Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-09T09:59:16.807Z Has data issue: false hasContentIssue false

Neural correlates of cognitive and affective processing in maltreated youth with posttraumatic stress symptoms: Does gender matter?

Published online by Cambridge University Press:  12 March 2014

Joseph C. Crozier
Affiliation:
Duke University
Lihong Wang
Affiliation:
Duke University Tshinghua University
Scott A. Huettel
Affiliation:
Duke University
Michael D. De Bellis*
Affiliation:
Duke University
*
Address correspondence and reprint requests to: Michael D. De Bellis, Healthy Childhood Brain Development and Developmental Traumatology Research Program, Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Box 104360, Durham NC, 27710; E-mail: [email protected].

Abstract

We investigated the relationship of gender to cognitive and affective processing in maltreated youth with posttraumatic stress disorder symptoms using functional magnetic resonance imaging. Maltreated (N = 29, 13 females, 16 males) and nonmaltreated participants (N = 45, 26 females, 19 males) performed an emotional oddball task that involved detection of targets with fear or scrambled face distractors. Results were moderated by gender. During the executive component of this task, left precuneus/posterior middle cingulate hypoactivation to fear versus calm or scrambled face targets were seen in maltreated versus control males and may represent dysfunction and less resilience in attentional networks. Maltreated males also showed decreased activation in the inferior frontal gyrus compared to control males. No differences were found in females. Posterior cingulate activations positively correlated with posttraumatic stress disorder symptoms. While viewing fear faces, maltreated females exhibited decreased activity in the dorsomedial prefrontal cortex and cerebellum I–VI, whereas maltreated males exhibited increased activity in the left hippocampus, fusiform cortex, right cerebellar crus I, and visual cortex compared to their same-gender controls. Gender by maltreatment effects were not attributable to demographic, clinical, or maltreatment parameters. Maltreated girls and boys exhibited distinct patterns of neural activations during executive and affective processing, a new finding in the maltreatment literature.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anda, R. F., Felitti, V. J., Bremner, J. D., Walker, J. D., Whitfield, C., Perry, B. D., et al. (2006). The enduring effects of abuse and related adverse experiences in childhood: A convergence of evidence from neurobiology and epidemiology. European Archives of Psychiatry and Clinical Neuroscience, 256, 174186.CrossRefGoogle ScholarPubMed
Bauer, P. M., Hanson, J. L., Pierson, R. K., Davidson, R. J., & Pollak, S. D. (2009). Cerebellar volume and cognitive functioning in children who experienced early deprivation. Biological Psychiatry, 66, 11001106.CrossRefGoogle ScholarPubMed
Bergen, H. A., Martin, G., Richardson, A. S., Allison, S., & Roeger, L. (2004). Sexual abuse, antisocial behaviour and substance use: Gender differences in young community adolescents. Australian and New Zealand Journal of Psychiatry, 38, 3441.CrossRefGoogle ScholarPubMed
Besinger, B., Garland, A. F., Litrownik, A. J., & Landsverk, J. A. (1999). Caregiver substance abuse among maltreated children placed in out-of-home care. Child Welfare, 78, 221239.Google ScholarPubMed
Bishop, S. J., Jenkins, R., & Lawrence, A. D. (2007). Neural processing of fearful faces: Effects of anxiety are gated by perceptual capacity limitations. Cerebral Cortex, 17, 15951603.CrossRefGoogle ScholarPubMed
Blakemore, S.-J., Burnett, S., & Dahl, R. E. (2010). The role of puberty in the developing adolescent brain. Human Brain Mapping, 31, 926933.CrossRefGoogle ScholarPubMed
Bremner, J. D., Narayan, M., Staib, L. H., Southwick, S. M., McGlashan, T., & Charney, D. S. (1999). Neural correlates of memories of childhood sexual abuse in women with and without posttraumatic stress disorder. American Journal of Psychiatry, 156, 17871795.CrossRefGoogle ScholarPubMed
Bremner, J. D., Vermetten, E., Schmahl, C., Vaccarino, V., Vythilingam, M., Afzal, N., et al. (2005). Positron emission tomographic imaging of neural correlates of a fear acquisition and extinction paradigm in women with childhood sexual-abuse-related post-traumatic stress disorder. Psychological Medicine, 35, 791806.CrossRefGoogle ScholarPubMed
Bremner, J. D., Vermetten, E., Vythilingam, M., Afzal, N., Schmahl, C., Elzinga, B., et al. (2004). Neural correlates of the classic color and emotional stroop in women with abuse-related posttraumatic stress disorder. Biological Psychiatry, 55, 612620.CrossRefGoogle ScholarPubMed
Bremner, J. D., Vythilingam, M., Vermetten, E., Southwick, S. M., McGlashan, T., Staib, L. H., et al. (2003). Neural correlates of declarative memory for emotionally valenced words in women with posttraumatic stress disorder related to early childhood sexual abuse. Biological Psychiatry, 53, 879889.CrossRefGoogle ScholarPubMed
Britton, J. C., Phan, K. L., Taylor, S. F., Fig, L. M., & Liberzon, I. (2005). Corticolimbic blood flow in posttraumatic stress disorder during script-driven imagery. Biological Psychiatry, 57, 832840.CrossRefGoogle ScholarPubMed
Carrion, V. G., Garrett, A., Menon, V., Weems, C. F., & Reiss, A. L. (2008). Posttraumatic stress symptoms and brain function during a response-inhibition task: An fMRI study in youth. Depression and Anxiety, 25, 514526. doi:10.1002/da.20346 CrossRefGoogle ScholarPubMed
Carrion, V. G., Weems, C. F., Ray, R. D., Glaser, B., Hessl, D., & Reiss, A. L. (2002). Diurnal salivary cortisol in pediatric posttraumatic stress disorder. Biological Psychiatry, 51, 575582.CrossRefGoogle ScholarPubMed
Carrion, V. G., Weems, C. F., Ray, R. D., & Reiss, A. L. (2002). Toward an empirical definition of pediatric PTSD: The phenomenology of PTSD symptoms in youth. Journal of the American Academy of Child & Adolescent Psychiatry, 41, 166173.CrossRefGoogle ScholarPubMed
Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: A review of its functional anatomy and behavioural correlates. Brain, 129, 564583.CrossRefGoogle ScholarPubMed
Charney, D. S., Deutch, A. Y., Krystal, J. H., Southwick, S. M., & Davis, M. (1993). Psychobiologic mechanisms of posttraumatic-stress-disorder. Archives of General Psychiatry, 50, 294306.CrossRefGoogle ScholarPubMed
Clark, A. S., MacLusky, N. J., & Goldman-Rakic, P. S. (1988). Androgen binding and metabolism in the cerebral cortex of the developing rhesus monkey. Endocrinology, 123, 932940.CrossRefGoogle ScholarPubMed
Costello, E. J., Erkanli, A., Copeland, W., & Angold, A. (2010). Association of family income supplements in adolescence with development of psychiatric and substance use disorders in adulthood among an American Indian population. Journal of the American Medical Association, 303, 19541960.CrossRefGoogle ScholarPubMed
De Bellis, M. D. (2001). Developmental traumatology: The psychobiological development of maltreated children and its implications for research, treatment, and policy. Development and Psychopathology, 13, 539564.CrossRefGoogle ScholarPubMed
De Bellis, M. D., Baum, A. S., Birmaher, B., Keshavan, M. S., Eccard, C. H., Boring, A. M., et al. (1999). Developmental traumatology: I. Biological stress systems. Biological Psychiatry, 45, 12591270.CrossRefGoogle ScholarPubMed
De Bellis, M. D., Broussard, E. R., Herring, D. J., Wexler, S., Moritz, G., & Benitez, J. G. (2001). Psychiatric co-morbidity in caregivers and children involved in maltreatment: A pilot research study with policy implications. Child Abuse and Neglect, 25, 923944.CrossRefGoogle ScholarPubMed
De Bellis, M. D., & Hooper, S. R. (2012). Neural substrates for processing task-irrelevant emotional distracters in maltreated adolescents with depressive disorders: A pilot study. Journal of the International Traumatic Stress Society, 25, 198202.CrossRefGoogle ScholarPubMed
De Bellis, M. D., Hooper, S. R., Spratt, E. G., & Woolley, D. W. (2009). Neuropsychological findings in childhood neglect and their relationships to pediatric PTSD. Journal of the International Neuropsychological Society, 15, 111.CrossRefGoogle ScholarPubMed
De Bellis, M. D., & Keshavan, M. S. (2003). Sex differences in brain maturation in maltreatment-related pediatric posttraumatic stress disorder. Neuroscience & Biobehavioral Reviews, 27, 103117.CrossRefGoogle ScholarPubMed
De Bellis, M. D., Keshavan, M. S., Beers, S. R., Hall, J., Frustaci, K., Masalehdan, A., et al. (2001). Sex differences in brain maturation during childhood and adolescence. Cerebral Cortex, 11, 552557.CrossRefGoogle ScholarPubMed
De Bellis, M. D., Keshavan, M. S., Clark, D. B., Casey, B. J., Giedd, J., Boring, A. M., et al. (1999). Developmental traumatology: Part II. Brain development. Biological Psychiatry, 45, 12711284.CrossRefGoogle ScholarPubMed
De Bellis, M. D., Keshavan, M. S., Frustaci, K., Shifflett, H., Iyengar, S., Beers, S. R., et al. (2002). Superior temporal gyrus volumes in maltreated children and adolescents with PTSD. Biological Psychiatry, 51, 544552.CrossRefGoogle ScholarPubMed
De Bellis, M. D., & Kuchibhatla, M. (2006). Cerebellar volumes in pediatric maltreatment-related posttraumatic stress disorder. Biological Psychiatry, 60, 697703.CrossRefGoogle ScholarPubMed
Dolcos, F., Iordan, A. D., & Dolcos, S. (2011). Neural correlates of emotioncognition interactions: A review of evidence from brain imaging investigations. Journal of Cognitive Psychology, 23, 669694.CrossRefGoogle ScholarPubMed
Drevets, W. C. (2000). Functional anatomical abnormalities in limbic and prefrontal cortical structures in major depression. Progress in Brain Research, 126, 413431.CrossRefGoogle ScholarPubMed
Driessen, M., Beblo, T., Mertens, M., Piefke, M., Rullkoetter, N., Silva-Saavedra, A., et al. (2004). Posttraumatic stress disorder and fMRI activation patterns of traumatic memory in patients with borderline personality disorder. Biological Psychiatry, 55, 603611.CrossRefGoogle ScholarPubMed
Duncan, J., & Owen, A. M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neuroscience, 23, 475483.CrossRefGoogle ScholarPubMed
Eichele, T., Debener, S., Calhoun, V. D., Specht, K., Engel, A. K., Hugdahl, K., et al. (2008). Prediction of human errors by maladaptive changes in event-related brain networks Proceedings of the National Academy of Sciences, 105, 61736178.CrossRefGoogle ScholarPubMed
Etkin, A., Egner, T., & Kalisch, R. (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends in Cognitive Sciences, 15, 8593.CrossRefGoogle ScholarPubMed
Felmingham, K., Kemp, A., Williams, L., Das, P., Hughes, G., Peduto, A., et al. (2007). Changes in anterior cingulate and amygdala after cognitive behavior therapy of posttraumatic stress disorder. Psychological Science, 18, 127129. doi:10.1111/j.1467-9280.2007.01860.x CrossRefGoogle ScholarPubMed
Francati, V., Vermetten, E., & Bremner, J. D. (2007). Functional neuroimaging studies in posttraumatic stress disorder: Review of current methods and findings. Depression and Anxiety, 24, 202218.CrossRefGoogle ScholarPubMed
Fransson, P. (2005). Spontaneous low-frequency BOLD signal fluctuations: An fMRI investigation of the resting-state default mode of brain function hypothesis. Human Brain Mapping, 26, 529.CrossRefGoogle ScholarPubMed
Fransson, P. (2006). How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia, 44, 28362845.CrossRefGoogle ScholarPubMed
Galea, L. A., Spritzer, M. D., Barker, J. M., & Pawluski, J. L. (2006). Gonadal hormone modulation of hippocampal neurogenesis in the adult. Hippocampus, 16, 225232.CrossRefGoogle ScholarPubMed
Garnefski, N., & Diekstra, R. F. W. (1997). Child sexual abuse and emotional and behavioral problems in adolescence: Gender differences. Journal of the American Academy of Child & Adolescent Psychiatry, 36, 323329.CrossRefGoogle ScholarPubMed
Garrett, A. S., Carrion, V. G., Kletter, H., Karchemskiy, A., Weems, C. F., & Reiss, A. L. (2012). Brain activation to facial expressions in youth with PTSD symptoms. Depression and Anxiety, 29, 449459.CrossRefGoogle ScholarPubMed
Giedd, J. N., Keshavan, M., & Paus, T. (2008). Why do many psychiatric disorders emerge during adolescence? Nature Reviews Neuroscience, 9, 947957.Google Scholar
Gilboa, A., Shalev, A. Y., Laor, L., Lester, H., Louzoun, Y., Chisin, R., et al. (2004). Functional connectivity of the prefrontal cortex and the amygdala in posttraumatic stress disorder. Biological Psychiatry, 55, 263272.CrossRefGoogle ScholarPubMed
Gilman, S. E., Kawachi, I., Fitzmaurice, G. M., & Buka, S. L. (2003). Socio-economic status, family disruption and residential stability in childhood: Relation to onset, recurrence and remission of major depression. Psychological Medicine, 33, 13411355.CrossRefGoogle ScholarPubMed
Gilmore, J. H., Lin, W., Prastawa, M. W., Looney, C. B., Vetsa, Y. S. K., Knickmeyer, R. C., et al. (2007). Regional gray matter growth, sexual dimorphism, and cerebral asymmetry in the neonatal brain. Journal of Neuroscience, 27, 12551260.CrossRefGoogle ScholarPubMed
Goldstein, J. M., Seidman, L. J., Horton, N. J., Makris, N., Kennedy, D. M., Caviness, V. S. Jr., et al. (2001). Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cerebral Cortex, 11, 490497.CrossRefGoogle ScholarPubMed
Habas, C., Kamdar, N., Nguyen, D., Prater, K., Beckmann, C. F., Menon, V., et al. (2009). Distinct cerebellar contributions to intrinsic connectivity networks. Journal of Neuroscience, 29, 85868594.CrossRefGoogle ScholarPubMed
Hendler, T., Rotshtein, P., Yeshurun, Y., Weizmann, T., Kahn, I., Ben-Bashat, D., et al. (2003). Sensing the invisible: Differential sensitivity of visual cortex and amygdala to traumatic context. NeuroImage, 19, 587600.CrossRefGoogle ScholarPubMed
Hoehl, S., Brauer, J., Brasse, G., Striano, T., & Friederici, A. D. (2010). Children's processing of emotions expressed by peers and adults: An fMRI study. Social Neuroscience, 5, 543559.CrossRefGoogle ScholarPubMed
Hopper, J. W., Frewen, P. A., van der Kolk, B. A., & Lanius, R. A. (2007). Neural correlates of reexperiencing, avoidance, and dissociation in PTSD: Symptom dimensions and emotion dysregulation in responses to script-driven trauma imagery. Journal of Trauma Stress, 20, 713725. doi:10.1002/jts.20284 CrossRefGoogle ScholarPubMed
Hussey, J. M., Chang, J. J., & Kotch, J. B. (2006). Child maltreatment in the United States: Prevalence, risk factors, and adolescent health consequences. Pediatrics, 118, 933942.CrossRefGoogle ScholarPubMed
Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17, 825841.CrossRefGoogle ScholarPubMed
Karl, A., Schaefer, M., Malta, L. S., Dorfel, D., Rohleder, N., & Werner, A. (2006). A meta-analysis of structural brain abnormalities in PTSD. Neuroscience & Biobehavioral Reviews, 30, 10041031. doi:10.1016/j.neubiorev.2006.03.004 CrossRefGoogle ScholarPubMed
Kaufman, J., Birmaher, B., Brent, D., Rao, U., Flynn, C., Moreci, P., et al. (1997). Schedule for Affective Disorders and Schizophrenia for School-Age Children—Present and lifetime version (K-SADS-PL): Initial reliability and validity data. Journal of the American Academy of Child & Adolescent Psychiatry, 36, 980988.CrossRefGoogle ScholarPubMed
Kaufman, J., Jones, B., Stieglitz, E., Vitulano, L., & Mannarino, A. (1994). The use of multiple informants to assess children's maltreatment experiences. Journal of Family Violence, 9, 227248.Google Scholar
Kelleher, K., Chaffin, M., Hollenberg, J., & Fischer, E. (1994). Alcohol and drug disorders among physically abusive and neglectful parents in a community-based sample. American Journal of Public Health, 84, 15861590.CrossRefGoogle Scholar
Kitayama, N., Vaccarino, V., Kutner, M., Weiss, P., & Bremner, J. D. (2005). Magnetic resonance imaging (MRI) measurement of hippocampal volume in posttraumatic stress disorder: A meta-analysis. Journal of Affective Disorders, 88, 7986.CrossRefGoogle ScholarPubMed
Koch, K., Pauly, K., Kellermann, T., Seiferth, S. Y., Reske, M., Backes, Y., et al. (2007). Gender differences in the cognitive control of emotion: An fMRI study. Neuropsychologia, 45, 27442754.CrossRefGoogle ScholarPubMed
Lang, P. J., Davis, M., & Ohman, A. (2000). Fear and anxiety: Animal models and human cognitive psychophysiology. Journal of Affective Disorders, 61, 137159.CrossRefGoogle ScholarPubMed
Lanius, R. A., Williamson, P. C., Densmore, M., Boksman, K., Gupta, M. A., Neufeld, R. W., et al. (2001). Neural correlates of traumatic memories in posttraumatic stress disorder: A functional MRI investigation. American Journal of Psychiatry, 158, 19201922.CrossRefGoogle ScholarPubMed
Lanius, R. A., Williamson, P. C., Hopper, J., Densmore, M., Boksman, K., Gupta, M. A., et al. (2003). Recall of emotional states in posttraumatic stress disorder: An fMRI investigation. Biological Psychiatry, 53, 204210.CrossRefGoogle ScholarPubMed
Lansford, J. E., Malone, P. S., Stevens, K. I., Dodge, K. A., Bates, J. E., & Pettit, G. S. (2006). Developmental trajectories of externalizing and internalizing behaviors: Factors underlying resilience in physically abused children. Development and Psychopathology, 18, 3555.CrossRefGoogle ScholarPubMed
LeDoux, J. (1998). Fear and the brain: Where have we been, and where are we going? Biological Psychiatry, 44, 12291238.CrossRefGoogle ScholarPubMed
Lenroot, R. K., Gogtay, N., Greenstein, D. K., Wells, E. M., Wallace, G. L., Clasen, L. S., et al. (2007). Sexual dimorphism of brain developmental trajectories during childhood and adolescence. NeuroImage, 36, 10651073.CrossRefGoogle ScholarPubMed
Leslie, L. K., Gordon, J. N., Meneken, L., Premji, K., Michaelmore, K. L., & Ganger, W. (2005). The physical, developmental, and mental health needs of young children in child welfare by initial placement type. Developmental and Behavioral Pediatrics, 26, 177185.CrossRefGoogle ScholarPubMed
Levy, H. B., Markovic, J., Chaudry, U., Ahart, S., & Torres, H. (1995). Reabuse rates in a sample of children followed for 5 years after discharge from a child abuse inpatient assessment program. Child Abuse and Neglect, 11, 13631377.CrossRefGoogle Scholar
Liberzon, I., Abelson, J. L., Flagel, S. B., Raz, J., & Young, E. A. (1999). Neuroendocrine and psychophysiologic responses in PTSD: A symptom provocation study. Neuropsychopharmacology, 21, 4050.CrossRefGoogle ScholarPubMed
Lindauer, R. J. L., Booij, J., Habraken, J. B. A., Uylings, H. B. M., Olff, M., Carlier, I. V. E., et al. (2004). Cerebral blood flow changes during script-driven imagery in police officers with posttraumatic stress disorder. Biological Psychiatry, 56, 853861.CrossRefGoogle ScholarPubMed
Liu, J., Wang, X., Shigenaga, M. K., Yeo, H. C., Mori, A., & Ames, B. N. (1996). Immobilization stress causes oxidative damage to lipid, protein, and DNA in the brain of rats. Journal of the Federation of American Societies for Experimental Biology, 10, 15321538.CrossRefGoogle ScholarPubMed
Maas, C., Herrenkohl, T. I., & Sousa, C. (2008). Review of research on child maltreatment and violence in youth. Trauma, Violence, & Abuse, 9, 5667. doi:10.1177/1524838007311105 CrossRefGoogle ScholarPubMed
MacLusky, N. J., Hajszan, T., Prange-Kiel, J., & Leranth, C. (2006). Androgen modulation of hippocampal synaptic plasticity. Neuroscience, 138, 957965.CrossRefGoogle ScholarPubMed
Maddock, R. J. (1999). Retrosplenial cortex and emotion: New insights from functional imaging studies of the human brain. Trends in Neuroscience, 22, 310316.CrossRefGoogle ScholarPubMed
Maheu, F. S., Dozier, M., Guyer, A. E., Mandell, D., Peloso, E., Poeth, K., et al. (2010). A preliminary study of medial temporal lobe function in youths with a history of caregiver deprivation and emotional neglect. Cognitive, Affective, & Behavioral Neuroscience, 10, 3449.CrossRefGoogle ScholarPubMed
Masten, A. S., Best, K. M., & Garmezy, N. (1990). Resilience and development: Contributions from the study of children who overcome adversity. Development and Psychopathology, 2, 425444.CrossRefGoogle Scholar
Mayberg, H. S. (1997). Limbic–cortical dysregulation: A proposed model of depression. Journal of Neuropsychiatry and Clinical Neuroscience, 9, 471481.Google ScholarPubMed
McEwen, B. S. (2002). Sex, stress and the hippocampus: Allostasis, allostatic load and the aging process. Neurobiology of Aging, 23, 921939.CrossRefGoogle ScholarPubMed
McEwen, B. S. (2006). How do sex and stress hormones affect nerve cells? Annals of the New York Academy of Sciences, 743, 118.CrossRefGoogle Scholar
McGee, R., Wolfe, D., Yuen, S., Wilson, S., & Carnochan, J. (1995). The measurement of maltreatment. Child Abuse and Neglect, 19, 233249.CrossRefGoogle ScholarPubMed
McGloin, J. M., & Widom, C. S. (2001). Resilience among abused and neglected children grown up. Development and Psychopathology, 13, 10211038.CrossRefGoogle ScholarPubMed
McLoyd, V. C. (1998). Socioeconomic disadvantage and child development. American Psychologist, 53, 185204.CrossRefGoogle ScholarPubMed
McRae, K., Ochsner, K. N., Mauss, I. B., Gabrieli, J. J. D., & Gross, J. J. (2008). Gender differences in emotion regulation: An fMRI study of cognitive reappraisal. Group Processes Intergroup Relations, 11, 142162.CrossRefGoogle ScholarPubMed
Mitchell, J. P. (2006). Mentalizing and Marr: An information processing approach to the study of social cognition. Brain Research, 1079, 6675.CrossRefGoogle Scholar
Mueller, S. C., Maheu, F. S., Dozier, M., Peloso, E., Mandell, D., Leibenluft, E., et al. (2010). Early-life stress is associated with impairment in cognitive control in adolescence: An fMRI study. Neuropsychologia, 48, 30373044.CrossRefGoogle ScholarPubMed
Neubauer, A. C., & Fink, A. (2009). Intelligence and neural efficiency. Neuroscience & Biobehavioral Reviews, 33, 10041023.CrossRefGoogle ScholarPubMed
Neufang, S., Specht, K., Hausmann, M., Gunturkun, O., Herpertz-Dahlmann, B., Fink, G. R., et al. (2009). Sex differences and the impact of steroid hormones on the developing human brain. Cerebral Cortex, 19, 464473.CrossRefGoogle ScholarPubMed
Nitschke, J. B., Sarinopoulos, I., Oathes, D. J., Johnstone, T., Whalen, P. J., Davidson, R. J., et al. (2009). Anticipatory activation in the amygdala and anterior cingulate in generalized anxiety disorder and prediction of treatment response. American Journal of Psychiatry, 166, 302310.CrossRefGoogle ScholarPubMed
O'Reilly, J. X., Beckmann, C. F., Tomassini, V., Ramnani, N., & Johansen-Berg, H. (2010). Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cerebral Cortex, 20, 953965.CrossRefGoogle ScholarPubMed
Perez, C., & Widom, C. S. (1994). Childhood victimization and long-term intellectual and academic outcomes. Child Abuse and Neglect, 18, 617633.CrossRefGoogle ScholarPubMed
Phelps, E. A. (2004). Human emotion and memory: Interactions of the amygdala and hippocampal complex. Current Opinion in Neurobiology, 14, 198202.CrossRefGoogle ScholarPubMed
Phelps, E. A., Delgado, M. R., Nearing, K. I., & LeDoux, J. E. (2004). Extinction learning in humans: Role of the amygdala and vmPFC. Neuron, 43, 897905.CrossRefGoogle ScholarPubMed
Phillips, M. L., Drevets, W. C., Rauch, S. L., & Lane, R. (2003). Neurobiology of emotion perception: I. The neural basis of normal emotion perception. Biological Psychiatry, 54, 504514.CrossRefGoogle ScholarPubMed
Pissiota, A., Frans, O., Fernandez, M., von Knorring, L., Fischer, H., & Fredrikson, M. (2002). Neurofunctional correlates of posttraumatic stress disorder: A PET symptom provocation study. European Archives of Psychiatry and Clinical Neuroscience, 252, 6875.CrossRefGoogle ScholarPubMed
Protopopescu, X., Pan, H., Tuescher, O., Cloitre, M., Goldstein, M., Engelien, W., et al. (2005). Differential time courses and specificity of amygdala activity in posttraumatic stress disorder subjects and normal control subjects. Biological Psychiatry, 57, 464473.CrossRefGoogle ScholarPubMed
Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98, 676682.CrossRefGoogle ScholarPubMed
Rauch, S. L., Shin, L. M., & Phelps, E. A. (2006). Neurocircuitry models of posttraumatic stress disorder and extinction: Human neuroimaging research—Past, present, and future. Biological Psychiatry, 60, 376382. doi:10.1016/j.biopsych.2006.06.004 CrossRefGoogle ScholarPubMed
Rauch, S. L., Whalen, P. J., Shin, L. M., McInerney, S. C., Macklin, M. L., Lasko, N. B., et al. (2000). Exaggerated amygdala response to masked facial stimuli in posttraumatic stress disorder: A functional MRI study. Biological Psychiatry, 47, 769776.CrossRefGoogle ScholarPubMed
Saul, A., Grant, K. E., & Smith-Carter, J. (2008). Post-traumatic reactions in adolescents: How well do the DSM-IV PTSD criteria fit the real life experience of trauma exposed youth? Journal of Abnormal Child Psychology, 36, 915925.CrossRefGoogle ScholarPubMed
Schäfer, A., Schienle, A., & Vaitl, D. (2005). Stimulus type and design influence hemodynamic responses towards visual disgust and fear elicitors. International Journal of Psychophysiology, 57, 5359.CrossRefGoogle ScholarPubMed
Schienle, A., Schafer, A., Stark, R., Walter, B., & Vaitl, D. (2005). Gender differences in the processing of disgust- and fear-inducing pictures: An fMRI study. NeuroReport, 16, 277280.CrossRefGoogle ScholarPubMed
Schmahmann, J. D., Macmore, J., & Vange, L. M. (2009). Cerebellar stroke without motor deficit: Clinical evidence for motor and nonmotor domains within the human cerebellum. Neuroscience, 162, 852861.CrossRefGoogle ScholarPubMed
Shin, L. M., McNally, R. J., Kosslyn, S. M., Thompson, W. L., Rauch, S. L., Alpert, N. M., et al. (1999). Regional cerebral blood flow during script-driven imagery in childhood sexual abuse-related PTSD: A PET investigation. American Journal of Psychiatry, 156, 575584.CrossRefGoogle ScholarPubMed
Shin, L. M., Orr, S. P., Carson, M. A., Rauch, S. L., Macklin, M. L., Lasko, N. B., et al. (2004). Regional cerebral blood flow in the amygdala and medial prefrontal cortex during traumatic imagery in male and female Vietnam veterans with PTSD. Archives of General Psychiatry, 61, 168176.CrossRefGoogle ScholarPubMed
Shin, L. M., Shin, P. S., Heckers, S., Krangel, T. S., Macklin, M. L., Orr, S. P., et al. (2004). Hippocampal function in posttraumatic stress disorder. Hippocampus, 14, 292300.CrossRefGoogle ScholarPubMed
Shin, L. M., Whalen, P. J., Pitman, R. K., Bush, G., Macklin, M. L., Lasko, N. B., et al. (2001). An fMRI study of anterior cingulate function in posttraumatic stress disorder. Biological Psychiatry, 50, 932942.CrossRefGoogle ScholarPubMed
Shin, L. M., Wright, C. I., Cannistraro, P. A., Wedig, M. M., McMullin, K., Martis, B., et al. (2005). A functional magnetic resonance imaging study of amygdala and medial prefrontal cortex responses to overtly presented fearful faces in posttraumatic stress disorder. Archives of General Psychiatry, 62, 273281.CrossRefGoogle ScholarPubMed
Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17, 143155.CrossRefGoogle ScholarPubMed
Stoodley, C. J., & Schmahmann, J. D. (2009). Functional topography in the human cerebellum: A meta-analysis of neuroimaging studies. NeuroImage, 44, 489501. doi:10.1016/j.neuroimage.2008.08.039 Google ScholarPubMed
Stoodley, C. J., & Schmahmann, J. D. (2010). Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex, 44, 831844.CrossRefGoogle Scholar
Teicher, M. H., Anderson, C. M., & Polcari, A. (2012). Childhood maltreatment is associated with reduced volume in the hippocampal subfields CA3, dentate gyrus, and subiculum. Proceedings of the Natlonal Academy of Sciences, 109, E563E572.Google ScholarPubMed
Thomaes, K., Dorrepaal, E., Draijer, N. P. J., de Ruiter, M. B., Elzinga, B. M., van Balkom, A. J., et al. (2009). Increased activation of the left hippocampus region in complex PTSD during encoding and recognition of emotional words: A pilot study. Psychiatry Research: Neuroimaging, 171, 4453.CrossRefGoogle ScholarPubMed
Thomas, K. M., Drevets, W. C., Whalen, P. J., Eccard, C. H., Dahl, R. E., Ryan, N. D., et al. (2001). Amygdala response to facial expressions in children and adults. Biological Psychiatry, 49, 309316.CrossRefGoogle ScholarPubMed
Tiemeier, H., Lenroot, R. K., Greenstein, D. K., Tran, L., Pierson, R., & Giedd, J. N. (2010). Cerebellum development during childhood and adolescence: A longitudinal morphometric MRI study. NeuroImage, 49, 6370.CrossRefGoogle ScholarPubMed
Tottenham, N., Hare, T. A., Millner, A., Gilhooly, T., Zevin, J., & Casey, B. J. (2011). Elevated amygdala response to faces following early deprivation. Developmental Science, 14, 190204. doi:10.1111/j.1467-7687.2010.00971.x CrossRefGoogle ScholarPubMed
Tottenham, N., & Sheridan, M. A. (2010). A review of adversity, the amygdala and the hippocampus: A consideration of developmental timing. Frontiers in Human Neuroscience, 3, 118.Google ScholarPubMed
Tottenham, N., Tanaka, J. W., Leon, A. C., McCarry, T., Nurse, M., Hare, T. A., et al. (2009). The NimStim set of facial expressions: Judgments from untrained research participants. Psychiatry Research, 168, 242249.CrossRefGoogle ScholarPubMed
Tupler, L. A., & De Bellis, M. D. (2006). Segmented hippocampal volume in children and adolescents with posttraumatic stress disorder. Biological Psychiatry, 59, 523529.CrossRefGoogle ScholarPubMed
Wang, L., Huettel, S., & De Bellis, M. (2008). Neural substrates for processing task-irrelevant emotional distracters in children and adolescents. Developmental Science, 11, 2332.CrossRefGoogle Scholar
Wang, L. H., LaBar, K. S., & McCarthy, G. (2006). Mood alters amygdala activation to sad distractors during an attentional task. Biological Psychiatry, 60, 11391146.CrossRefGoogle ScholarPubMed
Wang, L., LaBar, K. S., Smoski, M., Rosenthal, M. Z., Dolcos, F., Lynch, T. R., et al. (2008). Prefrontal mechanisms for executive control over emotional distraction are altered in major depression. Psychiatry Research: Neuroimaging, 163, 143155.CrossRefGoogle ScholarPubMed
Wang, L. H., McCarthy, G., Song, A. W., & LaBar, K. S. (2005). Amygdala activation to sad pictures during high-field (4 tesla) functional magnetic resonance imaging. Emotion, 5, 1222.CrossRefGoogle ScholarPubMed
Wechsler, D. (1991). Wechsler Intelligence Scale for Children (3rd ed.). San Antonio, TX: Psychological Corporation.Google Scholar
Widom, C. S. (1989). The cycle of violence. Science, 244, 160166.CrossRefGoogle ScholarPubMed
Wilson, M. E., Westberry, J. M., & Trout, A. L. (2011). Estrogen receptor-alpha gene expression in the cortex: Sex differences during development and in adulthood. Hormones and Behavior, 59, 353357.CrossRefGoogle ScholarPubMed
Wise, P. M., Dubal, D. B., Wilson, M. E., Rau, S. W., & Liu, Y. (2001). Estrogens: Trophic and protective factors in the adult brain. Frontiers in Neuroendocrinology, 22, 3366.CrossRefGoogle ScholarPubMed
Woolrich, M. W., Ripley, B. D., Brady, M., & Smith, S. M. (2001). Temporal autocorrelation in univariate linear modeling of FMRI data. NeuroImage, 14, 13701386.CrossRefGoogle ScholarPubMed
Worsley, K. J. (2001). Statistical analysis of activation images. In Jezzard, P., Matthews, P. M., & Smith, S. M. (Eds.), Functional MRI: An introduction to methods (pp. 251270). Oxford: Oxford University Press.Google Scholar
Yamasaki, H., LaBar, K. S., & McCarthy, G. (2002). Dissociable prefrontal brain systems for attention and emotion. Proceedings of the National Academy of Sciences, 99, 1144711451.CrossRefGoogle ScholarPubMed