal of Neuroscience, 21, 700712.CrossRefGoogle Scholar
Minshew, N. J., Luna, B., & Sweeney, J. A. (1999). Oculomotor evidence for neocortical systems but not cerebellar dysfunction in autism. Neurology, 52, 917922.CrossRefGoogle Scholar
Minshew, N. J., Meyer, J. A., & Dunn, M. (2003). Autism spectrum disorders. In Segakiwutz, S. D. & Rapin, I. (Eds.), Handbook of neuropsychology (2nd ed., pp. 863896). Amsterdam: Elsevier.Google Scholar
Minshew, N. J., Sweeney, J., & Luna, B. (2002). Autism as a selective disorder of complex information processing and underdevelopment of neocortical systems. Molecular Psychiatry, 7, S14S15.CrossRefGoogle ScholarPubMed
Minshew, N. J., & Williams, D. L. (2007). The new neurobiology of autism: Cortex, connectivity, and neuronal organization. Archives of Neurology, 64, 945950.CrossRefGoogle ScholarPubMed
Moseley, M. E., Cohen, Y., Kucharczyk, J., Mintorovitch, J., Asgari, H. S., Wendland, M. F., et al. (1990). Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology, 176, 439445.CrossRefGoogle ScholarPubMed
Mostofsky, S. H., Goldberg, M. C., & Denckla, M. B. (2000). Evidence for a deficit in procedural learning in children and adolescents with autism: Implications for cerebellar contribution. Journal of the International Neuropsychological Society, 6, 752759.CrossRefGoogle ScholarPubMed
Mukherjee, P., Miller, J. H., Shimony, J. S., Conturo, T. E., Lee, B. C. P., Almli, C. R., et al. (2001). Normal brain maturation during childhood: Developmental trends characterized with diffusion-tensor MR imaging. Radiology, 221, 349358.CrossRefGoogle ScholarPubMed
Munoz, D. P., Broughton, J. R., Goldring, J. E., & Armstrong, I. T. (1998). Age-related performance of human subjects on saccadic eye movement tasks. Experimental Brain Research, 121, 391400.CrossRefGoogle ScholarPubMed
Muri, R. M., Heid, O., Nirkko, A. C., Ozdoba, C., Felblinger, J., Schroth, G., et al. (1998). Functional organisation of saccades and antisaccades in the frontal lobe in humans: A study with echo planar functional magnetic resonance imaging. Journal of Neurology, Neurosurgery and Psychiatry, 65, 374377.CrossRefGoogle ScholarPubMed
Murias, M., Webb, S. J., Greenson, J., & Dawson, G. (2007). Resting state cortical connectivity reflected in EEG coherence in individuals with autism. Biological Psychiatry, 62, 270273.CrossRefGoogle ScholarPubMed
Nacewicz, B., Dalton, K., Johnstone, T., Long, M., McAuliff, E., Oakes, T., et al. (2006). Amygdala volume and nonverbal social impairment in adolescent and adult males with autism. Archives of General Psychiatry, 63, 14171428.CrossRefGoogle ScholarPubMed
Nagy, Z., Westerberg, H., & Klingberg, T. (2004). Maturation of white matter is associated with the development of cognitive functions during childhood. Journal of Cognition and Neuroscience, 16, 12271233.CrossRefGoogle ScholarPubMed
Nelson, C. A., Monk, C. S., Lin, J., Carver, L. J., Thomas, K. M., & Truwitt, C. L. (2000). Functional neuroanatomy of spatial working memory in children. Developmental Psychology, 36, 109116.CrossRefGoogle ScholarPubMed
O'Driscoll, G. A., Alpert, N. M., Matthysse, S. W., Levy, D. L., Rauch, S. L., & Holzman, P. S. (1995). Functional neuroanatomy of antisaccade eye movements investigated with positron emission tomography. Proceedings of the National Academy of Sciences of the United States of America, 92, 925929.CrossRefGoogle ScholarPubMed
Olesen, P. J., Macoveanu, J., Tegner, J., & Klingberg, T. (2007). Brain activity related to working memory and distraction in children and adults. Cerebral Cortex, 17, 10471054.CrossRefGoogle ScholarPubMed
Olesen, P. J., Nagy, Z., Westerberg, H., & Klingberg, T. (2003). Combined analysis of DTI and fMRI data reveals a joint maturation of white and grey matter in a fronto-parietal network. Cognitive Brain Research, 18, 4857.CrossRefGoogle Scholar
Owen, A. M., Downes, J. J., Sahakian, B. J., Polkey, C. E., & Robbins, T. W. (1990). Planning and spatial working memory following frontal lobe lesions in man. Neuropsychologia, 28, 10211034.CrossRefGoogle ScholarPubMed
Owen, A. M., Evans, A. C., & Petrides, M. (1996). Evidence for a two-stage model of spatial working memory processing within the lateral frontal cortex: A positron emission tomography study. Cerebral Cortex, 6, 3138.CrossRefGoogle ScholarPubMed
Owen, A. M., Herrod, N. J., Menon, D. K., Clark, J. C., Downey, S. P. M. J., Carpenter, T. A., et al. (1999). Redefining the functional organization of working memory processes within human lateral prefrontal cortex. European Journal of Neuroscience, 11, 567574.CrossRefGoogle ScholarPubMed
Owen, A. M., Morris, R. G., Sahakian, B. J., Polkey, C. E., & Robbins, T. W. (1996). Double dissociations of memory and executive functions in working memory tasks following frontal lobe excisions, temporal lobe excisions or amygdalo-hippocampectomy in man. Brain, 119, 15971615.CrossRefGoogle ScholarPubMed
Ozonoff, S., Cook, I., Coon, H., Dawson, G., Joseph, R. M., Klin, A., et al. (2004). Performance on Cambridge Neuropsychological Test Automated Battery subtests sensitive to frontal lobe function in people with autistic disorder: Evidence from the Collaborative Programs of Excellence in Autism Network. Journal of Autism and Developmental Disorders, 34, 139150.CrossRefGoogle Scholar
Ozonoff, S., & Strayer, D. L. (1997). Inhibitory function in nonretarded children with autism. Journal of Autism and Developmental Disorders, 27, 5977.CrossRefGoogle ScholarPubMed
Ozonoff, S., & Strayer, D. L. (2001). Further evidence of intact working memory in autism. Journal of Autism and Developmental Disorders, 31, 257263.CrossRefGoogle ScholarPubMed
Ozonoff, S., Strayer, D. L., McMahon, W. N., & Filloux, F. (1994). Executive function abilities in autism and Tourette syndrome: An information processing approach. Journal of Child Psychology and Psychiatry, 35, 10151032.CrossRefGoogle ScholarPubMed
Pascualvaca, D. M., Fantie, B. D., Papageorgiou, M., & Mirsky, A. F. (1998). Attentional capacities in children with autism: Is there a general deficit in shifting focus? Journal of Autism and Developmental Disorders, 28, 467478.CrossRefGoogle Scholar
Paus, T. (1999). Imaging the brain before, during, and after transcranial magnetic stimulation. Neuropsychologia, 37, 219224.CrossRefGoogle ScholarPubMed
Paus, T., Babenko, V., & Radil, T. (1990). Development of an ability to maintain verbally instructed central gaze fixation studied in 8- to 10-year-old children. International Journal of Psychophysiology, 10, 5361.CrossRefGoogle Scholar
Paus, T., Zijdenbos, A., Worsley, K., Collins, D. L., Blumenthal, J., Giedd, J. N., et al. (1999). Structural maturation of neural pathways in children and adolescents: In vivo study. Science, 283, 19081911.CrossRefGoogle ScholarPubMed
Penadés, R., Catalan, R., Rubia, K., Andres, S., Salamero, M., & Gasto, C. (2007). Impaired response inhibition in obsessive compulsive disorder. European Psychiatry, 22, 404410.CrossRefGoogle ScholarPubMed
Pennington, B. F., & Ozonoff, S. (1996). Executive functions and developmental psychopathology. Journal of Child Psychology and Psychiatry and Allied Disciplines, 37, 5187.CrossRefGoogle ScholarPubMed
Peterson, B. S., Pine, D. S., Cohen, P., & Brook, J. S. (2001). Prospective, longitudinal study of tic, obsessive-compulsive, and attention-deficit/hyperactivity disorders in an epidemiological sample. Journal of the American Academy of Child & Adolescent Psychiatry, 40, 685695.CrossRefGoogle Scholar
Pfefferbaum, A., Mathalon, D. H., Sullivan, E. V., Rawles, J. M., Zipursky, R. B., & Lim, K. O. (1994). A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Archives of Neurology, 51, 874887.CrossRefGoogle ScholarPubMed
Piven, J., Arndt, S., Bailey, J., & Andreasen, N. (1996). Regional brain enlargement in autism: A magnetic resonance imaging study. Journal of the American Academy of Child & Adolescent Psychiatry, 35, 530536.CrossRefGoogle ScholarPubMed
Piven, J., Arndt, S., Bailey, J., Havercamp, S., Andreasen, N. C., & Palmer, P. (1995). An MRI study of brain size in autism. American Journal of Psychiatry, 152, 11451149.Google ScholarPubMed
Piven, J., Bailey, J., Ranson, B. J., & Arndt, S. (1997). An MRI study of the corpus callosum in autism. American Journal of Psychiatry, 154, 10511056.Google ScholarPubMed
Piven, J., Bailey, J., Ranson, B. J., & Arndt, S. (1998). No difference in hippocampus volume detected on magnetic resonance imaging in autistic individuals. Journal of Autism and Developmental Disorders, 28, 105110.CrossRefGoogle ScholarPubMed
Piven, J., Berthier, M. L., Starkstein, S. E., Nehme, E., Pearlson, G., & Folstein, S. (1990). Magnetic resonance imaging evidence for a defect of cerebral cortical development in autism. American Journal of Psychiatry, 147, 734739.Google ScholarPubMed
Pujol, J., Vendrell, P., Junqué, C., Martí-Vilalta, J. L., & Capdevila, A. (1993). When does human brain development end? Evidence of corpus callosum growth up to adulthood. Annals of Neurology, 34, 7175.CrossRefGoogle ScholarPubMed
Raemaekers, M., Vink, M., van den Heuvel, M. P., Kahn, R. S., & Ramsey, N. F. (2005). Brain activation related to retrosaccades in saccade experiments. NeuroReport, 16, 10431047.CrossRefGoogle ScholarPubMed
Rakic, P., Bourgeois, J. P., Eckenhoff, M. F., Zecevic, N., & Goldman-Rakic, P. S. (1986). Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science, 232, 232235.CrossRefGoogle ScholarPubMed
Rauschecker, J. P., & Marler, P. (1987). What signals are responsible for synaptic changes in visual cortical plasticity? In Rauschecker, J. P. & Marler, P. (Eds.), Imprinting and cortical plasticity (pp. 193200). New York: Wiley.Google Scholar
Ravizza, S. M., McCormick, C. A., Schlerf, J. E., Justus, T., Ivry, R. B., & Fiez, J. A. (2006). Cerebellar damage produces selective deficits in verbal working memory. Brain, 129, 306320.CrossRefGoogle ScholarPubMed
Raymaekers, R., Antrop, I., van der Meere, J. J., Wiersema, J. R., & Roeyers, H. (2007). HFA and ADHD: A direct comparison on state regulation and response inhibition. Journal of Clinical and Experimental Neuropsychology, 29, 418427.CrossRefGoogle ScholarPubMed
Raymaekers, R., van der Meere, J., & Roeyers, H. (2004). Event-rate manipulation and its effect on arousal modulation and response inhibition in adults with high functioning autism. Journal of Clinical and Experimental Neuropsychology, 26, 7482.CrossRefGoogle ScholarPubMed
Redcay, E., & Courchesne, E. (2005). When is the brain enlarged in autism? A meta-analysis of all brain size reports. Biological Psychiatry, 58, 19.CrossRefGoogle ScholarPubMed
Reiss, A. L., Abrams, M. T., Singer, H. S., Ross, J. L., & Denckla, M. B. (1996). Brain development, gender and IQ in children. A volumetric imaging study. Brain, 119, 17631774.CrossRefGoogle ScholarPubMed
Ridderinkhof, K. R., Band, G. P. H., & Logan, G. D. (1999). A study of adaptive behavior: Effects of age and irrelevant information on the ability to inhibit one's actions. Acta Psychologica, 101, 315337.CrossRefGoogle Scholar
Ridderinkhof, K. R., & van der Molen, M. W. (1997). Mental resources, processing speed, and inhibitory control: A developmental perspective. Biol Psychol, 45, 241261.CrossRefGoogle ScholarPubMed
Ridderinkhof, K. R., van der Molen, M. W., Band, G. P., & Bashore, T. R. (1997). Sources of interference from irrelevant information: A developmental study. Journal of Experimental Child Psychology, 65, 315341.CrossRefGoogle ScholarPubMed
Robbins, T. W., James, M., Owen, A. M., Sahakian, B. J., Lawrence, A. D., McInnes, L., et al. (1998). A study of performance on tests from the CANTAB battery sensitive to frontal lobe dysfunction in a large sample of normal volunteers: Implications for theories of executive functioning and cognitive aging. Cambridge Neuropsychological Test Automated Battery. Journal of the International Neuropsychological Society, 4, 474490.CrossRefGoogle Scholar
Romer, D., & Walker, E. (2007). Adolescent psychopathology and the developing brain. New York: Oxford University Press.CrossRefGoogle Scholar
Ross, R. G., Harris, J. G., Olincy, A., & Radant, A. (2000). Eye movement task measures inhibition and spatial working memory in adults with schizophrenia, ADHD, and a normal comparison group. Psychiatry Research, 95, 3542.CrossRefGoogle Scholar
Roth, R. M., Saykin, A. J., Flashman, L. A., Pixley, H. S., West, J. D., & Mamourian, A. C. (2007). Event-related functional magnetic resonance imaging of response inhibition in obsessive–compulsive disorder. Biological Psychiatry, 62, 901909.CrossRefGoogle ScholarPubMed
Rubia, K., Overmeyer, S., Taylor, E., Brammer, M., Williams, S. C., Simmons, A. et al. (2000). Functional frontalisation with age: Mapping neurodevelopmental trajectories with fMRI. Neuroscience and Biobehavioral Reviews, 24, 1319.CrossRefGoogle ScholarPubMed
Rubia, K., Russel, T., Overmeyer, S., Brammer, M. J., Bullmore, E. T., Sharma, T., et al. (2001). Mapping motor inhibition: Conjunctive brain activations across different versions of go/no-go and stop tasks. NeuroImage, 13, 250261.CrossRefGoogle ScholarPubMed
Rubia, K., Smith, A. B., Brammer, M. J., Toone, B., & Taylor, E. (2005). Abnormal brain activation during inhibition and error detection in medication-naive adolescents with ADHD. The American Journal of Psychiatry, 162, 10671075.CrossRefGoogle ScholarPubMed
Rubia, K., Smith, A. B., Taylor, E., & Brammer, M. (2007). Linear age-correlated functional development of right inferior fronto-striato-cerebellar networks during response inhibition and anterior cingulate during error-related processes. Human Brain Mapping, 28, 11631177.CrossRefGoogle ScholarPubMed
Rubia, K., Smith, A. B., Woolley, J., Nosarti, C., Heyman, I., Taylor, E. et al. (2006). Progressive increase of frontostriatal brain activation from childhood to adulthood during event-related tasks of cognitive control. Human Brain Mapping, 27, 973993.CrossRefGoogle ScholarPubMed
Ruchsow, M., Reuter, K., Hermle, L., Ebert, D., Kiefer, M., & Falkenstein, M. (2007). Executive control in obsessive–compulsive disorder: Event-related potentials in a go/no go task. Journal of Neural Transmission, 114, 15951601.CrossRefGoogle Scholar
Rumsey, J. M., & Hamburger, S. D. (1988). Neuropsychological findings in high-functioning men with infantile autism, residual state. Journal of Clinical & Experimental Neuropsychology, 10, 201221.CrossRefGoogle ScholarPubMed
Russell, J. (1997). Autism as an executive disorder. New York: Oxford University Press.Google Scholar
Russell, J., Jarrold, C., & Hood, B. (1999). Two intact executive capacities in children with autism: Implications for the core executive dysfunctions in the disorder. Journal of Autism and Developmental Disorders, 29, 103112.CrossRefGoogle ScholarPubMed
Russo, N., Flanagan, T., Iarocci, G., Berringer, D., Zelazo, P. D., & Burack, J. A. (2007). Deconstructing executive deficits among persons with autism: implications for cognitive neuroscience. Brain and Cognition, 65, 7786.CrossRefGoogle ScholarPubMed
Saitoh, O., Courchesne, E., Egaas, B., Lincoln, A. J., & Schreibman, L. (1995). Cross-sectional area of the posterior hippocampus in autistic patients with cerebellar and corpus callosum abnormalities. Neurology, 45, 317324.CrossRefGoogle ScholarPubMed
Santesso, D. L., & Segalowitz, S. J. (2008). Developmental differences in error-related ERPs in middle- to late-adolescent males. Developmental Psychology, 44, 205217.CrossRefGoogle ScholarPubMed
Schaefer, G. B., Thompson, J. N., Bodensteiner, J. B., McConnell, J. M., Kimberling, W. J., Gay, C. T., et al. (1996). Hypoplasia of the cerebellar vermis in neurogenetic syndromes. Annals of Neurology, 39, 382385.CrossRefGoogle ScholarPubMed
Scherf, K. S., Sweeney, J. A., & Luna, B. (2006). Brain basis of developmental change in visuospatial working memory. Journal of Cognitive Neuroscience, 18, 10451058.CrossRefGoogle ScholarPubMed
Schifter, T., Hoffman, J. M., Hatten, P., Hanson, M. W., Coleman, R. E., & DeLong, G. R. (1994). Neuroimaging in infantile autism. Journal of Child Neurology, 9, 155161.CrossRefGoogle ScholarPubMed
Schlag-Rey, M., Amador, N., Sanchez, H., & Schlag, J. (1997). Antisaccade performance predicted by neuronal activity in the supplementary eye field. Nature, 390, 398401.CrossRefGoogle ScholarPubMed
Schmithorst, V. J., Wilke, M., Dardzinski, B. J., & Holland, S. K. (2002). Correlation of white matter diffusivity and anisotropy with age during childhood and adolescence: A cross-sectional diffusion-tensor MR imaging study. Radiology, 222, 212218.CrossRefGoogle ScholarPubMed
Schmitz, N., Rubia, K., Daly, E., Smith, A., Williams, S., & Murphy, D. G. (2006). Neural correlates of executive function in autistic spectrum disorders. Biological Psychiatry, 59, 716.CrossRefGoogle ScholarPubMed
Schumann, C. M., & Amaral, D. G. (2006). Stereological analysis of amygdala neuron number in autism. Journal of Neuroscience, 26, 76747679.CrossRefGoogle ScholarPubMed
Silk, T. J., Rinehart, N., Bradshaw, J. L., Tonge, B., Egan, G., O'Boyle, M. W., et al. (2006). Visuospatial processing and the function of prefrontal-parietal networks in autism spectrum disorders: A functional MRI study. American Journal of Psychiatry, 163, 14401443.CrossRefGoogle ScholarPubMed
Simpson, A., & Riggs, K. J. (2006). Conditions under which children experience inhibitory difficulty with a “button-press” go/no-go task. Journal of Experimental Child Psychology, 94, 1826.CrossRefGoogle ScholarPubMed
Snook, L., Plewes, C., & Beaulieu, C. (2007). Voxel based versus region of interest analysis in diffusion tensor imaging of neurodevelopment. NeuroImage, 34, 243252.CrossRefGoogle ScholarPubMed
Song, S. K., Sun, S. W., Ju, W. K., Lin, S. J., Cross, A. H., & Neufeld, A. H. (2003). Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. NeuroImage, 20, 17141722.CrossRefGoogle ScholarPubMed
South, M., Ozonoff, S., & McMahon, W. M. (2007). The relationship between executive functioning, central coherence, and repetitive behaviors in the high-functioning autism spectrum. Autism, 11, 437451.CrossRefGoogle ScholarPubMed
Sowell, E. R., Thompson, P. M., Holmes, C. J., Jernigan, T. L., & Toga, A. W. (1999). In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nature Neuroscience, 2, 859861.CrossRefGoogle ScholarPubMed
Sowell, E. R., Thompson, P. M., Tessner, K. D., & Toga, A. W. (2001). Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: Inverse relationships during postadolescent brain maturation. Journal of Neuroscience, 21, 88198829.CrossRefGoogle ScholarPubMed
Sparks, B. F., Friedman, S. D., Shaw, D. W., Aylward, E. H., Echelard, D., Artru, A. A. et al. (2002). Brain structural abnormalities in young children with autism spectrum disorder. Neurology, 59, 184192.CrossRefGoogle ScholarPubMed
Steele, S., Minshew, N., Luna, B., & Sweeney, J. (2007). Spatial working memory deficits in autism. Journal of Autism and Developmental Disorders, 37, 605612.CrossRefGoogle ScholarPubMed
Stevens, M. C., Kiehl, K. A., Pearlson, G. D., & Calhoun, V. D. (2007). Functional neural networks underlying response inhibition in adolescents and adults. Behavioural Brain Reserach, 181, 1222.CrossRefGoogle ScholarPubMed
Suskauer, S. J., Simmonds, D. J., Fotedar, S., Blankner, J. G., Pekar, J. J., Denckla, M. B., et al. (2008). Functional magnetic resonance imaging evidence for abnormalities in response selection in attention deficit hyperactivity disorder: Differences in activation associated with response inhibition but not habitual motor response. Journal of Cognitive Neuroscience, 20, 478493.CrossRefGoogle Scholar
Swanson, H. L. (1999). What develops in working memory? A life span perspective. Developmental Psychology, 35, 9861000.CrossRefGoogle ScholarPubMed
Sweeney, J. A., Mintun, M. A., Kwee, S., Wiseman, M. B., Brown, D. L., Rosenberg, D. R. et al. (1996). Positron emission tomography study of voluntary saccadic eye movements and spatial working memory. Journal of Neurophysiology, 75, 454468.CrossRefGoogle ScholarPubMed
Sweeney, J. A., Takarae, Y., Macmillan, C., Luna, B., & Minshew, N. J. (2004). Eye movements in neurodevelopmental disorders. Current Opinion in Neurology, 17, 3742.CrossRefGoogle ScholarPubMed
Taber, K. H., Shaw, J. B., Loveland, K. A., Pearson, D. A., Lane, D. M., & Hayman, L. A. (2004). Accentuated Virchow–Robin spaces in the centrum semiovale in children with autistic disorder. Journal of Computer Assisted Tomography, 28, 263268.CrossRefGoogle ScholarPubMed
Takarae, Y., Minshew, N. J., Luna, B., Krisky, C. M., & Sweeney, J. A. (2004). Pursuit eye movement deficits in autism. Brain, 127, 25842594.CrossRefGoogle ScholarPubMed
Takarae, Y., Minshew, N. J., Luna, B., & Sweeney, J. A. (2004). Oculomotor abnormalities parallel cerebellar histopathology in autism. Journal of Neurology, Neurosurgery and Psychiatry, 75, 13591361.CrossRefGoogle ScholarPubMed
Tamm, L., Menon, V., & Reiss, A. L. (2002). Maturation of brain function associated with response inhibition. Journal of the American Academy of Child & Adolescent Psychiatry, 41, 12311238.CrossRefGoogle ScholarPubMed
Thatcher, R. W., Walker, R. A., & Giudice, S. (1987). Human cerebral hemispheres develop at different rates and ages. Science, 236, 11101113.CrossRefGoogle ScholarPubMed
Thomas, K. M., King, S. W., Franzen, P. L., Welsh, T. F., Berkowitz, A. L., Noll, D. C., et al. (1999). A developmental functional MRI study of spatial working memory. NeuroImage, 10, 327338.CrossRefGoogle ScholarPubMed
Tipper, S. P., Bourque, T. A., Anderson, S. H., & Brehaut, J. C. (1989). Mechanisms of attention: A developmental study. Journal of Experimental Child Psychology, 48, 353378.CrossRefGoogle ScholarPubMed
Toga, A. W., Thompson, P. M., & Sowell, E. R. (2006). Mapping brain maturation. Trends in Neurosciences, 29, 148159.CrossRefGoogle ScholarPubMed
Townsend, J., Courchesne, E., Covington, J., Westerfield, M., Harris, N. S., Lyden, P., et al. (1999). Spacial attention deficits in patients with acquired or developmental cerebellar abnormality. Journal of Neuroscience, 19, 56325643.CrossRefGoogle ScholarPubMed
van der Geest, J. N., Kemner, C., Camfferman, G., Verbaten, M. N. & van Engeland, H. (2001). Eye movements, visual attention, and autism: A saccadic reaction time study using the gap and overlap paradigm. Biological Psychiatry, 50, 614619.CrossRefGoogle Scholar
Velanova, K., Wheeler, M. E., & Luna, B. (in press). Maturational changes in anterior cingulate and frontoparietal recruitment support the development of error processing and inhibitory control. Cerebral Cortex.Google Scholar
Verte, S., Geurts, H. M., Roeyers, H., Oosterlaan, J., & Sergeant, J. A. (2006). The relationship of working memory, inhibition, and response variability in child psychopathology. Journal of Neuroscience Methods, 151, 514.CrossRefGoogle ScholarPubMed
Volkmar, R., Chawarska, K., & Klin, A. (2005). Autism in infancy and early childhood. Annual Review of Psychology, 56, 315336.CrossRefGoogle ScholarPubMed
Vuontela, V., Steenari, M. R., Carlson, S., Koivisto, J., Fjällberg, M., & Aronen, E. T. (2003). Audiospatial and visuospatial working memory in 6–13 year old school children. Learning & Memory, 10, 7481.CrossRefGoogle ScholarPubMed
Waiter, G. D., Williams, J. H., Murray, A. D., Gilchrist, A., Perrett, D. I., & Whiten, A. (2005). Structural white matter deficits in high-functioning individuals with autistic spectrum disorder: A voxel-based investigation. NeuroImage, 24, 455461.CrossRefGoogle ScholarPubMed
Walker, R., Husain, M., Hodgson, T. L., Harrison, J., & Kennard, C. (1998). Saccadic eye movement and working memory deficits following damage to human prefrontal cortex. Neuropsychologia, 36, 11411159.CrossRefGoogle ScholarPubMed
Williams, B. R., Ponesse, J. S., Schachar, R. J., Logan, G. D., & Tannock, R. (1999). Development of inhibitory control across the life span. Developmental Psychology, 35, 205213.CrossRefGoogle ScholarPubMed
Williams, D. L., & Minshew, N. J. (2007). Understanding autism and related disorders: what has imaging taught us? Neuroimaging Clinics of North America, 17, 495509.CrossRefGoogle ScholarPubMed
Wilson, T. W., Rojas, D. C., Reite, M. L., Teale, P. D., & Rogers, S. J. (2007). Children and adolescents with autism exhibit reduced MEG steady-state gamma responses. Biological Psychiatry, 62, 192197.CrossRefGoogle ScholarPubMed
Wise, L. A., Sutton, J. A., & Gibbons, P. D. (1975). Decrement in Stroop interference time with age. Perceptual and Motor Skills, 41, 149150.CrossRefGoogle Scholar
Woolley, J., Heyman, I., Brammer, M., Frampton, I., McGuire, P. K., & Rubia, K. (2008). Brain activation in paediatric obsessive compulsive disorder during tasks of inhibitory control. British Journal of Psychiatry, 192, 2531.CrossRefGoogle ScholarPubMed
Yakovlev, P. I., & Lecours, A. R. (1967). The myelogenetic cycles of regional maturation of the brain. In Minkowski, A. (Ed.), Regional development of the brain in early life (pp. 370). Oxford: Blackwell Scientific.Google Scholar
Zald, D. H., & Iacono, W. G. (1998). The development of spatial working memory abilities. Developmental Neuropsychology, 14, 563578.CrossRefGoogle Scholar