Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-04T18:35:14.764Z Has data issue: false hasContentIssue false

Neural substrates of trait impulsivity, anhedonia, and irritability: Mechanisms of heterotypic comorbidity between externalizing disorders and unipolar depression

Published online by Cambridge University Press:  14 October 2016

Aimee Zisner
Affiliation:
The Ohio State University
Theodore P. Beauchaine*
Affiliation:
The Ohio State University
*
Address correspondence and reprint requests to: Theodore P. Beauchaine, Department of Psychology, The Ohio State University, 225 Psychology Building, 1835 Neil Avenue, Columbus, OH 43210; E-mail: [email protected].

Abstract

Trait impulsivity, which is often defined as a strong preference for immediate over delayed rewards and results in behaviors that are socially inappropriate, maladaptive, and short-sighted, is a predisposing vulnerability to all externalizing spectrum disorders. In contrast, anhedonia is characterized by chronically low motivation and reduced capacity to experience pleasure, and is common to depressive disorders. Although externalizing and depressive disorders have virtually nonoverlapping diagnostic criteria in the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders, heterotypic comorbidity between them is common. Here, we review common neural substrates of trait impulsivity, anhedonia, and irritability, which include both low tonic mesolimbic dopamine activity and low phasic mesolimbic dopamine responding to incentives during reward anticipation and associative learning. We also consider how other neural networks, including bottom-up emotion generation systems and top-down emotion regulation systems, interact with mesolimbic dysfunction to result in alternative manifestations of psychiatric illness. Finally, we present a model that emphasizes a translational, transdiagnostic approach to understanding externalizing/depression comorbidity. This model should refine ways in which internalizing and externalizing disorders are studied, classified, and treated.

Type
Special Issue Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achenbach, T. M. (2011). Child Behavior Checklist. In Kreutzer, J. S., DeLuca, J., & Caplan, B. (Eds.), Encyclopedia of clinical neuropsychology (pp. 546552). New York: Springer.Google Scholar
Achenbach, T. M., & Edelbrock, C. (1983). Manual for the Child Behavior Checklist and Revised Child Behavior Profile. Burlingron, VT: University of Vermont, Department of Psychiatry.Google Scholar
Adriani, W., Boyer, F., Gioiosa, L., Macri, S., Dreyer, J. L., & Laviola, G. (2009). Increased impulsive behavior and risk proneness following lentivirus-mediated dopamine transporter over-expression in rats’ nucleus accumbens. Neuroscience, 159, 4758.Google Scholar
Allely, C. S. (2014). The association of ADHD symptoms to self-harm behaviours: A systematic PRISMA review. BMC Psychiatry, 14, 133.Google Scholar
Ambrosini, P. J., Bennett, D. S., & Elia, J. (2013). Attention deficit hyperactivity disorder characteristics: II. Clinical correlates of irritable mood. Journal of Affective Disorders, 145, 7076.Google Scholar
American Psychiatric Association. (1980). Diagnostic and statistical manual of mental disorders (3rd ed.). Washington, DC: Author.Google Scholar
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: Author.Google Scholar
Angold, A., Costello, E. J., & Erkanli, A. (1999). Comorbidity. Journal of Child Psychology and Psychiatry, 40, 5787.Google Scholar
Archer, T., Oscar-Berman, M., Blum, K., & Gold, M. (2012). Neurogenics and epigenetics of impulsive behaviour: Impact on reward circuitry. Journal of Genetic Syndromes and Gene Therapy, 3, 1000115.Google Scholar
Arnone, D., McKie, S., Elliott, R., Thomas, E. J., Downey, D., Juhasz, G., et al. (2012). Increased amygdala responses to sad but not fearful faces in major depression: Relation to mood state and pharmacological treatment. American Journal of Psychiatry, 169, 841850.Google Scholar
Arnsten, A. F. (2006). Stimulants: Therapeutic actions in ADHD. Neuropsychopharmacology, 31, 23762383.Google Scholar
Ashby, F. G., Isen, A. M., & Turken, A. U. (1999). A neuropsychological theory of positive affect and its influence on cognition. Psychological Review, 106, 529550.Google Scholar
Bar-Haim, Y., Fox, N. A., Benson, B., Guyer, A. E., Williams, A., Nelson, E. E., et al. (2009). Neural correlates of reward processing in adolescents with a history of inhibited temperament. Psychological Science, 20, 10091018.Google Scholar
Bartra, O., McGuire, J. T., & Kable, J. W. (2013). The valuation system: A coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. NeuroImage, 76, 412427.Google Scholar
Baskin-Sommers, A., & Foti, D. (2015). Abnormal reward functioning across substance use and major depression: Considering reward as a transdiagnostic mechanism. International Journal of Psychophysiology, 98, 227239.Google Scholar
Beauchaine, T. P. (2001). Vagal tone, development, and Gray's motivational theory: Toward an integrated model of autonomic nervous system functioning in psychopathology. Development and Psychopathology, 13, 183214.Google Scholar
Beauchaine, T. P. (2012). Physiological markers of emotion and behavior dysregulation in externalizing psychopathology. Monographs of the Society for Research in Child Development, 77, 7986.Google Scholar
Beauchaine, T. P. (2015a). Future directions in emotion dysregulation and youth psychopathology. Journal of Clinical Child and Adolescent Psychology, 44, 875896.Google Scholar
Beauchaine, T. P. (2015b). Respiratory sinus arrhythmia: A transdiagnostic biomarker of emotion dysregulation and psychopathology. Current Opinion in Psychology, 3, 4347.Google Scholar
Beauchaine, T. P., & Gatzke-Kopp, L. M. (2012). Instantiating the multiple levels of analysis perspective in a program of study on externalizing behavior. Development and Psychopathology, 24, 10031018.Google Scholar
Beauchaine, T. P., Gatzke-Kopp, L. M., & Gizer, I. (in press). Genetic and environmental influences on behavior. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Child and adolescent psychopathology (3rd ed.). Hoboken, NJ: Wiley.Google Scholar
Beauchaine, T. P., Gatzke-Kopp, L., & Mead, H. K. (2007). Polyvagal theory and developmental psychopathology: Emotion dysregulation and conduct problems from preschool to adolescence. Biological Psychology, 74, 174184.CrossRefGoogle ScholarPubMed
Beauchaine, T. P., Hinshaw, S. P., & Pang, K. L. (2010). Comorbidity of attention-deficit/hyperactivity disorder and early-onset conduct disorder: Biological, environmental, and developmental mechanisms. Clinical Psychology: Science and Practice, 17, 327336.Google Scholar
Beauchaine, T. P., Katkin, E. S., Strassberg, Z., & Snarr, J. (2001). Disinhibitory psychopathology in male adolescents: Discriminating conduct disorder from attention-deficit/hyperactivity disorder through concurrent assessment of multiple autonomic states. Journal of Abnormal Psychology, 110, 610624.Google Scholar
Beauchaine, T. P., & Klein, D. N. (in press). Classifying psychopathology: The DSM, empirically-based taxonomies, and the Research Domain Criteria. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Child and adolescent psychopathology (3rd ed.). Hoboken, NJ: Wiley.Google Scholar
Beauchaine, T. P., Klein, D. N., Crowell, S. E., Derbidge, C., & Gatzke-Kopp, L. M. (2009). Multifinality in the development of personality disorders: A Biology × Sex × Environment interaction model of antisocial and borderline traits. Development and Psychopathology, 21, 735770.Google Scholar
Beauchaine, T. P., Lenzenweger, M. F., & Waller, N. G. (2008). Schizotypy, taxometrics, and disconfirming theories in soft science: Comment on Rawlings, Williams, Haslam, and Claridge. Personality and Individual Differences, 44, 16521662.Google Scholar
Beauchaine, T. P., & Marsh, P. (2006). Taxometric methods: Enhancing early detection and prevention of psychopathology by identifying latent vulnerability traits. In Cicchetti, D. & Cohen, D. (Eds.), Developmental psychopathology (2nd ed., pp. 931967). Hoboken, NJ: Wiley Google Scholar
Beauchaine, T. P., & McNulty, T. (2013). Comorbidities and continuities as ontogenic processes: Toward a developmental spectrum model of externalizing behavior. Development and Psychopathology, 25, 15051528.Google Scholar
Beauchaine, T. P., & Neuhaus, E. (in press). Impulsivity and vulnerability to psychopathology. In Beauchaine, T. P., & Hinshaw, S. P. (Eds.), Child and adolescent psychopathology (3rd ed.). Hoboken, NJ: Wiley.Google Scholar
Beauchaine, T. P., Neuhaus, E., Brenner, S. L., & Gatzke-Kopp, L. (2008). Ten good reasons to consider biological processes in prevention and intervention research. Development and Psychopathology, 20, 745774.Google Scholar
Beauchaine, T. P., Neuhaus, E., Gatzke-Kopp, L. M., Reid, M. J., Brekke, A., Olliges, A., et al. (2016). Electrodermal responding predicts responses to, and may be altered by, preschool intervention for ADHD. Journal of Consulting and Clinical Psychology, 83, 293303.CrossRefGoogle Scholar
Beauchaine, T. P., Neuhaus, E., Zalewski, M., Crowell, S. E., & Potapova, N. (2011). The effects of allostatic load on neural systems subserving motivation, mood regulation, and social affiliation. Development and Psychopathology, 23, 975999.Google Scholar
Beauchaine, T. P., Shader, T. M., & Hinshaw, S. P. (2016). An ontogenic process model of externalizing psychopathology. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Oxford handbook of externalizing spectrum disorders (pp. 485501). New York: Oxford University Press.Google Scholar
Beauchaine, T. P., & Thayer, J. F. (2015). Heart rate variability as a transdiagnostic biomarker of psychopathology. International Journal of Psychophysiology, 98, 338350.Google Scholar
Beauchaine, T. P., Zisner, A., & Sauder, C. L. (in press). Trait impulsivity and the externalizing spectrum. Annual Review of Clinical Psychology.Google Scholar
Beaulieu, J. M., & Gainetdinov, R. R. (2011). The physiology, signaling, and pharmacology of dopamine receptors. Pharmacological Reviews, 63, 182217.Google Scholar
Beck, A., Schlagenhauf, F., Wustenberg, T., Hein, J., Kienast, T., Kahnt, T., et al. (2009). Ventral striatal activation during reward anticipation correlates with impulsivity in alcoholics. Biological Psychiatry, 66, 734742.Google Scholar
Benegal, V., Antony, G., Venkatasubramanian, G., & Jayakumar, P. N. (2007). Imaging study: Gray matter volume abnormalities and externalizing symptoms in subjects at high risk for alcohol dependence. Addiction Biology, 12, 122132.Google Scholar
Berlin, I., Givry-Steiner, L., Lecrubier, Y., & Puech, A. J. (1998). Measures of anhedonia and hedonic responses to sucrose in depressive and schizophrenic patients in comparison with healthy subjects. European Psychiatry, 13, 303309.Google Scholar
Berridge, K. C., & Kringelbach, M. L. (2015). Pleasure systems in the brain. Neuron, 86, 646664.Google Scholar
Berridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience? Brain Research Reviews, 28, 309369.Google Scholar
Berridge, K. C., & Robinson, T. E. (2003). Parsing reward. Trends in Neurosciences, 26, 507513.Google Scholar
Bettencourt, B., Talley, A., Benjamin, A. J., & Valentine, J. (2006). Personality and aggressive behavior under provoking and neutral conditions: A meta-analytic review. Psychological Bulletin, 132, 751777.Google Scholar
Bevan, L. W. (1899). A textbook of mental diseases. London: Charles Griffin.Google Scholar
Bezdjian, S., Baker, L. A., Lozano, D. I., & Raine, A. (2009). Assessing inattention and impulsivity in children during the Go/NoGo task. British Journal of Developmental Psychology, 27, 365383.Google Scholar
Bickel, W. K., Odum, A. L., & Madden, G. J. (1999). Impulsivity and cigarette smoking: Delay discounting in current, never, and ex-smokers. Psychopharmacology, 146, 447454.Google Scholar
Biederman, J., Ball, S. W., Monuteaux, M. C., Mick, E., Spencer, T. J., McCreary, M., et al. (2008). New insights into the comorbidity between ADHD and major depression in adolescent and young adult females. Journal of the American Academy of Child & Adolescent Psychiatry, 47, 426434.Google Scholar
Björklund, A., & Dunnett, S. B. (2007). Dopamine neuron systems in the brain: An update. Trends in Neurosciences, 30, 194202.Google Scholar
Blackman, G. L., Ostrander, R., & Herman, K. C. (2005). Children with ADHD and depression: A multisource, multimethod assessment of clinical, social, and academic functioning. Journal of Attention Disorders, 8, 195207.Google Scholar
Bleuler, E. (1911). Dementia praecox oder gruppe der schizophrenien/dementia praecox or the group of schizophrenias. New York: International Universities Press.Google Scholar
Blum, K., Braverman, E. R., Holder, J. M., Lubar, J. F., Monastra, V. J., Miller, D., et al. (2000). The reward deficiency syndrome: A biogenetic model for the diagnosis and treatment of impulsive, addictive and compulsive behaviors. Journal of Psychoactive Drugs, 32(S1), 1112.Google Scholar
Blum, K., Chen, A. L. C., Braverman, E. R., Comings, D. E., Chen, T. J., Arcuri, V., et al. (2008). Attention-deficit-hyperactivity disorder and reward deficiency syndrome. Neuropsychiatric Disease and Treatment, 4, 893918.Google Scholar
Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8, 539546.Google Scholar
Brenner, S. L., Beauchaine, T. P., & Sylvers, P. D. (2005). A comparison of psychophysiological and self-report measures of BAS and BIS activation. Psychophysiology, 42, 108115.Google Scholar
Bress, J. N., Meyer, A., & Proudfit, G. H. (2015). The stability of the feedback negativity and its relationship with depression during childhood and adolescence. Development and Psychopathology. Advance online publication.Google Scholar
Bress, J. N., Smith, E., Foti, D., Klein, D. N., & Hajcak, G. (2012). Neural response to reward and depressive symptoms in late childhood to early adolescence. Biological Psychology, 89, 156162.Google Scholar
Bressan, R. A., & Crippa, J. A. (2005). The role of dopamine in reward and pleasure behaviour—Review of data from preclinical research. Acta Psychiatrica Scandinavica, 111(S427), 1421.Google Scholar
Brown, M. Z., Comtois, K. A., & Linehan, M. M. (2002). Reasons for suicide attempts and nonsuicidal self-injury in women with borderline personality disorder. Journal of Abnormal Psychology, 111, 198202.Google Scholar
Buckner, J. D., Joiner, T. E., Pettit, J. W., Lewinsohn, P. M., & Schmidt, N. B. (2008). Implications of the DSM's emphasis on sadness and anhedonia in major depressive disorder. Psychiatry Research, 159, 2530.Google Scholar
Bucknill, J. C., & Tuke, D. H. (1874). A manual of psychological medicine. London: Churchill Google Scholar
Buhle, J. T., Silvers, J. A., Wager, T. D., Lopez, R., Onyemekwu, C., Kober, H., et al. (2014). Cognitive reappraisal of emotion: A meta-analysis of human neuroimaging studies. Cerebral Cortex, 24, 29812990.Google Scholar
Bush, G. (2011). Cingulate, frontal, and parietal cortical dysfunction in attention-deficit/hyperactivity disorder. Biological Psychiatry, 69, 11601167.Google Scholar
Bush, G., Valera, E. M., & Seidman, L. J. (2005). Functional neuroimaging of attention-deficit/hyperactivity disorder: A review and suggested future directions. Biological Psychiatry, 57, 12731284.Google Scholar
Cagniard, B., Balsam, P. D., Brunner, D., & Zhuang, X. (2006). Mice with chronically elevated dopamine exhibit enhanced motivation, but not learning, for a food reward. Neuropsychopharmacology, 31, 13621370.Google Scholar
Calabrese, E. J. (2001). Dopamine: Biphasic dose responses. Critical Reviews in Toxicology, 31, 563583.Google Scholar
Campbell, S., Marriott, M., Nahmias, C., & MacQueen, G. M. (2004). Lower hippocampal volume in patients suffering from depression: A meta-analysis. American Journal of Psychiatry, 161, 598607.Google Scholar
Cannon, C. M., & Palmiter, R. D. (2003). Reward without dopamine. Journal of Neuroscience, 23, 1082710831.Google Scholar
Cardinal, R. N., Pennicott, D. R., Lakmali, C., Robbins, T. W., & Everitt, B. J. (2001). Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science, 292, 24992501.Google Scholar
Carmona, S., Hoekzema, E., Ramos-Quiroga, J. A., Richarte, V., Canals, C., Bosch, R., et al. (2012). Response inhibition and reward anticipation in medication-naïve adults with attention-deficit/hyperactivity disorder: A within-subject case-control neuroimaging study. Human Brain Mapping, 33, 23502361.Google Scholar
Carmona, S., Proal, E., Hoekzema, E. A., Gispert, J. D., Picado, M., Moreno, I., et al. (2009). Ventro-striatal reductions underpin symptoms of hyperactivity and impulsivity in attention-deficit/hyperactivity disorder. Biological Psychiatry, 66, 972977.Google Scholar
Casey, B. J. (2015). Beyond simple models of self-control to circuit-based accounts of adolescent behavior. Annual Review of Psychology, 66, 295319.Google Scholar
Chambers, R. A., Taylor, J. R., & Potenza, M. N. (2003). Developmental neurocircuitry of motivation in adolescence: A critical period of addiction vulnerability. American Journal of Psychiatry, 160, 10411052.CrossRefGoogle ScholarPubMed
Chan, Y.-F., Dennis, M. L., & Funk, R. R. (2008). Prevalence and comorbidity of major internalizing and externalizing problems among adolescents and adults presenting to substance abuse treatment. Journal of Substance Abuse Treatment, 34, 1424.Google Scholar
Chapman, L. J., Chapman, J. P., & Raulin, M. L. (1976). Scales for physical and social anhedonia. Journal of Abnormal Psychology, 85, 374382.Google Scholar
Charney, D. S., & Manji, H. K. (2004). Life stress, genes, and depression: Multiple pathways lead to increased risk and new opportunities for intervention. Science Signaling, 225, re5.Google Scholar
Chentsova-Dutton, Y., & Hanley, K. (2010). The effects of anhedonia and depression on hedonic responses. Psychiatry Research, 179, 176180.CrossRefGoogle ScholarPubMed
Chikazoe, J., Lee, D. H., Kriegeskorte, N., & Anderson, A. K. (2014). Population coding of affect across stimuli, modalities and individuals. Nature Neuroscience, 17, 11141122.Google Scholar
Chronis-Tuscano, A., Molina, B. S., Pelham, W. E., Applegate, B., Dahlke, A., Overmyer, M., et al. (2010). Very early predictors of adolescent depression and suicide attempts in children with attention-deficit/hyperactivity disorder. Archives of General Psychiatry, 67, 10441051.Google Scholar
Cicchetti, D., & Rogosch, F. A. (1996). Equifinality and multifinality in developmental psychopathology. Development and Psychopathology, 8, 597600.Google Scholar
Clark, D. C., Fawcett, J., Salazar-Grueso, E., & Fawcett, E. (1984). Seven-month clinical outcome of anhedonic and normally hedonic depressed inpatients. American Journal of Psychiatry, 141, 12161220.Google Scholar
Clark, L. A. (2005). Temperament as a unifying basis for personality and psychopathology. Journal of Abnormal Psychology, 114, 505521.Google Scholar
Clauss, J. A., Avery, S. N., & Blackford, J. U. (2015). The nature of individual differences in inhibited temperament and risk for psychiatric disease: A review and meta-analysis. Progress in Neurobiology, 127, 2345.Google Scholar
Clouston, T. S. (1896). Clinical lectures on mental diseases. London: Churchill.Google Scholar
Cohn, M. D., Veltman, D. J., Pape, L. E., van Lith, K., Vermeiren, R. R. J. M., van den Brink, W., et al. (2015). Incentive processing in persistent disruptive behavior and psychopathic traits: A functional magnetic resonance imaging study in adolescents. Biological Psychiatry, 78, 615624.Google Scholar
Conner, K. R., Meldrum, S., Wieczorek, W. F., Duberstein, P. R., & Welte, J. W. (2004). The association of irritability and impulsivity with suicidal ideation among 15- to 20-year-old males. Suicide and Life-Threatening Behavior, 34, 363373.Google Scholar
Corr, P. J., & McNaughton, N. (2016). Neural mechanisms of low trait anxiety and risk for externalizing behavior. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Oxford handbook of externalizing spectrum disorders (pp. 220238). New York: Oxford University Press.Google Scholar
Correa, M., Carlson, B. B., Wisniecki, A., & Salamone, J. D. (2002). Nucleus accumbens dopamine and work requirements on interval schedules. Behavioural Brain Research, 137, 179187.Google Scholar
Costello, E. J., Mustillo, S., Erkanli, A., Keeler, G., & Angold, A. (2003). Prevalence and development of psychiatric disorders in childhood and adolescence. Archives of General Psychiatry, 60, 837844.Google Scholar
Crowell, S., Beauchaine, T. P., Gatzke-Kopp, L., Sylvers, P., Mead, H., & Chipman-Chacon, J. (2006). Autonomic correlates of attention-deficit/hyperactivity disorder and oppositional defiant disorder in preschool children. Journal of Abnormal Psychology, 115, 174178.Google Scholar
Crowell, S. E., Beauchaine, T. P., Hsiao, R. C. J., Vasilev, C. A., Yaptangco, M., Linehan, M. M., et al. (2012). Differentiating adolescent self-injury from adolescent depression: Possible implications for borderline personality development. Journal of Abnormal Child Psychology, 40, 4557.Google Scholar
Crowell, S. E., Beauchaine, T. P., & Linehan, M. (2009). A biosocial developmental model of borderline personality: Elaborating and extending Linehan's theory. Psychological Bulletin, 135, 495510.Google Scholar
Crowell, S., Beauchaine, T. P., McCauley, E., Smith, C., Stevens, A. L., & Sylvers, P. (2005). Psychological, autonomic, and serotonergic correlates of parasuicidal behavior in adolescent girls. Development and Psychopathology, 17, 11051127.Google Scholar
Crowell, S. E., Beauchaine, T. P., McCauley, E., Smith, C. J., Vasilev, C. A., & Stevens, A. L. (2008). Parent–child interactions, peripheral serotonin, and self-inflicted injury in adolescents. Journal of Consulting and Clinical Psychology, 76, 1521.Google Scholar
Crowell, S. E., Derbidge, C., & Beauchaine, T. P. (2014). Developmental approaches to understanding self-injury and suicidal behaviors. In Nock, M. K. (Ed.), The Oxford handbook of suicide and self-injury (pp. 183205). New York: Oxford University Press.Google Scholar
Crowell, S. E., Kaufman, E., & Beauchaine, T. P. (2014). A biopsychosocial model of borderline personality development: Theory and empirical evidence. In Tackett, J. & Sharp, C. (Eds.), Handbook of borderline personality disorder in children and adolescents (pp. 143158). New York: Springer.Google Scholar
Crowell, S. E., Kaufman, E. A., & Lenzenweger, M. F. (2013). The development of borderline personality and self-inflicted injury. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Child and adolescent psychopathology (2nd ed., pp. 577609). Hoboken, NJ: Wiley.Google Scholar
Cubillo, A., Halari, R., Smith, A., Taylor, E., & Rubia, K. (2012). A review of fronto-striatal and fronto-cortical brain abnormalities in children and adults with attention deficit hyperactivity disorder (ADHD) and new evidence for dysfunction in adults with ADHD during motivation and attention. Cortex, 48, 194215.Google Scholar
Cuellar, A. K., Johnson, S. L., & Winters, R. (2005). Distinctions between bipolar and unipolar depression. Clinical Psychology Review, 25, 307339.Google Scholar
Dalley, J. W., Fryer, T. D., Brichard, L., Robinson, E. S., Theobald, D. E., Lääne, K., et al. (2007). Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science, 315, 12671270.Google Scholar
Dalley, J. W., Mar, A. C., Economidou, D., & Robbins, T. W. (2008). Neurobehavioral mechanisms of impulsivity: Fronto-striatal systems and functional neurochemistry. Pharmacology Biochemistry and Behavior, 90, 250260.Google Scholar
D'Amour-Horvat, V., & Leyton, M. (2014). Impulsive actions and choices in laboratory animals and humans: Effects of high vs. low dopamine states produced by systemic treatments given to neurologically intact subjects. Frontiers in Behavioral Neuroscience, 8, 432.Google Scholar
Dannlowski, U., Ohrmann, P., Konrad, C., Domschke, K., Bauer, J., Kugel, H., et al. (2009). Reduced amygdala-prefrontal coupling in major depression: Association with MAOA genotype and illness severity. International Journal of Neuropsychopharmacology, 12, 1122.Google Scholar
Davis, M., & Whalen, P. J. (2001). The amygdala: Vigilance and emotion. Molecular Psychiatry, 6, 1334.Google Scholar
Daviss, W. B. (2008). A review of co-morbid depression in pediatric ADHD: Etiologies, phenomenology, and treatment. Journal of Child and Adolescent Psychopharmacology, 18, 565571.Google Scholar
De Brito, S. A., Mechelli, A., Wilke, M., Laurens, K. R., Jones, A. P., Barker, G. J., et al. (2009). Size matters: Increased grey matter in boys with conduct problems and callous–unemotional traits. Brain, 132, 843852.Google Scholar
Degnan, K. A., Hane, A. A., Henderson, H. A., Moas, O. L., Reeb-Sutherland, B. C., & Fox, N. A. (2011). Longitudinal stability of temperamental exuberance and social-emotional outcomes in early childhood. Developmental Psychology, 47, 765780.Google Scholar
Denk, F., Walton, M. E., Jennings, K. A., Sharp, T., Rushworth, M. F. S., & Bannerman, D. M. (2005). Differential involvement of serotonin and dopamine systems in cost-benefit decisions about delay or effort. Psychopharmacology, 179, 587596.Google Scholar
de la Cruz, L. F., Simonoff, E., McGough, J. J., Halperin, J. M., Arnold, L. E., & Stringaris, A. (2015). Treatment of children with attention-deficit/hyperactivity disorder (ADHD) and irritability: Results from the Multimodal Treatment Study of Children with ADHD (MTA). Journal of the American Academy of Child & Adolescent Psychiatry, 54, 6270.Google Scholar
De Pauw, S. S., & Mervielde, I. (2010). Temperament, personality and developmental psychopathology: A review based on the conceptual dimensions underlying childhood traits. Child Psychiatry and Human Development, 41, 313329.Google Scholar
Depue, R. A., Luciana, M., Arbisi, P., Collins, P., & Leon, A. (1994). Dopamine and the structure of personality: Relation of agonist-induced dopamine activity to positive emotionality. Journal of Personality and Social Psychology, 67, 485498.Google Scholar
Derbidge, C. M., & Beauchaine, T. P. (2014). A developmental model of self-inflicted injury, borderline personality, and suicide risk. In Lewis, M. & Rudolph, K. (Eds.), Handbook of developmental psychopathology (pp. 521542). New York: Springer.Google Scholar
Diamond, A. (2005). Attention-deficit disorder (ADHD without hyperactivity): A neurobiologically and behaviorally distinct disorder from ADHD (with hyperactivity). Development and Psychopathology, 17, 807825.Google Scholar
Dichter, G. S., Kozink, R. V., McClernon, F. J., & Smoski, M. J. (2012). Remitted major depression is characterized by reward network hyperactivation during reward anticipation and hypoactivation during reward outcomes. Journal of Affective Disorders, 136, 11261134.Google Scholar
Dichter, G. S., Smoski, M. J., Kampov-Polevoy, A. B., Gallop, R., & Garbutt, J. C. (2010). Unipolar depression does not moderate responses to the Sweet Taste Test. Depression and Anxiety, 27, 859863.Google Scholar
Diergaarde, L., Pattij, T., Poortvliet, I., Hogenboom, F., de Vries, W., Schoffelmeer, A. N., et al. (2008). Impulsive choice and impulsive action predict vulnerability to distinct stages of nicotine seeking in rats. Biological Psychiatry, 63, 301308.Google Scholar
Dillon, D. G., & Pizzagalli, D. A. (2007). Inhibition of action, thought, and emotion: A selective neurobiological review. Applied and Preventive Psychology, 12, 99114.Google Scholar
Dimoska, A., & Johnstone, S. J. (2007). Neural mechanisms underlying trait impulsivity in non-clinical adults: Stop-signal performance and event-related potentials. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 31, 443454.Google Scholar
Dombrovski, A. Y., Clark, L., Siegle, G. J., Butters, M. A., Ichikawa, N., Sahakian, B. J., et al. (2010). Reward/punishment reversal learning in older suicide attempters. American Journal of Psychiatry, 167, 699707.Google Scholar
Downson, J. H., & Blackwell, A. D. (2010). Impulsive aggression in adults with attention-deficit/hyperactivity disorder. Acta Psychiatrica Scandinavica, 121, 103110.Google Scholar
Drevets, W. C., Gautier, C., Price, J. C., Kupfer, D. J., Kinahan, P. E., Grace, A. A., et al. (2001). Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biological Psychiatry, 49, 8196.Google Scholar
Dryman, A., & Eaton, W. W. (1991). Affective symptoms associated with the onset of major depression in the community: Findings from the US National Institute of Mental Health Epidemiologic Catchment Area Program. Acta Psychiatrica Scandinavica, 84, 15.Google Scholar
Eagle, D. M., Tufft, M. R., Goodchild, H. L., & Robbins, T. W. (2007). Differential effects of modafinil and methylphenidate on stop-signal reaction time task performance in the rat, and interactions with the dopamine receptor antagonist cis-flupenthixol. Psychopharmacology, 192, 193206.Google Scholar
Eaton, N. R., Krueger, R. F., Keyes, K. M., Skodol, A. E., Markon, K. E., Grant, B. F., et al. (2011). Borderline personality disorder co-morbidity: Relationship to the internalizing–externalizing structure of common mental disorders. Psychological Medicine, 41, 10411050.Google Scholar
Ehring, T., Tuschen-Caffier, B., Schnülle, J., Fischer, S., & Gross, J. J. (2010). Emotion regulation and vulnerability to depression: Spontaneous versus instructed use of emotion suppression and reappraisal. Emotion, 10, 563572.Google Scholar
Eisenberger, N. I., Berkman, E. T., Inagaki, T. K., Rameson, L. T., Mashal, N. M., & Irwin, M. R. (2010). Inflammation-induced anhedonia: Endotoxin reduces ventral striatum responses to reward. Biological Psychiatry, 68, 748754.Google Scholar
Eppinger, H., & Hess, L. (1915). Vagotonia: A clinical study in negative neurology. New York: Nervous and Mental Disease Publishing Co. (Original work published 1910)Google Scholar
Ernst, C., Lalovic, A., Lesage, A., Seguin, M., Tousignant, M., & Turecki, G. (2004). Suicide and no Axis I psychopathology. BMC Psychiatry, 4, 7.Google Scholar
Etkin, A., Egner, T., & Kalisch, R. (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends in Cognitive Sciences, 15, 8593.Google Scholar
Everitt, B. J., & Robbins, T. W. (2013). From the ventral to the dorsal striatum: Devolving views of their roles in drug addiction. Neuroscience & Biobehavioral Reviews, 37, 19461954.Google Scholar
Ezpeleta, L., Domènech, J. M., & Angold, A. (2006). A comparison of pure and comorbid CD/ODD and depression. Journal of Child Psychology and Psychiatry, 47, 704712.Google Scholar
Faraone, S. V., Biederman, J., & Mick, E. (2006). The age-dependent decline of attention deficit hyperactivity disorder: A meta-analysis of follow-up studies. Psychological Medicine, 36, 159166.Google Scholar
Faraone, S. V., & Mick, E. (2010). Molecular genetics of attention deficit hyperactivity disorder. Psychiatric Clinics of North America, 33, 159180.Google Scholar
Faraone, S. V., Perlis, R. H., Doyle, A. E., Smoller, J. W., Goralnick, J. J., Holmgren, M. A., et al. (2005). Molecular genetics of attention-deficit/hyperactivity disorder. Biological Psychiatry, 57, 13131323.Google Scholar
Fava, M., Hwang, I., Rush, A. J., Sampson, N., Walters, E. E., & Kessler, R. C. (2010). The importance of irritability as a symptom of major depressive disorder: Results from the National Comorbidity Survey Replication. Molecular Psychiatry, 15, 856867.Google Scholar
Fawcett, J., Clark, D. C., Scheftner, W. A., & Gibbons, R. D. (1983). Assessing anhedonia in psychiatric patients: The Pleasure Scale. Archives of General Psychiatry, 40, 7984.Google Scholar
Fawcett, J., Scheftner, W. A., Fogg, L., Clark, D. C., Young, M. A., Hedeker, D., et al. (1990). Time-related predictors of suicide in major affective disorder. American Journal of Psychiatry, 147, 11891194.Google Scholar
Feola, T. W., de Wit, H., & Richards, J. B. (2000). Effects of d-amphetamine and ethanol on a measure of behavioral inhibition in rats. Behavioral Neuroscience, 114, 838848.Google Scholar
Ferdinand, R. F., Dieleman, G., Ormel, J., & Verhulst, F. C. (2007). Homotypic versus heterotypic continuity of anxiety symptoms in young adolescents: Evidence for distinctions between DSM-IV subtypes. Journal of Abnormal Child Psychology, 35, 325333.Google Scholar
Fineberg, N. A., Potenza, M. N., Chamberlain, S. R., Berlin, H. A., Menzies, L., Bechara, A., et al. (2010). Probing compulsive and impulsive behaviors, from animal models to endophenotypes: A narrative review. Neuropsychopharmacology, 35, 591604.Google Scholar
Finlay, J. M., Zigmond, M. J., & Abercrombie, E. D. (1995). Increased dopamine and norepinephrine release in medial prefrontal cortex induced by acute and chronic stress: Effects of diazepam. Neuroscience, 64, 619628.Google Scholar
First, M. B. (2005). Mutually exclusive versus co-occurring diagnostic categories: The challenge of diagnostic comorbidity. Psychopathology, 38, 206210.Google Scholar
Floresco, S. B., Maric, T. L., & Ghods-Sharifi, S. (2008). Dopaminergic and glutamatergic regulation of effort- and delay-based decision making. Neuropsychopharmacology, 33, 19661979.Google Scholar
Forbes, E. E., & Dahl, R. E. (2005). Neural systems of positive affect: Relevance to understanding child and adolescent depression? Development and Psychopathology, 17, 827850.Google Scholar
Forbes, E. E., & Dahl, R. E. (2011). Research review: Altered reward function in adolescent depression: What, when and how? Journal of Child Psychology and Psychiatry, 53, 315.Google Scholar
Forbes, E., Hariri, A., Martin, S., Silk, J., Moyles, D., Fisher, P., et al. (2009). Altered striatal activation predicting real-world positive affect in adolescent major depressive disorder. American Journal of Psychiatry, 166, 6473.Google Scholar
Forbes, E. E., May, J. C., Siegle, G. J., Ladouceur, C. D., Ryan, N. D., Carter, C. S., et al. (2006). Reward-related decision-making in pediatric major depressive disorder: An fMRI study. Journal of Child Psychology and Psychiatry, 47, 10311040.Google Scholar
Foti, D., Carlson, J. M., Sauder, C. L., & Proudfit, G. H. (2014). Reward dysfunction in major depression: Multimodal neuroimaging evidence for refining the melancholic phenotype. NeuroImage, 101, 5058.Google Scholar
Fowles, D. C. (1980). The three arousal model: Implications of Gray's two-factor learning theory for heart rate, electrodermal activity, and psychopathy. Psychophysiology, 17, 87104.Google Scholar
Fowles, D. C. (1988). Psychophysiology and psychopathology: A motivational approach. Psychophysiology, 25, 373391.Google Scholar
Frodl, T., & Skokauskas, N. (2012). Meta-analysis of structural MRI studies in children and adults with attention deficit hyperactivity disorder indicates treatment effects. Acta Psychiatrica Scandinavica, 125, 114126.Google Scholar
Frodl, T., Stauber, J., Schaaff, N., Koutsouleris, N., Scheuerecker, J., Ewers, M., et al. (2010). Amygdala reduction in patients with ADHD compared with major depression and healthy volunteers. Acta Psychiatrica Scandinavica, 121, 111118.Google Scholar
Furukawa, E., Bado, P., Tripp, G., Mattos, P., Wickens, J. R., Bramati, I. E., et al. (2014). Abnormal striatal BOLD responses to reward anticipation and reward delivery in ADHD. PLOS ONE, 9, e89129.Google Scholar
Gabbay, V., Johnson, A. R., Alonso, C. M., Evans, L. K., Babb, J. S., & Klein, R. G. (2015). Anhedonia, but not irritability, is associated with illness severity outcomes in adolescent major depression. Journal of Child and Adolescent Psychopharmacology, 25, 194200.Google Scholar
Gao, Y., Raine, A., Venables, P. H., Dawson, M. E., & Mednick, S. A. (2010). Reduced electrodermal fear conditioning from ages 3 to 8 years is associated with aggressive behavior at age 8 years. Journal of Child Psychology and Psychiatry, 51, 550558.Google Scholar
Gard, D. E., Gard, M. G., Kring, A. M., & John, O. P. (2006). Anticipatory and consummatory components of the experience of pleasure: A scale development study. Journal of Research in Personality, 40, 10861102.Google Scholar
Gatzke-Kopp, L. M. (2011). Canary in the coal mine: Sensitivity of mesolimbic dopamine to environmental adversity during development. Neuroscience & Biobehavioral Reviews, 35, 794803.Google Scholar
Gatzke-Kopp, L. M., & Beauchaine, T. P. (2007). Central nervous system substrates of impulsivity. In Coch, D., Dawson, G., & Fischer, K. W. (Eds.), Human behavior, learning, and the developing brain: Atypical development (pp. 239263). New York: Guilford Press.Google Scholar
Gatzke-Kopp, L. M., Beauchaine, T. P., Shannon, K. E., Chipman-Chacon, J., Fleming, A. P., Crowell, S. E., et al. (2009). Neurological correlates of reward responding in adolescents with and without externalizing behavior disorders. Journal of Abnormal Psychology, 118, 203213.Google Scholar
Gau, S. S.-F., Ni, H.-C., Shang, C.-Y., Soong, W.-T., Wu, Y.-Y., Lin, L.-Y., et al. (2010). Psychiatric comorbidity among children and adolescents with and without persistent attention-deficit/hyperactivity disorder. Australian and New Zealand Journal of Psychiatry, 44, 135143.Google Scholar
Gilliom, M., & Shaw, D. S. (2004). Codevelopment of externalizing and internalizing problems in early childhood. Development and Psychopathology, 16, 313333.Google Scholar
Gizer, I., Otto, J. M., & Ellingson, J. M. (2016). Molecular genetics of the externalizing spectrum. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Oxford handbook of externalizing spectrum disorders (pp. 149169). New York: Oxford University Press.Google Scholar
Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences, 101, 81748179.Google Scholar
Goldsmith, H. H., Lemery, K. S., Aksan, N., & Buss, K. A. (2000). Temperament substrates of personality development. In Molfese, V. J. & Molfese, D. L. (Eds.), Temperament and personality development across the life-span (pp. 132). Mahwah, NJ: Erlbaum.Google Scholar
Goldsmith, H. H., Pollak, S. D., & Davidson, R. J. (2008). Developmental neuroscience perspectives on emotion regulation. Child Development Perspectives, 2, 132140.Google Scholar
Goldstein, R. Z., & Volkow, N. D. (2011). Dysfunction of the prefrontal cortex in addiction: Neuroimaging findings and clinical implications. Nature Reviews Neuroscience, 12, 652669.Google Scholar
Gorwood, P. (2008). Neurobiological mechanisms of anhedonia. Dialogues in Clinical Neuroscience, 10, 291299.Google Scholar
Gotlib, I. H., & Hamilton, J. P. (2008). Neuroimaging and depression: Current status and unresolved issues. Current Directions in Psychological Science, 17, 159163.Google Scholar
Goto, Y., Otani, S., & Grace, A. A. (2007). The yin and yang of dopamine release: A new perspective. Neuropharmacology, 53, 583587.Google Scholar
Gottfried, J. A., O'Doherty, J., & Dolan, R. J. (2003). Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science, 301, 11041107.Google Scholar
Grace, A. A. (2001) Psychostimulant actions on dopamine and limbic system function: Relevance to the pathophysiology and treatment of ADHD. In Solanto, M. V., Arnsten, A. F. T, & Castellanos, F. X. (Eds.), Stimulant drugs and ADHD: Basic and clinical neuroscience (pp. 134147). New York: Oxford University Press.Google Scholar
Grace, A. A., & Bunney, B. S. (1995) Electrophysiological properties of midbrain dopamine neurons. In Borroni, E. & Kupfer, D. J. (Eds.), Psychopharmacology: The fourth generation of progress (pp. 163177). New York: Raven Press.Google Scholar
Gray, J. A. (1987a). The psychology of fear and stress. New York: Cambridge University Press.Google Scholar
Gray, J. A. (1987b). Perspectives on anxiety and impulsivity: A commentary. Journal of Research in Personality, 21, 493509.Google Scholar
Gray, J. A., & McNaughton, N. (2000). The neuropsychology of anxiety: An enquiry into the functions of the septo-hippocampal system (2nd ed.). New York: Oxford University Press.Google Scholar
Groenewold, N. A., Opmeer, E. M., de Jonge, P., Aleman, A., & Costafreda, S. G. (2013). Emotional valence modulates brain functional abnormalities in depression: Evidence from a meta-analysis of fMRI studies. Neuroscience & Biobehavioral Reviews, 37, 152163.Google Scholar
Hajcak, G., McDonald, N., & Simons, R. F. (2004). Error-related psychophysiology and negative affect. Brain and Cognition, 56, 189197.Google Scholar
Hamilton, J. P., Etkin, A., Furman, D. J., Lemus, M. G., Johnson, R. F., & Gotlib, I. H. (2012). Functional neuroimaging of major depressive disorder: A meta-analysis and new integration of baseline activation and neural response data. American Journal of Psychiatry, 169, 693703.Google Scholar
Hamilton, J. P., Siemer, M., & Gotlib, I. H. (2008). Amygdala volume in major depressive disorder: A meta-analysis of magnetic resonance imaging studies. Molecular Psychiatry, 13, 9931000.Google Scholar
Hanson, J. L., Adluru, N., Chung, M. K., Alexander, A. L., Davidson, R. J., & Pollak, S. D. (2013). Early neglect is associated with alterations in white matter integrity and executive function. Child Development, 84, 15661578.Google Scholar
Hanson, J. L., Chung, M. K., Avants, B. B., Rudolph, K. D., Shirtcliff, E. A., Gee, J. C., et al. (2012). Structural variations in prefrontal cortex mediate the relationship between early childhood stress and spatial working memory. Journal of Neuroscience, 32, 79177925.Google Scholar
Hanson, J. L., Chung, M. K., Avants, B. B., Shirtcliff, E. A., Gee, J. C., Davidson, R. J., et al. (2010). Early stress is associated with alterations in the orbitofrontal cortex: A tensor-based morphometry investigation of brain structure and behavioral risk. Journal of Neuroscience, 30, 74667472.Google Scholar
Hanson, J. L., Hair, N., Shen, D. G., Shi, F., Gilmore, J. H., Wolfe, B. L., et al. (2013). Family poverty affects the rate of human infant brain growth. PLOS ONE, 8, e80954.Google Scholar
Harlow, J. M. (1848). Passage of an iron rod through the head. Boston Medical and Surgical Journal, 39, 389393.Google Scholar
Hart, H., Radua, J., Mataix-Cols, D., & Rubia, K. (2012). Meta-analysis of fMRI studies of timing in attention-deficit hyperactivity disorder (ADHD). Neuroscience & Biobehavioral Reviews, 36, 22482256.Google Scholar
Harvey, P. O., Pruessner, J., Czechowska, Y., & Lepage, M. (2007). Individual differences in trait anhedonia: A structural and functional magnetic resonance imaging study in non-clinical subjects. Molecular Psychiatry, 12, 767775.Google Scholar
Haslam, N., Holland, E., & Kuppens, P. (2012). Categories versus dimensions in personality and psychopathology: A quantitative review of taxometric research. Psychological Medicine, 42, 903920.Google Scholar
Hasler, G., Fromm, S., Carlson, P. J., Luckenbaugh, D. A., Waldeck, T., Geraci, M., et al. (2008). Neural response to catecholamine depletion in unmedicated subjects with major depressive disorder in remission and healthy subjects. Archives of General Psychiatry, 65, 521531.Google Scholar
Heatherton, T. F. (2011). Neuroscience of self and self regulation. Annual Review of Psychology, 62, 363390.Google Scholar
Heatherton, T. F., & Wagner, D. D. (2011). Cognitive neuroscience of self regulation failure. Trends in Cognitive Sciences, 15, 132139.Google Scholar
Heim, C., & Binder, E. B. (2012). Current research trends in early life stress and depression: Review of human studies on sensitive periods, gene-environment interactions, and epigenetics. Experimental Neurology, 233, 102111.Google Scholar
Heim, C., Newport, D. J., Mletzko, T., Miller, A. H., & Nemeroff, C. B. (2008). The link between childhood trauma and depression: Insights from HPA axis studies in humans. Psychoneuroendocrinology, 33, 693710.Google Scholar
Henriques, J. B., Glowacki, J. M., & Davidson, R. J. (1994). Reward fails to alter response bias in depression. Journal of Abnormal Psychology, 103, 460466.Google Scholar
Herpertz, S. (1995). Self-injurious behavior: Psychopathological and nosological characteristics in subtypes of self-injurers. Acta Psychiatrica Scandinavica, 91, 5768.Google Scholar
Herpertz, S. C., Huebner, T., Marx, I., Vloet, T. D., Fink, G. R., Stoecker, T., et al. (2008). Emotional processing in male adolescents with childhood-onset conduct disorder. Journal of Child Psychology and Psychiatry, 49, 781791.Google Scholar
Hesslinger, B., Van Elst, L. T., Thiel, T., Haegele, K., Hennig, J., & Ebert, D. (2002). Fronto-orbital volume reductions in adult patients with attention deficit hyperactivity disorder. Neuroscience Letters, 328, 319321.Google Scholar
Hinshaw, S. P., Henker, B., Whalen, C. K., Erhardt, D., & Dunnington, Jr., R. E. (1989). Aggressive, prosocial, and nonsocial behavior in hyperactive boys: Dose effects of methylphenidate in naturalistic settings. Journal of Consulting and Clinical Psychology, 57, 636643.Google Scholar
Holmes, A., & Wellman, C. L. (2009). Stress-induced prefrontal reorganization and executive dysfunction in rodents. Neuroscience & Biobehavioral Reviews, 33, 773783.Google Scholar
Hoogman, M., Aarts, E., Zwiers, M., Slaats-Willemse, D., Naber, M., Onnink, M., et al. (2011). Nitric oxide synthase genotype modulation of impulsivity and ventral striatal activity in adult ADHD patients and healthy comparison subjects. American Journal of Psychiatry, 168, 10991106.Google Scholar
Howlett, D. R., & Nahorski, S. R. (1979). Acute and chronic amphetamine treatments modulate striatal dopamine receptor binding sites. Brain Research, 161, 173178.Google Scholar
Ialongo, N., Poduska, J., Werthamer, L., & Kellam, S. (2001). The distal impact of two first-grade preventive interventions on conduct problems and disorder in early adolescence. Journal of Emotional and Behavioral Disorders, 9, 146160.Google Scholar
Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., et al. (2010). Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. American Journal of Psychiatry, 167, 748751.Google Scholar
Isen, J. D., Iacono, W. G., Malone, S. M., & McGue, M. (2012). Examining electrodermal hyporeactivity as a marker of externalizing psychopathology: A twin study. Psychophysiology, 49, 10391048.Google Scholar
Isgor, C., Kabbaj, M., Akil, H., & Watson, S. J. (2004). Delayed effects of chronic variable stress during peripubertal-juvenile period on hippocampal morphology and on cognitive and stress axis functions in rats. Hippocampus, 14, 636648.Google Scholar
Jensen, P. S. (2003). Comorbidity and child psychopathology: Recommendations for the next decade. Journal of Abnormal Child Psychology, 31, 293300.Google Scholar
Jensen, P. S., Hinshaw, S. P., Kraemer, H. C., Lenora, N., Newcorn, J. H., Abikoff, H. B., et al. (2001). ADHD comorbidity findings from the MTA study: Comparing comorbid subgroups. Journal of the American Academy of Child & Adolescent Psychiatry, 40, 147158.Google Scholar
Jia, Z., Huang, X., Wu, Q., Zhang, T., Lui, S., Zhang, J., et al. (2010). High-field magnetic resonance imaging of suicidality in patients with major depressive disorder. American Journal of Psychiatry, 167, 13811390.Google Scholar
Johnstone, T., van Reekum, C. M., Urry, H. L., Kalin, N. H., & Davidson, R. J. (2007). Failure to regulate: Counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression. Journal of Neuroscience, 27, 88778884.Google Scholar
Judd, L. L., Schettler, P. J., Coryell, W., Akiskal, H. S., & Fiedorowicz, J. G. (2013). Overt irritability/anger in unipolar major depressive episodes: Past and current characteristics and implications for long-term course. JAMA Psychiatry, 70, 11711180.Google Scholar
Kagan, J. (in press). High reactive temperament, behavioral inhibition, and vulnerability to psychopathology. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Child and adolescent psychopathology (3rd ed.). Hoboken, NJ: Wiley.Google Scholar
Kalivas, P. W. (2008). Addiction as a pathology in prefrontal cortical regulation of corticostriatal habit circuitry. Neurotoxicity Research, 14, 185189.Google Scholar
Kamata, K., & Rebec, G. V. (1983). Dopaminergic and neostriatal neurons: Dose-dependent changes in sensitivity to amphetamine following long-term treatment. Neuropharmacology, 22, 13771382.Google Scholar
Karcher, N. R., Martin, E. A., & Kerns, J. G. (2015). Examining associations between psychosis risk, social anhedonia, and performance of striatum-related behavioral tasks. Journal of Abnormal Psychology, 124, 507518.Google Scholar
Katz, R. J., Roth, K. A., & Carroll, B. J. (1981). Acute and chronic stress effects on open field activity in the rat: Implications for a model of depression. Neuroscience & Biobehavioral Reviews, 5, 247251.Google Scholar
Kaufman, E., Crowell, S. E., & Stepp, S. D. (2016). Self-injury, borderline personality development, and the externalizing spectrum. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Oxford handbook of externalizing spectrum disorders (pp. 6178). New York: Oxford University Press.Google Scholar
Keiley, M. K., Bates, J. E., Dodge, K. A., & Pettit, G. S. (2000). A cross-domain growth analysis: Externalizing and internalizing behaviors during 8 years of childhood. Journal of Abnormal Child Psychology, 28, 161179.Google Scholar
Keller, J., Young, C. B., Kelley, E., Prater, K., Levitin, D. J., & Menon, V. (2013). Trait anhedonia is associated with reduced reactivity and connectivity of mesolimbic and paralimbic reward pathways. Journal of Psychiatric Research, 47, 13191328.Google Scholar
Kelly, M. A., Rubinstein, M., Phillips, T. J., Lessov, C. N., Burkhart-Kasch, S., Zhang, G., et al. (1998). Locomotor activity in D2 dopamine receptor-deficient mice is determined by gene dosage, genetic background, and developmental adaptations. Journal of Neuroscience, 18, 34703479.Google Scholar
Kendler, K. S., Aggen, S. H., Knudsen, G. P., Røysamb, E., Neale, M. C., & Reichborn-Kjeennerud, T. (2011). The structure of genetic and environmental risk factors for syndromal and subsyndromal common DSM-IV Axis I and Axis II disorders. American Journal of Psychiatry, 168, 2939.Google Scholar
Kendler, K. S., Gardner, C. O., & Prescott, C. A. (2002). Toward a comprehensive developmental model for major depression in women. American Journal of Psychiatry, 159, 11331145.Google Scholar
Kerestes, R., Davey, C. G., Stephanou, K., Whittle, S., & Harrison, B. J. (2014). Functional brain imaging studies of youth depression: A systematic review. NeuroImage: Clinical, 4, 209231.Google Scholar
Kessler, R. C., Chiu, W., Demler, O., & Walters, E. E. (2005). Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62, 617627.Google Scholar
Kessler, R. C., McGonagle, K. A., Zhao, S., Nelson, C. B., Hughes, M., Eshleman, S., et al. (1994). Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Archives of General Psychiatry, 51, 819.Google Scholar
Kim, D. (2008). Blues from the neighborhood? Neighborhood characteristics and depression. Epidemiologic Reviews, 30, 101117.Google Scholar
Klein, D. (1974). Endogenomorphic depression: A conceptual and terminological revision. Archives of General Psychiatry, 31, 447454.Google Scholar
Klein, D. N., Kotov, R., & Bufferd, S. J. (2011). Personality and depression: Explanatory models and review of the evidence. Annual Review of Clinical Psychology, 7, 269295.Google Scholar
Klein, D. N., & Riso, L. P. (1993). Psychiatric disorders: Problems of boundaries and comorbidity. In Costello, C. G. (Ed.), Basic issues in psychopathology (pp. 1966). New York: Guilford Press.Google Scholar
Knutson, B., Adams, C. M., Fong, G. W., & Hommer, D. (2001). Anticipation of increasing monetary reward selectively recruits nucleus accumbens. Journal of Neuroscience, 21, 15.Google Scholar
Knutson, B., Bhanji, J. P., Cooney, R. E., Atlas, L. Y., & Gotlib, I. H. (2008). Neural responses to monetary incentives in major depression. Biological Psychiatry, 63, 686692.Google Scholar
Kobayashi, S., & Schultz, W. (2008). Influence of reward delays on responses of dopamine neurons. Journal of Neuroscience, 28, 78377846.Google Scholar
Koenigs, M., & Grafman, J. (2009). The functional neuroanatomy of depression: Distinct roles for ventromedial and dorsolateral prefrontal cortex. Behavioural Brain Research, 201, 239243.Google Scholar
Kovess-Masfety, V., Alonso, J., Angermeyer, M., Bromet, E., de Girolamo, G., de Jonge, P., et al. (2013). Irritable mood in adult major depressive disorder: Results from the World Mental Health Surveys. Depression and Anxiety, 30, 395406.Google Scholar
Krach, S., Paulus, F. M., Bodden, M., & Kircher, T. (2010). The rewarding nature of social interactions. Frontiers in Behavioral Neuroscience, 4, 22.Google Scholar
Kraepelin, E. (1919). Dementia praecox and paraphrenia. New York: Huntington.Google Scholar
Kringelbach, M. L. (2005). The human orbitofrontal cortex: Linking reward to hedonic experience. Nature Reviews Neuroscience, 6, 691702.Google Scholar
Krueger, R. F. (1999). The structure of common mental disorders. Archives of General Psychiatry, 56, 921926.Google Scholar
Krueger, R. F., Hicks, B. M., Patrick, C. J., Carlson, S. R., Iacono, W. G., & McGue, M. (2002). Etiologic connections among substance dependence, antisocial behavior, and personality: Modeling the externalizing spectrum. Journal of Abnormal Psychology, 111, 411424.Google Scholar
Krueger, R. F., & Markon, K. E. (2006). Reinterpreting comorbidity: A model-based approach to understanding and classifying psychopathology. Annual Review of Clinical Psychology, 2, 111133.Google Scholar
Krueger, R. F., McGue, M., & Iacono, W. G. (2001). The higher-order structure of common DSM mental disorders: Internalization, externalization, and their connections to personality. Personality and Individual Differences, 30, 12451259.Google Scholar
Kühn, S., & Gallinat, J. (2012). The neural correlates of subjective pleasantness. NeuroImage, 61, 289294.Google Scholar
Laakso, A., Wallius, E., Kajander, J., Bergman, J., Eskola, O., Solin, O., et al. (2003). Personality traits and striatal dopamine synthesis capacity in healthy subjects. American Journal of Psychiatry, 160, 904910.Google Scholar
Lahey, B. B., Van Hulle, C. A., Singh, A. L., Waldman, I. D., & Rathouz, P. J. (2011). Higher-order genetic and environmental structure of prevalent forms of child and adolescent psychopathology. Archives of General Psychiatry, 68, 181189.Google Scholar
Lambert, G., Johansson, M., Ågren, H., & Friberg, P. (2000). Reduced brain norepinephrine and dopamine release in treatment-refractory depressive illness: Evidence in support of the catecholamine hypothesis of mood disorders. Archives of General Psychiatry, 57, 787793.Google Scholar
Lee, S. Y., Burns, G. L., Beauchaine, T. P., & Becker, S. P. (2015). Bifactor latent structure of ADHD/ODD symptoms and first-order latent structure of sluggish cognitive tempo symptoms. Psychological Assessment. Advance online publication.Google Scholar
Leibenluft, E., Cohen, P., Gorrindo, T., Brook, J. S., & Pine, D. S. (2006). Chronic versus episodic irritability in youth: A community-based, longitudinal study of clinical and diagnostic associations. Journal of Child and Adolescent Psychopharmacology, 16, 456466.Google Scholar
Leibenluft, E., & Stoddard, J. (2013). The developmental psychopathology of irritability. Development and Psychopathology, 25, 14731487.Google Scholar
Lemke, M. R., Puhl, P., Koethe, N., & Winkler, T. (1999). Psychomotor retardation and anhedonia in depression. Acta Psychiatrica Scandinavica, 99, 252256.Google Scholar
Lenroot, R. K., & Giedd, J. N. (2006). Brain development in children and adolescents: Insights from anatomical magnetic resonance imaging. Neuroscience & Biobehavioral Reviews, 30, 718729.Google Scholar
Leung, H. C., & Cai, W. (2007). Common and differential ventrolateral prefrontal activity during inhibition of hand and eye movements. Journal of Neuroscience, 27, 98939900.Google Scholar
Leventhal, A. M., Chasson, G. S., Tapia, E., Miller, E. K., & Pettit, J. W. (2006). Measuring hedonic capacity in depression: A psychometric analysis of three anhedonia scales. Journal of Clinical Psychology, 62, 15451558.Google Scholar
Lilienfeld, S. O. (2003). Comorbidity between and within childhood externalizing and internalizing disorders: Reflections and directions. Journal of Abnormal Child Psychology, 31, 285291.Google Scholar
Lindquist, K. A., Satpute, A. B., Wager, T. D., Weber, J., & Barrett, L. F. (2015). The brain basis of positive and negative affect: Evidence from a meta-analysis of the human neuroimaging literature. Cerebral Cortex. Advance online publication.Google Scholar
Linehan, M. M. (1993). Cognitive-behavioral treatment of borderline personality disorder. New York: Guilford Press.Google Scholar
Liu, X., Hairston, J., Schrier, M., & Fan, J. (2011). Common and distinct networks underlying reward valence and processing stages: A meta-analysis of functional neuroimaging studies. Neuroscience & Biobehavioral Reviews, 35, 12191236.Google Scholar
Livesley, W. J., & Jang, K. L. (2005). Differentiating normal, abnormal, and disordered personality. European Journal of Personality, 19, 257268.Google Scholar
Loas, G. (1996). Vulnerability to depression: A model centered on anhedonia. Journal of Affective Disorders, 41, 3953.Google Scholar
Lodge, D. J. (2011). The medial prefrontal and orbitofrontal cortices differentially regulate dopamine system function. Neuropsychopharmacology, 36, 12271236.Google Scholar
Loth, A. K., Drabick, D. A., Leibenluft, E., & Hulvershorn, L. A. (2014). Do childhood externalizing disorders predict adult depression? A meta-analysis. Journal of Abnormal Child Psychology, 42, 11031113.Google Scholar
Louilot, A., LeMoal, M., & Simon, H. (1989). Opposite influences of dopaminergic pathways to the prefrontal cortex or the septum on the dopaminergic transmission in the nucleus accumbens: An in vivo voltammetric study. Neuroscience, 29, 4556.Google Scholar
Luby, J. L., Mrakotsky, C., Heffelfinger, A., Brown, K., & Spitznagel, E. (2004). Characteristics of depressed preschoolers with and without anhedonia: Evidence for a melancholic depressive subtype in young children. American Journal of Psychiatry, 161, 19982004.Google Scholar
Ludolph, A. G., Kassubek, J., Schmeck, K., Glaser, C., Wunderlich, A., Buck, A. K., et al. (2008). Dopaminergic dysfunction in attention deficit hyperactivity disorder (ADHD), differences between pharmacologically treated and never treated young adults: A 3, 4-dihdroxy-6-[18 F] fluorophenyl-l-alanine PET study. NeuroImage, 41, 718727.Google Scholar
Luman, M., Oosterlaan, J., & Sergeant, J. A. (2005). The impact of reinforcement contingencies on AD/HD: A review and theoretical appraisal. Clinical Psychology Review, 25, 183213.Google Scholar
Luman, M., Tripp, G., & Scheres, A. (2010). Identifying the neurobiology of altered reinforcement sensitivity in ADHD: A review and research agenda. Neuroscience & Biobehavioral Reviews, 34, 744754.Google Scholar
Luman, M., Van Meel, C. S., Oosterlaan, J., Sergeant, J. A., & Geurts, H. M. (2009). Does reward frequency or magnitude drive reinforcement-learning in attention-deficit/hyperactivity disorder? Psychiatry Research, 168, 222229.Google Scholar
Lutz, K., & Widmer, M. (2014). What can the monetary incentive delay task tell us about the neural processing of reward and punishment? Neuroscience and Neuroeconomics, 3, 3335.Google Scholar
Macdonald, A., Goines, K., Novacek, D., & Walker, E. (2016). Prefrontal mechanisms of comorbidity from a transdiagnostic and ontogenic perspective. Development and Psychopathology, 28, 1149–1177.Google Scholar
Makris, N., Biederman, J., Valera, E. M., Bush, G., Kaiser, J., Kennedy, D. N., et al. (2007). Cortical thinning of the attention and executive function networks in adults with attention-deficit/hyperactivity disorder. Cerebral Cortex, 17, 13641375.Google Scholar
Marchand, W. R., Lee, J. N., Johnson, S., Thatcher, J., & Gale, P. (2013). Striatal circuit function is associated with prior self-harm in remitted major depression. Neuroscience Letters, 557, 154158.Google Scholar
Marchand, W. R., Lee, J. N., Johnson, S., Thatcher, J., Gale, P., Wood, N., et al. (2012). Striatal and cortical midline circuits in major depression: Implications for suicide and symptom expression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 36, 290299.Google Scholar
Marissen, M. A., Arnold, N., & Franken, I. H. (2012). Anhedonia in borderline personality disorder and its relation to symptoms of impulsivity. Psychopathology, 45, 179184.Google Scholar
Marmorstein, N. R., & Iacono, W. G. (2003). Major depression and conduct disorder in a twin sample: Gender, functioning, and risk for future psychopathology. Journal of the American Academy of Child & Adolescent Psychiatry, 42, 225233.Google Scholar
Marsh, A. A., & Blair, R. J. R. (2008). Deficits in facial affect recognition among antisocial populations: A meta-analysis. Neuroscience & Biobehavioral Reviews, 32, 454465.Google Scholar
Marsh, A. A., Finger, E. C., Mitchell, D. G., Reid, M. E., Sims, C., Kosson, D. S., et al. (2008). Reduced amygdala response to fearful expressions in children and adolescents with callous-unemotional traits and disruptive behavior disorders. American Journal of Psychiatry, 165, 712720.Google Scholar
Martin-Soelch, C., Leenders, K. L., Chevalley, A.-F., Missimer, J., Kunig, S., Magyar, A., et al. (2001). Reward mechanisms in the brain and their role in dependence: Evidence from neurophysiological and neuroimaging studies. Brain Research Reviews, 36, 139149.Google Scholar
Maughan, B., Rowe, R., Messer, J., Goodman, R., & Meltzer, H. (2004). Conduct disorder and oppositional defiant disorder in a national sample: Developmental epidemiology. Journal of Child Psychology and Psychiatry, 45, 606621.Google Scholar
McCabe, C. (2014). Neural correlates of anhedonia as a trait marker for depression. In Ritsner, M. (Ed.), Anhedonia: A comprehensive handbook (Vol. 2, pp. 159174). Amsterdam: Springer.Google Scholar
McCabe, C., Cowen, P. J., & Harmer, C. J. (2009). Neural representation of reward in recovered depressed patients. Psychopharmacology, 205, 667677.Google Scholar
McCabe, C., Woffindale, C., Harmer, C. J., & Cowen, P. J. (2012). Neural processing of reward and punishment in young people at increased familial risk of depression. Biological Psychiatry, 72, 588594.Google Scholar
McCrae, R. R., & Costa, P. T. (2003). Personality in adulthood (2nd ed.). New York: Guilford Press.Google Scholar
McNaughton, N., & Corr, P. J. (2004). A two-dimensional neuropsychology of defense: Fear/anxiety and defensive distance. Neuroscience & Biobehavioral Reviews, 28, 285305.Google Scholar
Meehl, P. E. (1962). Schizotaxia, schizotypy, schizophrenia. American Psychologist, 17, 827838.Google Scholar
Meehl, P. E. (1973). Psychodiagnosis: Selected papers. Minneapolis, MN: University of Minnesota Press.Google Scholar
Meehl, P. E. (1995). Bootstraps taxometrics: Solving the classification problem in psychopathology. American Psychologist, 50, 266275.Google Scholar
Meinzer, M. C., Lewinsohn, P. M., Pettit, J. W., Seeley, J. R., Gau, J. M., Chronis-Tuscano, A., et al. (2013). Attention–deficit/hyperactivity disorder in adolescence predicts onset of major depressive disorder through early adulthood. Depression and Anxiety, 30, 546553.Google Scholar
Mennin, D. S., Heimberg, R. G., Turk, C. L., & Fresco, D. M. (2005). Preliminary evidence for an emotion dysregulation model of generalized anxiety disorder. Behaviour Research and Therapy, 43, 12811310.Google Scholar
Meyer, J. H., Krüger, S., Wilson, A. A., Christensen, B. K., Goulding, V. S., Schaffer, A., et al. (2001). Lower dopamine transporter binding potential in striatum during depression. NeuroReport, 12, 41214125.Google Scholar
Milich, R., Balentine, A. C., & Lynam, D. R. (2001). ADHD combined type and ADHD predominantly inattentive type are distinct and unrelated disorders. Clinical Psychology: Science and Practice, 8, 463488.Google Scholar
Miller, A. H., Maletic, V., & Raison, C. L. (2009). Inflammation and its discontents: The role of cytokines in the pathophysiology of major depression. Biological Psychiatry, 65, 732741.Google Scholar
Miller, J. D., Lyman, D. R., Widiger, T. A., & Leukefeld, C. (2001). Personality disorders as extreme variants of common personality dimensions: Can the five-factor model adequately represent psychopathy? Journal of Personality, 69, 253276.Google Scholar
Milner, P. M. (1991). Brain-stimulation reward: A review. Canadian Journal of Psychology, 45, 136.Google Scholar
Morgan, J., Olino, T., McMakin, D., Ryan, N., & Forbes, E. (2013) Neural response to reward as a predictor of rise in depressive symptoms in adolescence. Neurobiological Disorders, 52, 6674.Google Scholar
Morrison, S. E., & Salzman, C. D. (2009). The convergence of information about rewarding and aversive stimuli in single neurons. Journal of Neuroscience, 29, 1147111483.Google Scholar
MTA Cooperative Group. (1999). A 14th month randomized clinical trial of treatment strategies for attention-deficit/hyperactivity disorder. Archives of Generation Psychiatry, 56, 10731086.Google Scholar
Murray, E. A., Wise, S. P., & Drevets, W. C. (2011). Localization of dysfunction in major depressive disorder: Prefrontal cortex and amygdala. Biological Psychiatry, 69, e43e54.Google Scholar
National Institute of Mental Health. (2014). Research Domain Criteria matrix. Retrieved on March 28, 2016, from http://www.nimh.nih.gov/research-priorities/rdoc/research-domain-criteria-matrix.shtml.Google Scholar
Nestler, E. J., & Carlezon, Jr., W. A. (2006). The mesolimbic dopamine reward circuit in depression. Biological Psychiatry, 59, 11511159.Google Scholar
Nettle, D. (2006). The evolution of personality variation in humans and other animals. American Psychologist, 61, 622631.Google Scholar
Neuhaus, E., & Beauchaine, T. P. (in press). Impulsivity and vulnerability to psychopathology. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Child and adolescent psychopathology (3rd ed.). Hoboken, NJ: Wiley.Google Scholar
Nikolas, M. A., & Burt, S. A. (2010). Genetic and environmental influences on ADHD symptom dimensions of inattention and hyperactivity: A meta-analysis. Journal of Abnormal Psychology, 119, 117.Google Scholar
Niv, Y. (2007). Cost, benefit, tonic, phasic: What do response rates tell us about dopamine and motivation? Annals of the New York Academy of Sciences, 1104, 357376.Google Scholar
Nixon, M. K., Cloutier, P. F., & Aggarwal, S. (2002). Affect regulation and addictive aspects of repetitive self-injury in hospitalized adolescents. Journal of the American Academy of Child & Adolescent Psychiatry, 41, 13331341.Google Scholar
Nock, M. K. (2010). Self-injury. Annual Review of Clinical Psychology, 6, 339363.Google Scholar
Nock, M. K., Prinstein, M. J., & Sterba, S. K. (2009). Revealing the form and function of self-injurious thoughts and behaviors: A real-time ecological assessment study among adolescents and young adults. Journal of Abnormal Psychology, 118, 816827.Google Scholar
Nordström, P., Schalling, D., & Asberg, M. (1995). Temperamental vulnerability in attempted suicide. Acta Psychiatrica Scandinavica, 92, 155160.Google Scholar
Norris, C. J., Larsen, J. T., & Cacioppo, J. T. (2007). Neuroticism is associated with larger and more prolonged electrodermal responses to emotionally evocative pictures. Psychophysiology, 44, 823826.Google Scholar
Oberlin, B. G., Dzemidzic, M., Bragulat, V., Lehigh, C. A., Talavage, T., O'Connor, S. J., et al. (2012). Limbic responses to reward cues correlate with antisocial trait density in heavy drinkers. NeuroImage, 60, 644652.Google Scholar
O'Doherty, J. P. (2004). Reward representations and reward-related learning in the human brain: Insights from neuroimaging. Current Opinion in Neurobiology, 14, 769776.Google Scholar
O'Donnell, O., House, A., & Waterman, M. (2015). The co-occurrence of aggression and self-harm: Systematic literature review. Journal of Affective Disorders, 175, 325350.Google Scholar
Olds, J., & Milner, P. (1954). Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. Journal of Comparative and Physiological Psychology, 47, 419427.Google Scholar
Olino, T. M., McMakin, D. L., Morgan, J. K., Silk, J. S., Birmaher, B., Axelson, D. A., et al. (2014). Reduced reward anticipation in youth at high-risk for unipolar depression: A preliminary study. Developmental Social and Affective Neuroscience, 8, 5564.Google Scholar
Öngür, D., & Price, J. L. (2000). The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cerebral Cortex, 10, 206219.Google Scholar
Onnink, A. M. H., Zwiers, M. P., Hoogman, M., Mostert, J. C., Kan, C. C., Buitelaar, J., et al. (2014). Brain alterations in adult ADHD: Effects of gender, treatment and comorbid depression. European Neuropsychopharmacology, 24, 397409.Google Scholar
Pani, L., Porcella, A., & Gessa, G. L. (2000). The role of stress in the pathophysiology of the dopaminergic system. Molecular Psychiatry, 5, 1421.Google Scholar
Papousek, I., & Schulter, G. (2001). Associations between EEG asymmetries and electrodermal lability in low vs. high depressive and anxious normal individuals. International Journal of Psychophysiology, 41, 105117.Google Scholar
Paris, J. (1997). Antisocial and borderline personality disorders: Two separate diagnoses or two aspects of the same psychopathology? Comprehensive Psychiatry, 38, 237242.Google Scholar
Patton, J. H., Stanford, M. S., & Barratt, E. S. (1995). Factor structure of the Barratt impulsiveness scale. Journal of Clinical Psychology, 51, 768774.Google Scholar
Pechtel, P., Dutra, S. J., Goetz, E. L., & Pizzagalli, D. A. (2013). Blunted reward responsiveness in remitted depression. Journal of Psychiatric Research, 47, 18641869.Google Scholar
Peciña, S., Cagniard, B., Berridge, K. C., Aldridge, J. W., & Zhuang, X. (2003). Hyperdopaminergic mutant mice have higher “wanting” but not “liking” for sweet rewards. Journal of Neuroscience, 23, 93959402.Google Scholar
Pelizza, L., & Ferrari, A. (2009). Anhedonia in schizophrenia and major depression: State or trait. Annals of General Psychiatry, 8, 19.Google Scholar
Pendse, B., Westrin, Å., & Engström, G. (1999). Temperament traits in seasonal affective disorder, suicide attempters with non-seasonal major depression and healthy controls. Journal of Affective Disorders, 54, 5565.Google Scholar
Perlis, R. H., Fava, M., Trivedi, M. H., Alpert, J., Luther, J. F., Wisniewski, S. R., et al. (2009). Irritability is associated with anxiety and greater severity, but not bipolar spectrum features, in major depressive disorder. Acta Psychiatrica Scandinavica, 119, 282289.Google Scholar
Phan, K. L., Wager, T., Taylor, S. F., & Liberzon, I. (2002). Functional neuroanatomy of emotion: A meta-analysis of emotion activation studies in PET and fMRI. NeuroImage, 16, 331348.Google Scholar
Phelps, E. A. (2004). Human emotion and memory: Interactions of the amygdala and hippocampal complex. Current Opinion in Neurobiology, 14, 198202.Google Scholar
Philipsen, A. (2006). Differential diagnosis and comorbidity of attention-deficit/hyperactivity disorder (ADHD) and borderline personality disorder (BPD) in adults. European Archives of Psychiatry and Clinical Neuroscience, 256, i42i46.Google Scholar
Pizzagalli, D., Holmes, A., Dillon, D., Goetz, E., Birk, J., Bogdan, R., et al. (2009). Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder. American Journal of Psychiatry, 166, 702710.Google Scholar
Pizzagalli, D. A., Iosifescu, D., Hallett, L. A., Ratner, K. G., & Fava, M. (2008). Reduced hedonic capacity in major depressive disorder: Evidence from a probabilistic reward task. Journal of Psychiatric Research, 43, 7687.Google Scholar
Pizzagalli, D. A., Jahn, A. L., & O'Shea, J. P. (2005). Toward an objective characterization of an anhedonic phenotype: A signal-detection approach. Biological Psychiatry, 57, 319327.Google Scholar
Plessen, K. J., Bansal, R., Zhu, H., Whiteman, R., Amat, J., Quackenbush, G. A., et al. (2006). Hippocampus and amygdala morphology in attention-deficit/hyperactivity disorder. Archives of General Psychiatry, 63, 795807.Google Scholar
Plichta, M. M., & Scheres, A. (2014). Ventral-striatal responsiveness during reward anticipation in ADHD and its relation to trait impulsivity in the healthy population: A meta-analytic review of the fMRI literature. Neuroscience & Biobehavioral Reviews, 38, 125134.Google Scholar
Plichta, M. M., Vasic, N., Wolf, R. C., Lesch, K. P., Brummer, D., Jacob, C., et al. (2009). Neural hyporesponsiveness and hyperresponsiveness during immediate and delayed reward processing in adult attention-deficit/hyperactivity disorder. Biological Psychiatry, 65, 714.Google Scholar
Posner, J., Siciliano, F., Wang, Z., Liu, J., Sonuga-Barke, E., & Greenhill, L. (2014). A multimodal MRI study of the hippocampus in medication-naive children with ADHD: What connects ADHD and depression? Psychiatry Research: Neuroimaging, 224, 112118.Google Scholar
Preskorn, S. H., & Baker, B. (2002). The overlap of DSM-IV syndromes: Potential implications for the practice of polypsychopharmacology, psychiatric drug development, and the human genome project. Journal of Psychiatric Practice, 8, 170177.Google Scholar
Proudfit, G. H. (2014). The reward positivity: From basic research on reward to a biomarker for depression. Psychophysiology, 52, 449459.Google Scholar
Quay, H. C. (1993). The psychobiology of undersocialized aggressive conduct disorder: A theoretical perspective. Development and Psychopathology, 5, 165180.Google Scholar
Rado, S. (1956). Psychoanalysis of behavior: Collected papers. New York: Grune and Stratton.Google Scholar
Rado, S. (1962). Psychoanalysis of behavior: Collected papers (Vol. 2). New York: Grune and Stratton.Google Scholar
Rawal, A., Collishaw, S., Thapar, A., & Rice, F. (2013). “The risks of playing it safe”: A prospective longitudinal study of response to reward in the adolescent offspring of depressed parents. Psychological Medicine, 43, 2738.Google Scholar
Rebec, G. V., & Segal, D. S. (1978). Dose-dependent biphasic alterations in the spontaneous activity of neurons in the rat neostriatum produced by d-amphetamine and methylphenidate. Brain Research, 150, 353366.Google Scholar
Reynolds, B., Ortengren, A., Richards, J. B., & de Wit, H. (2006). Dimensions of impulsive behavior: Personality and behavioral measures. Personality and Individual Differences, 40, 305315.Google Scholar
Rhee, S. H., Lahey, B. B., & Waldman, I. D. (2015). Comorbidity among dimensions of childhood psychopathology: Converging evidence from behavior genetics. Child Development Perspectives, 9, 2631.Google Scholar
Ribot, T. (1896). La psychologie des sentiments. Paris: Felix Alcan.Google Scholar
Rice, F., Harold, G., & Thapar, A. (2002). The genetic aetiology of childhood depression: A review. Journal of Child Psychology and Psychiatry, 43, 6579.Google Scholar
Roberts, B. W., & Mroczek, D. (2008). Personality trait change in adulthood. Current Directions in Psychological Science, 17, 3135.Google Scholar
Robinson, E. S. J., Eagle, D. M., Economidou, D., Theobald, D. E. H., Mar, A. C., Murphy, E. R., et al. (2009). Behavioural characterisation of high impulsivity on the 5-choice serial reaction time task: Specific deficits in “waiting” versus “stopping.” Behavioural Brain Research, 196, 310316.Google Scholar
Robinson, O. J., Cools, R., Carlisi, C. O., Sahakian, B. J., & Drevets, W. C. (2012). Ventral striatum response during reward and punishment reversal learning in unmedicated major depressive disorder. American Journal of Psychiatry, 169, 152159.Google Scholar
Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: An incentive–sensitization theory of addiction. Brain Research Reviews, 18, 247291.Google Scholar
Robinson, T. E., & Berridge, K. C. (2008). The incentive sensitization theory of addiction: Some current issues. Philosophical Transactions of the Royal Society B, 363, 31373146.Google Scholar
Rosch, K. S., & Hawk, L. W. (2013). The effects of performance-based rewards on neurophysiological correlates of stimulus, error, and feedback processing in children with ADHD. Psychophysiology, 50, 11571173.Google Scholar
Rothbart, M. K. (2007). Temperament, development and personality. Current Directions in Psychological Science, 16, 207212.Google Scholar
Rothbart, M. K., & Bates, J. E. (1998). Temperament. In Damon, W. (Series Ed.) & Eisenberg, N. (Vol. Ed.), Handbook of child psychology: Vol. 3. Social, emotional, and personality development (5th ed., pp. 105176). New York: Wiley.Google Scholar
Rottenberg, J., & Gross, J. J. (2003). When emotion goes wrong: Realizing the promise of affective science. Clinical Psychology: Science and Practice, 10, 227232.Google Scholar
Rubia, K. (2011). “Cool” inferior frontostriatal dysfunction in attention-deficit/hyperactivity disorder versus “hot” vetromedial orbitofrontal-limbic dysfunction in conduct disorder: A review. Biological Psychiatry, 69, e69e87.Google Scholar
Rubia, K., Halari, R., Cubillo, A., Mohammad, M., & Taylor, E. (2009). Methylphenidate normalises activation and functional connectivity deficits in attention and motivation networks in medication-naïve children with ADHD during a rewarded continuous performance task. Neuropharmacology, 57, 640652.Google Scholar
Rubia, K., Halari, R., Mohammad, A. M., Taylor, E., & Brammer, M. (2011). Methylphenidate normalizes frontocingulate underactivation during error processing in attention-deficit/hyperactivity disorder. Biological Psychiatry, 70, 255262.Google Scholar
Rubia, K., Smith, A., Halari, R., Matukura, F., Mohammad, M., Taylor, E., et al. (2009). Disorder-specific dissociation of orbitofrontal dysfunction in boys with pure conduct disorder during reward and ventrolateral prefrontal dysfunction in boys with pure attention-deficit/hyperactivity disorder during sustained attention. American Journal of Psychiatry, 166, 8394.Google Scholar
Ruhé, H. G., Mason, N. S., & Schene, A. H. (2007). Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: A meta-analysis of monoamine depletion studies. Molecular Psychiatry, 12, 331359.Google Scholar
Saddoris, M. P., Cacciapaglia, F., Wightman, R. M., & Carelli, R. M. (2015). Differential dopamine release dynamics in the nucleus accumbens core and shell reveal complementary signals for error prediction and incentive motivation. Journal of Neuroscience, 35, 1157211582.Google Scholar
Sadeh, N., Javdani, S., Finy, M. S., & Verona, E. (2011). Gender differences in emotional risk for self- and other-directed violence among externalizing adults. Journal of Consulting and Clinical Psychology, 79, 106117.Google Scholar
Sagvolden, T., Johansen, E., Aase, H., & Russell, V. (2005). A dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behavioural and Brain Sciences, 28, 397468.Google Scholar
Sah, P., Faber, E. L., De Armentia, M. L., & Power, J. (2003). The amygdaloid complex: Anatomy and physiology. Physiological Reviews, 83, 803834.Google Scholar
Salamone, J. D., Correa, M., Farrar, A., & Mingote, S. M. (2007). Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology, 191, 461482.Google Scholar
Salamone, J. D., Cousins, M. S., & Bucher, S. (1994). Anhedonia or anergia? Effects of haloperidol and nucleus accumbens dopamine depletion on instrumental response selection in a T-maze cost/benefit procedure. Behavioural Brain Research, 65, 221229.Google Scholar
Sauder, C., Beauchaine, T. P., Gatzke-Kopp, L. M., Shannon, K. E., & Aylward, E. (2012). Neuroanatomical correlates of heterotypic comorbidity in externalizing male adolescents. Journal of Clinical Child and Adolescent Psychology, 41, 346352.Google Scholar
Sauder, C. L., Derbidge, C. M., & Beauchaine, T. P. (2016). Neural responses to monetary incentives among self-injuring adolescent girls. Development and Psychopathology, 28, 277291.Google Scholar
Savage, J., Verhulst, B., Copeland, W., Althoff, R. R., Lichtenstein, P., & Roberson-Nay, R. (2015). A genetically informed study of the longitudinal relation between irritability and anxious/depressed symptoms. Journal of the American Academy of Child & Adolescent Psychiatry, 54, 377384.Google Scholar
Scheres, A., Milham, M. P., Knutson, B., & Castellanos, F. X. (2007). Ventral striatal hyporesponsiveness during reward anticipation in attention-deficit/hyperactivity disorder. Biological Psychiatry, 61, 720724.Google Scholar
Schlüter, T., Winz, O., Henkel, K., Prinz, S., Rademacher, L., Schmaljohann, J., et al. (2013). The impact of dopamine on aggression: An [18F]-FDOPA PET Study in healthy males. Journal of Neuroscience, 33, 1688916896.Google Scholar
Schneider, M. F., Krick, C. M., Retz, W., Hengesch, G., Retz-Junginger, P., Reith, W., et al. (2010). Impairment of fronto-striatal and parietal cerebral networks correlates with attention deficit hyperactivity disorder (ADHD) psychopathology in adults—A functional magnetic resonance imaging (fMRI) study. Psychiatry Research: Neuroimaging, 183, 7584.Google Scholar
Schoenbaum, G., & Shaham, Y. (2008). The role of orbitofrontal cortex in drug addiction: A review of preclinical studies. Biological Psychiatry, 63, 256262.Google Scholar
Schore, A. N. (1996). The experience-dependent maturation of a regulatory system in the orbital prefrontal cortex and the origin of developmental psychopathology. Development and Psychopathology, 8, 5987.Google Scholar
Schrader, G. D. (1997). Does anhedonia correlate with depression severity in chronic depression? Comprehensive Psychiatry, 38, 260263.Google Scholar
Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80, 127.Google Scholar
Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275, 15931599.Google Scholar
Seidman, L. J., Valera, E. M., Makris, N., Monuteaux, M. C., Boriel, D. L., Kelkar, K., et al. (2006). Dorsolateral prefrontal and anterior cingulate cortex volumetric abnormalities in adults with attention-deficit/hyperactivity disorder identified by magnetic resonance imaging. Biological Psychiatry, 60, 10711080.Google Scholar
Seroczynski, A. D., Bergeman, C. S., & Coccaro, E. F. (1999). Etiology of the impusivity/aggression relationship: Genes or environment? Psychiatry Research, 86, 4157.Google Scholar
Seymour, K. E., Chronis-Tuscano, A., Iwamoto, D. K., Kurdziel, G., & MacPherson, L. (2014). Emotion regulation mediates the association between ADHD and depressive symptoms in a community sample of youth. Journal of Abnormal Child Psychology, 42, 611621.Google Scholar
Shankman, S. A., Katz, A. C., DeLizza, A. A., Sarapas, C., Gorka, S. M., & Campbell, M. L. (2014). The different facets of anhedonia and their associations with different psychopathologies. In Ritsner, M. S. (Ed.), Anhedonia: A comprehensive handbook (Vol. 1, pp. 322). New York: Springer.Google Scholar
Shankman, S. A., Nelson, B. D., Harrow, M., & Faull, R. (2010). Does physical anhedonia play a role in depression? A 20-year longitudinal study. Journal of Affective Disorders, 120, 170176.Google Scholar
Shannon, K. E., Beauchaine, T. P., Brenner, S. L., Neuhaus, E., & Gatzke-Kopp, L. (2007). Familial and temperamental predictors of resilience in children at risk for conduct disorder and depression. Development and Psychopathology, 19, 701727.Google Scholar
Shannon, K. E., Sauder, C., Beauchaine, T. P., & Gatzke-Kopp, L. (2009). Disrupted effective connectivity between the medial frontal cortex and the caudate in adolescent boys with externalizing behavior disorders. Criminal Justice and Behavior, 36, 11411157 Google Scholar
Sharot, T., Shiner, T., Brown, A. C., Fan, J., & Dolan, R. J. (2009). Dopamine enhances expectation of pleasure in humans. Current Biology, 19, 20772080.Google Scholar
Shatz, C. B., & Rostain, A. L. (2006). ADHD with comorbid anxiety: A review of the current literature. Journal of Attention Disorders, 10, 141149.Google Scholar
Shaw, P., Lerch, J., Greenstein, D., Sharp, W., Clasen, L., Evans, A., et al. (2006). Longitudinal mapping of cortical thickness and clinical outcome in children and adolescents with attention-deficit/hyperactivity disorder. Archives of General Psychiatry, 63, 540549.Google Scholar
Shaw, P., Malek, M., Watson, B., Sharp, W., Evans, A., & Greenstein, D. (2012). Development of cortical surface area and gyrification in attention-deficit/hyperactivity disorder. Biological Psychiatry, 72, 191197.Google Scholar
Shaw, P., Stringaris, A., Nigg, J., & Leibenluft, E. (2014). Emotion dysregulation in attention deficit hyperactivity disorder. American Journal of Psychiatry, 171, 276293.Google Scholar
Shiels, K., & Hawk, L. W. (2010). Self-regulation in ADHD: The role of error processing. Clinical Psychology Review, 30, 951961.Google Scholar
Siegle, G. J., Thompson, W., Carter, C. S., Steinhauer, S. R., & Thase, M. E. (2007). Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: Related and independent features. Biological Psychiatry, 61, 198209.Google Scholar
Skirrow, C., McLoughlin, G., Kuntsi, J., & Asherson, P. (2009). Behavioral, neurocognitive and treatment overlap between attention-deficit/hyperactivity disorder and mood instability. Expert Review of Neurotherapeutics, 9, 489503.Google Scholar
Smoski, M. J., Felder, J., Bizzell, J., Green, S. R., Ernst, M., Lynch, T. R., et al. (2009). fMRI of alterations in reward selection, anticipation, and feedback in major depressive disorder. Journal of Affective Disorders, 118, 6978.Google Scholar
Snaith, R. P., Hamilton, M., Morley, S., Humayan, A., Hargreaves, D., & Trigwell, P. (1995). A scale for the assessment of hedonic tone the Snaith-Hamilton Pleasure Scale. British Journal of Psychiatry, 167, 99103.Google Scholar
Snaith, R. P., & Taylor, C. M. (1985). Irritability: Definition, assessment and associated factors. British Journal of Psychiatry, 147, 127136.Google Scholar
Sobanski, E., Banaschewski, T., Asherson, P., Buitelaar, J., Chen, W., Franke, B., et al. (2010). Emotional lability in children and adolescents with attention deficit/hyperactivity disorder (ADHD): Clinical correlates and familial prevalence. Journal of Child Psychology and Psychiatry, 51, 915923.Google Scholar
Soloff, P. H., Lynch, K. G., Kelly, T. M., Malone, K. M., & Mann, J. J. (2000). Characteristics of suicide attempts of patients with major depressive episode and borderline personality disorder: A comparative study. American Journal of Psychiatry, 157, 601608.Google Scholar
Spurzheim, G. (1834). Outlines of phrenology (3rd ed.). Boston: Marsh, Caper & Lyon.Google Scholar
Stålenheim, E. G. (2001). Relationships between attempted suicide, temperamental vulnerability, and violent criminality in a Swedish forensic psychiatric population. European Psychiatry, 16, 386394.Google Scholar
Stringaris, A., Psych, M. R. C., Cohen, P., Pine, D. S., & Leibenluft, E. (2009). Adult outcomes of youth irritability: A 20-year prospective community-based study. American Journal of Psychiatry, 166, 10481054.Google Scholar
Ströhle, A., Stoy, M., Wrase, J., Schwarzer, S., Schlagenhauf, F., Huss, M., et al. (2008). Reward anticipation and outcomes in adult males with attention-deficit/hyperactivity disorder. NeuroImage, 39, 966972.Google Scholar
Strömbom, U. (1976). Catecholamine receptor agonists. Naunyn-Schmiedeberg's Archives of Pharmacology, 292, 167176.Google Scholar
Stuber, G. D., Sparta, D. R., Stamatakis, A. M., van Leeuwen, W. A., Hardjoprajitno, J. E., Cho, S., et al. (2011). Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature, 475, 377380.Google Scholar
Stuhrmann, A., Suslow, T., & Dannlowski, U. (2011). Facial emotion processing in major depression: A systematic review of neuroimaging findings. Biology of Mood and Anxiety Disorders, 1, 10.Google Scholar
Sullivan, P. F., Neale, M. C., & Kendler, K. S. (2000). Genetic epidemiology of major depression: Review and meta-analysis. American Journal of Psychiatry, 157, 15521562.Google Scholar
Taber, K. H., Black, D. N., Porrino, L. J., & Hurley, R. A. (2012). Neuroanatomy of dopamine: Reward and addiction. Journal of Neuropsychiatry and Clinical Neurosciences, 24, 14.Google Scholar
Tackett, J. L., Waldman, I. D., Van Hulle, C. A., & Lahey, B. B. (2011). Shared genetic influences on negative emotionality and major depression/conduct disorder comorbidity. Journal of the American Academy of Child & Adolescent Psychiatry, 50, 818827.Google Scholar
Tanji, J., & Hoshi, E. (2008). Role of the lateral prefrontal cortex in executive behavioral control. Physiological Reviews, 88, 3757.Google Scholar
Taylor, J., Peterson, C. M., & Fischer, S. (2012). Motivations for self-injury, affect, and impulsivity: A comparison of individuals with current self-injury to individuals with a history of self-injury. Suicide and Life-Threatening Behavior, 42, 602613.Google Scholar
Thomas, M. J., Beurrier, C., Bonci, A., & Malenka, R. C. (2001). Long-term depression in the nucleus accumbens: A neural correlate of behavioral sensitization to cocaine. Nature Neuroscience, 4, 12171222.Google Scholar
Thompson, R. A. (1990). Emotion and self-regulation. In Thompson, R. A. (Ed.), Nebraska symposium on motivation: Vol. 36. Socioemotional development. Lincoln, NE: University of Nebraska Press.Google Scholar
Thorell, L. H., Wolfersdorf, M., Straub, R., Steyer, J., Hodgkinson, S., Kaschka, W. P., et al. (2013). Electrodermal hyporeactivity as a trait marker for suicidal propensity in uni-and bipolar depression. Journal of Psychiatric Research, 47, 19251931.Google Scholar
Tisch, S., Silberstein, P., Limousin-Dowsey, P., & Jahanshahi, M. (2004). The basal ganglia: Anatomy, physiology, and pharmacology. Psychiatric Clinics of North America, 27, 757799.Google Scholar
Titchener, E. B. (1921). A text-book on psychology. New York: Macmillan.Google Scholar
Tobler, P. N., Fiorillo, C. D., & Schultz, W. (2005). Adaptive coding of reward value by dopamine neurons. Science, 307, 16421645.Google Scholar
Toga, A. W., Thompson, P. M., & Sowell, E. R. (2006). Mapping brain maturation. Focus: The Journal of Lifelong Learning in Psychiatry, 4, 378390.Google Scholar
Tomasi, D., & Volkow, N. D. (2012). Abnormal functional connectivity in children with attention-deficit/hyperactivity disorder. Biological Psychiatry, 71, 443450.Google Scholar
Treadway, M. T., Buckholtz, J. W., Schwartzman, A. N., Lambert, W. E., & Zald, D. H. (2009). Worth the “EEfRT”? The effort expenditure for rewards task as an objective measure of motivation and anhedonia. PLOS ONE, 4, e6598.Google Scholar
Tremblay, L., Hollerman, J. R., & Schultz, W. (1998). Modifications of reward expectation-related neuronal activity during learning in primate striatum. Journal of Neurophysiology, 80, 964977.Google Scholar
Tremblay, L. K., Naranjo, C. A., Graham, S. J., Herrmann, N., Mayberg, H. S., Hevenor, S., et al. (2005). Functional neuroanatomical substrates of altered reward processing in major depressive disorder revealed by a dopaminergic probe. Archives of General Psychiatry, 62, 12281236.Google Scholar
Tripp, G., & Wickens, J. R. (2008). Research review: Dopamine transfer deficit: A neurobiological theory of altered reinforcement mechanisms in ADHD. Journal of Child Psychology and Psychiatry, 49, 691704.Google Scholar
Tuvblad, C., Zheng, M., Raine, A., & Baker, L. A. (2009). A common genetic factor explains the covariation among ADHD, ODD, and CD symptoms in 9–10-year-old boys and girls. Journal of Abnormal Child Psychology, 37, 153167.Google Scholar
Urry, H. L., Van Reekum, C. M., Johnstone, T., Kalin, N. H., Thurow, M. E., Schaefer, H. S., et al. (2006). Amygdala and ventromedial prefrontal cortex are inversely coupled during regulation of negative affect and predict the diurnal pattern of cortisol secretion among older adults. Journal of Neuroscience, 26, 44154425.Google Scholar
Vaidya, C. J. (2012). Neurodevelopmental abnormalities in ADHD. In Stanford, C. & Tannock, R. (Eds.), Behavioral neuroscience of attention deficit hyperactivity disorder and its treatment (pp. 4966). New York: Springer.Google Scholar
van Heeringen, C., Bijttebier, S., & Godfrin, K. (2011). Suicidal brains: A review of functional and structural brain studies in association with suicidal behaviour. Neuroscience & Biobehavioral Reviews, 35, 688698.Google Scholar
Vasilev, C. A., Crowell, S. E., Beauchaine, T. P., Mead, H. K., & Gatzke-Kopp, L. M. (2009). Correspondence between physiological and self-report measures of emotion dysregulation: A longitudinal investigation of youth with and without psychopathology. Journal of Child Psychology and Psychiatry, 50, 13571364.Google Scholar
Vezina, P. (2004). Sensitization of midbrain dopamine neuron reactivity and the self-administration of psychomotor stimulant drugs. Neuroscience & Biobehavioral Reviews, 27, 827839.Google Scholar
Vles, J. S. H., Feron, F. J. M., & Hendriksen, J. G. M. (2003). Dopamine receptor and transporter system in children with attention deficit hyperkinetic disorder (ADHD). Neuropediatrics, 34, 7780.Google Scholar
Volkow, N. D., Fowler, J. S., & Wang, G. J. (2004). The addicted human brain viewed in light of imaging studies: Brain circuits and treatment strategies. Neuropharmacology, 47, 313.Google Scholar
Volkow, N. D., Fowler, J. S., Wang, G., Ding, Y., & Gatley, S. J. (2002). Mechanism of action of methylphenidate: Insights from PET imaging studies. Journal of Attention Disorders, 6, S31S43.Google Scholar
Volkow, N. D., Wang, G. J., Fowler, J. S., Logan, J., Gatley, S. J., Gifford, A., et al. (1999). Prediction of reinforcing responses to psychostimulants in humans by brain dopamine D2 receptor levels. American Journal of Psychiatry, 156, 14401443.Google Scholar
Volkow, N. D., Wang, G.-J., Kollins, S. H., Wigal, T. L., Newcorn, J. H., Telang, F., et al. (2009). Evaluating dopamine reward pathway in ADHD: Clinical implications. Journal of the American Medical Association, 302, 10841091.Google Scholar
Volkow, N. D., Wang, G. J., Newcorn, J., Fowler, J. S., Telang, F., Solanto, M. V., et al. (2007). Brain dopamine transporter levels in treatment and drug naive adults with ADHD. NeuroImage, 34, 11821190.Google Scholar
Völlm, B., Richardson, P., McKie, S., Elliott, R., Dolan, M., & Deakin, B. (2007). Neuronal correlates of reward and loss in Cluster B personality disorders: A functional magnetic resonance imaging study. Psychiatry Research: Neuroimaging, 156, 151167.Google Scholar
Voorn, P., Vanderschuren, L. J., Groenewegen, H. J., Robbins, T. W., & Pennartz, C. M. (2004). Putting a spin on the dorsal-ventral divide of the striatum. Trends in Neurosciences, 27, 468474.Google Scholar
Wacker, J., Dillon, D. G., & Pizzagalli, D. A. (2009). The role of the nucleus accumbens and rostral anterior cingulate cortex in anhedonia: Integration of resting EEG, fMRI, and volumetric techniques. NeuroImage, 46, 327337.Google Scholar
Wager, T. D., Davidson, M. L., Hughes, B. L., Lindquist, M. A., & Ochsner, K. N. (2008). Prefrontal–subcortical pathways mediating successful emotion regulation. Neuron, 59, 10371050.Google Scholar
Wagner, G., Koch, K., Schachtzabel, C., Schultz, C. C., Sauer, H., & Schlösser, R. G. (2011). Structural brain alterations in patients with major depressive disorder and high risk for suicide: Evidence for a distinct neurobiological entity? NeuroImage, 54, 16071614.Google Scholar
Wahlstrom, D., Collins, P., White, T., & Luciana, M. (2010). Developmental changes in dopamine neurotransmission in adolescence: Behavioral implications and issues in assessment. Brain and Cognition, 72, 146159.Google Scholar
Walker, J. L., Lahey, B. B., Russo, M. F., Frick, P. J., Christ, M. A. G., McBurnett, K., et al. (1991). Anxiety, inhibition, and conduct disorder in children: I. Relations to social impairment. Journal of the American Academy of Child & Adolescent Psychiatry, 30, 187191.Google Scholar
Watson, D. (2000). Mood and temperament. New York: Guilford Press.Google Scholar
Watson, D. (2002). Positive affectivity. In Snyder, C. R. & Lopez, S. J. (Eds.), Handbook of positive psychology (pp. 106119). New York: Oxford University Press.Google Scholar
Watson, D., & Tellegen, A. (1985). Toward a consensual structure of mood. Psychological Bulletin, 98, 219235.Google Scholar
Watson, D., & Walker, L. M. (1996). The long-term stability and predictive validity of trait measures of affect. Journal of Personality and Social Psychology, 70, 567577.Google Scholar
Watson, D., Weber, K., Assenheimer, J. S., Clark, L. A., Strauss, M. E., & McCormick, R. A. (1995). Testing a tripartite model: I. Evaluating the convergent and discriminant validity of anxiety and depression symptom scales. Journal of Abnormal Psychology, 104, 314.Google Scholar
Weinberg, A., Liu, H., Hajcak, G., & Shankman, S. A. (2015). Blunted neural response to rewards as a vulnerability factor for depression: Results from a family study. Journal of Abnormal Psychology, 124, 878889.Google Scholar
Weissman, M. M., Wickramaratne, P., Nomura, Y., Warner, V., Pilowsky, D., & Verdeli, H. (2006). Offspring of depressed parents: 20 years later. American Journal of Psychiatry, 163, 10011008.Google Scholar
Whiteside, S. P., & Lynam, D. R. (2001). The Five Factor Model and impulsivity: Using a structural model of personality to understand impulsivity. Personality and Individual Differences, 30, 669689.Google Scholar
Wilbertz, G., van Elst, L. T., Delgado, M. R., Maier, S., Feige, B., Philipsen, A., et al. (2012). Orbitofrontal reward sensitivity and impulsivity in adult attention deficit hyperactivity disorder. NeuroImage, 60, 353361.Google Scholar
Wilens, T. E., Biederman, J., Brown, S., Tanguay, S., Monuteaux, M. C., Blake, C., et al. (2002). Psychiatric comorbidity and functioning in clinically referred preschool children and school-age youths with ADHD. Journal of the American Academy of Child & Adolescent Psychiatry, 41, 262268.Google Scholar
Willcutt, E. G. (in press). The etiology of ADHD: Behavioral and molecular genetic approaches. In Barch, D. (Ed.), Cognitive and affective neuroscience of psychopathology. New York: Oxford University Press.Google Scholar
Winer, E. S., Nadorff, M. R., Ellis, T. E., Allen, J. G., Herrera, S., & Salem, T. (2014). Anhedonia predicts suicidal ideation in a large psychiatric inpatient sample. Psychiatry Research, 218, 124128.Google Scholar
Winograd-Gurvich, C., Fitzgerald, P. B., Georgiou-Karistianis, N., Bradshaw, J. L., & White, O. B. (2006). Negative symptoms: A review of schizophrenia, melancholic depression and Parkinson's disease. Brain Research Bulletin, 70, 312321.Google Scholar
Winstanley, C. A., Theobald, D. E., Cardinal, R. N., & Robbins, T. W. (2004). Contrasting roles of basolateral amygdala and orbitofrontal cortex in impulsive choice. Journal of Neuroscience, 24, 47184722.Google Scholar
Wise, R. A. (2009). Roles for nigrostriatal—not just mesocorticolimbic—dopamine in reward and addiction. Trends in Neurosciences, 32, 517524.Google Scholar
Wrase, J., Schlagenhauf, F., Kienast, T., Wüstenberg, T., Bermpohl, F., Kahnt, T., et al. (2007). Dysfunction of reward processing correlates with alcohol craving in detoxified alcoholics. NeuroImage, 35, 787794.Google Scholar
Wray, N. R., Pergadia, M. L., Blackwood, D. H. R., Penninx, B. W. J. H., Gordon, S. D., Nyholt, D. R., et al. (2012). Genome-wide association study of major depressive disorder: New results, meta-analysis, and lessons learned. Molecular Psychiatry, 17, 3648.Google Scholar
Wright, A. G. C., Krueger, R. F., Hobbs, M. J., Markon, K. E., Eaton, N. R., & Slade, T. (2013). The structure of psychopathology: Toward an expanded quantitative empirical model. Journal of Abnormal Psychology, 122, 281294.Google Scholar
Yamawaki, S., Okada, G., Okamoto, Y., & Liberzon, I. (2012). Mood dysregulation and stabilization: Perspectives from emotional cognitive neuroscience. International Journal of Neuropsychopharmacology, 15, 681694.Google Scholar
Yorbik, O., Birmaher, B., Axelson, D., Williamson, D. E., & Ryan, N. D. (2004). Clinical characteristics of depressive symptoms in children and adolescents with major depressive disorder. Journal of Clinical Psychiatry, 65, 16541659.Google Scholar
Zisner, A., & Beauchaine, T. P. (2015). Midbrain neural mechanisms of trait impulsivity. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Oxford handbook of externalizing spectrum disorders (pp. 184200). New York: Oxford University Press.Google Scholar
Zisner, A., & Beauchaine, T. P. (2016). Physiological methods and developmental psychopathology. In Cicchetti, D. (Ed.), Developmental psychopathology: Vol. 2. Developmental neuroscience (3rd ed., pp. 832884). Hoboken, NJ: Wiley.Google Scholar