Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-04T18:59:12.621Z Has data issue: false hasContentIssue false

Molecular genetic approaches to understanding the comorbidity of psychiatric disorders

Published online by Cambridge University Press:  14 October 2016

Ian R. Gizer*
Affiliation:
University of Missouri
*
Address correspondence and reprint requests to: Ian R. Gizer, Department of Psychological Sciences, University of Missouri, 210 McAlester Hall, Columbia, MO 65211; E-mail: [email protected].

Abstract

Epidemiologic studies demonstrating high rates of co-occurrence among psychiatric disorders at the population level have contributed to large literatures focused on identifying the causal mechanisms underlying the patterns of co-occurrence among these disorders. Such efforts have long represented a core focus of developmental psychopathologists and have more recently been supported by the Research Domain Criteria initiative developed by the NIMH, which provides a further framework for how the hypothesized mechanisms can be studied at different levels of analysis. The present overview focuses on molecular genetic approaches that are being used currently to study the etiology of psychiatric disorders, and how these approaches have been applied in efforts to understand the biological mechanisms that give rise to comorbid conditions. The present report begins with a review of molecular genetic approaches used to identify individual variants that confer risk for multiple disorders and the intervening biological mechanisms that contribute to their comorbidity. This is followed by a review of molecular genetic approaches that use genetic data in aggregate to examine these questions, and concludes with a discussion of how developmental psychopathologists are uniquely positioned to apply these methods in a way that will further our understanding of the causal factors that contribute to the development of comorbid conditions.

Type
Special Issue Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achenbach, T. M. (1966). The classification of children's psychiatric symptoms: A factor-analytic study. Psychological Monographs: General and Applied, 80, 137.CrossRefGoogle ScholarPubMed
Achenbach, T. M. (1974). Developmental psychopathology. Oxford: Ronald Press.Google Scholar
Aebi, M., van Donkelaar, M. M., Poelmans, G., Buitelaar, J. K., Sonuga-Barke, E. J., Stringaris, A., et al. (2015). Gene-set and multivariate genome-wide association analysis of oppositional defiant behavior subtypes in attention-deficit/hyperactivity disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. Advance online publication.Google ScholarPubMed
Agrawal, A., Lynskey, M. T., Bucholz, K. K., Martin, N. G., Madden, P. A., & Heath, A. C. (2007). Contrasting models of genetic co-morbidity for cannabis and other illicit drugs in adult Australian twins. Psychological Medicine, 37, 4960.CrossRefGoogle ScholarPubMed
Agrawal, A., Neale, M. C., Prescott, C. A., & Kendler, K. S. (2004). A twin study of early cannabis use and subsequent use and abuse/dependence of other illicit drugs. Psychological Medicine, 34, 12271237.CrossRefGoogle ScholarPubMed
Andreassen, O. A., Djurovic, S., Thompson, W. K., Schork, A. J., Kendler, K. S., O'Donovan, M. C., et al. (2013). Improved detection of common variants associated with schizophrenia by leveraging pleiotropy with cardiovascular-disease risk factors. American Journal of Human Genetics, 92, 197209.CrossRefGoogle ScholarPubMed
Andreassen, O. A., Thompson, W. K., Schork, A. J., Ripke, S., Mattingsdal, M., Kelsoe, J. R., et al. (2013). Improved detection of common variants associated with schizophrenia and bipolar disorder using pleiotropy-informed conditional false discovery rate. PLOS Genetics, 11, e1005544.CrossRefGoogle Scholar
Anney, R. J., Lasky-Su, J., O'Dushlaine, C., Kenny, E., Neale, B. M., Mulligan, A., et al. (2008). Conduct disorder and ADHD: Evaluation of conduct problems as a categorical and quantitative trait in the international multicentre ADHD genetics study. American Journal of Medical Genetics, 147B, 13691378.Google ScholarPubMed
Beam, C. R., & Turkheimer, E. (2013). Phenotype–environment correlations in longitudinal twin models. Development and Psychopathology, 25, 716.CrossRefGoogle ScholarPubMed
Beauchaine, T. P. (2009). The role of biomarkers and endophenotypes in prevention and treatment of psychopathological disorders. Biomarkers in Medicine, 3, 13.CrossRefGoogle ScholarPubMed
Beauchaine, T. P., & Gatzke-Kopp, L. M. (2012). Instantiating the multiple levels of analysis perspective in a program of study on externalizing behavior. Development and Psychopathology, 24, 10031018.CrossRefGoogle Scholar
Beauchaine, T. P., & McNulty, T. (2013). Comorbidities and continuities as ontogenic processes: Toward a developmental spectrum model of externalizing psychopathology. Development and Psychopathology, 25, 15051528.CrossRefGoogle Scholar
Beauchaine, T. P., & Thayer, J. F. (2015). Heart rate variability as a transdiagnostic biomarker of psychopathology. International Journal of Psychophysiology, 98, 338350.CrossRefGoogle ScholarPubMed
Bergen, S. E., Gardner, C. O., & Kendler, K. S. (2007). Age-related changes in heritability of behavioral phenotypes over adolescence and young adulthood: A meta-analysis. Twin Research and Human Genetics, 10, 423433.CrossRefGoogle Scholar
Boardman, J. D., Domingue, B. W., Blalock, C. L., Haberstick, B. C., Harris, K. M., & McQueen, M. B. (2014). Is the gene–environment interaction paradigm relevant to genome-wide studies? The case of education and body mass index. Demography, 51, 119139.CrossRefGoogle ScholarPubMed
Brevik, E. J., van Donkelaar, M. M., Weber, H., Sánchez-Mora, C., Jacob, C., Rivero, O., et al. (2016). Genome-wide analyses of aggressiveness in attention-deficit hyperactivity disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. Advance online publication.CrossRefGoogle ScholarPubMed
Brion, M.-J. A., Shakhbazov, K., & Visscher, P. M. (2013). Calculating statistical power in Mendelian randomization studies. International Journal of Epidemiology, 42, 14971501.CrossRefGoogle ScholarPubMed
Burnette, M. L., & Cicchetti, D. (2012). Multilevel approaches toward understanding antisocial behavior: Current research and future directions. Development and Psychopathology, 24, 703704.CrossRefGoogle ScholarPubMed
Cardno, A. G., Rijsdijk, F. V., Sham, P. C., Murray, R. M., & McGuffin, P. (2002). A twin study of genetic relationships between psychotic symptoms. American Journal of Psychiatry, 159, 539545.CrossRefGoogle ScholarPubMed
Careaga, M., Rogers, S., Hansen, R. L., Amaral, D. G., Van de Water, J., & Ashwood, P. (2015). Immune endophenotypes in children with autism spectrum disorder. Biological Psychiatry. Advance online publication.Google ScholarPubMed
Carragher, N., Krueger, R. F., Eaton, N. R., & Slade, T. (2015). Disorders without borders: Current and future directions in the meta-structure of mental disorders. Social Psychiatry and Psychiatric Epidemiology, 50, 339350.CrossRefGoogle ScholarPubMed
Caspi, A., Houts, R. M., Belsky, D. W., Goldman-Mellor, S. J., Harrington, H., Israel, S., et al. (2014). The p factor one general psychopathology factor in the structure of psychiatric disorders? Clinical Psychological Science, 2, 119137.CrossRefGoogle Scholar
Cicchetti, D. (1984). The emergence of developmental psychopathology. Child Development, 55, 17.CrossRefGoogle ScholarPubMed
Cicchetti, D. (2008). A multiple-levels-of-analysis perspective on research in development and psychopathology. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Child and Adolescent Psychopathology (1st ed., pp. 2757). Hoboken, NJ: Wiley.Google Scholar
Cicchetti, D. (2013). An overview of developmental psychopathology. In Zelazo, P. D. (Ed.), The Oxford handbook of developmental psychology (Vol. 2, pp. 455480). Oxford: Oxford University Press.Google Scholar
Cicchetti, D., & Dawson, G. (2002). Editorial: Multiple levels of analysis. Development and Psychopathology, 14, 417420.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Toth, S. L. (2009). The past achievements and future promises of developmental psychopathology: The coming of age of a discipline. Journal of Child Psychology and Psychiatry, 50, 1625.CrossRefGoogle ScholarPubMed
Cross Disorders Group of the Psychiatric Genomics Consortium (2013a). Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nature Genetics, 45, 984994.CrossRefGoogle Scholar
Cross Disorders Group of the Psychiatric Genomics Consortium (2013b). Identification of risk loci with shared effects on five major psychiatric disorders: A genome-wide analysis. Lancet, 381, 13711379.CrossRefGoogle Scholar
Degenhardt, L., Dierker, L., Chiu, W. T., Medina-Mora, M. E., Neumark, Y., Sampson, N., et al. (2010). Evaluating the drug use “gateway” theory using cross-national data: Consistency and associations of the order of initiation of drug use among participants in the WHO World Mental Health Surveys. Drug and Alcohol Dependence, 108, 8497.CrossRefGoogle ScholarPubMed
Dick, D. M., Aliev, F., Wang, J. C., Grucza, R. A., Schuckit, M., Kuperman, S., et al. (2008). Using dimensional models of externalizing psychopathology to aid in gene identification. Archives of General Psychiatry, 65, 310318.CrossRefGoogle ScholarPubMed
Eaves, L. J., Long, J., & Heath, A. C. (1986). A theory of developmental change in quantitative phenotypes applied to cognitive development. Behavior Genetics, 16, 143162.CrossRefGoogle ScholarPubMed
Ebstein, R. P., Benjamin, J., & Belmaker, R. H. (2003). Behavioral genetics, genomics, and personality. In Plomin, R., DeFries, J. C., Craig, I. W., & McGuffin, P. (Eds.), Behavioral genetics in the postgenomic era (pp. 365388). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
Flint, J., & Munafò, M. R. (2007). The endophenotype concept in psychiatric genetics. Psychological Medicine, 37, 163180.CrossRefGoogle ScholarPubMed
Freathy, R. M., Kazeem, G. R., Morris, R. W., Johnson, P. C., Paternoster, L., Ebrahim, S., et al. (2011). Genetic variation at CHRNA5-CHRNA3-CHRNB4 interacts with smoking status to influence body mass index. International Journal of Epidemiology, 40, 16171628.CrossRefGoogle ScholarPubMed
Gage, S. H., Smith, G. D., Zammit, S., Hickman, M., & Munafò, M. R. (2013). Using Mendelian randomisation to infer causality in depression and anxiety research. Depression and Anxiety, 30, 11851193.CrossRefGoogle ScholarPubMed
Gizer, I. R., & Ehlers, C. L. (2015). Genome-wide association studies of substance use: Considerations regarding populations and phenotypes. Biological Psychiatry, 77, 423424.CrossRefGoogle ScholarPubMed
Gizer, I. R., Otto, J. M., & Ellingson, J. M. (2015). Molecular genetic approaches to studying the externalizing spectrum. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), The Oxford handbook of externalizing spectrum disorders (pp. 125148). Oxford: Oxford University Press.Google Scholar
Gottesman, I. I., & Gould, T. D. (2003). The endophenotype concept in psychiatry: Etymology and strategic intentions. American Journal of Psychiatry, 160, 636645.CrossRefGoogle ScholarPubMed
Gottesman, I. I., & Shields, J. (1972). Schizophrenia and genetics: A twin study vantage point. Oxford: Academic Press.Google Scholar
Gregory, A. M., Caspi, A., Moffitt, T. E., Koenen, K., Eley, T. C., & Poulton, R. (2007). Juvenile mental health histories of adults with anxiety disorders. American Journal of Psychiatry, 164, 301308.CrossRefGoogle ScholarPubMed
Guo, G., Liu, H., Wang, L., Shen, H., & Hu, W. (2015). The genome-wide influence on human BMI depends on physical activity, life course, and historical period. Demography, 52, 16511670.CrossRefGoogle ScholarPubMed
Hicks, B. M., Schalet, B. D., Malone, S. M., Iacono, W. G., & McGue, M. (2011). Psychometric and genetic architecture of substance use disorder and behavioral disinhibition measures for gene association studies. Behavior Genetics, 41, 459475.CrossRefGoogle ScholarPubMed
Hirschhorn, J. N., & Daly, M. J. (2005). Genome-wide association studies for common diseases and complex traits. Nature Reviews Genetics, 6, 95108.CrossRefGoogle ScholarPubMed
Hirschhorn, J. N., Lohmueller, K., Byrne, E., & Hirschhorn, K. (2002). A comprehensive review of genetic association studies. Genetics in Medicine, 4, 4561.CrossRefGoogle ScholarPubMed
Holmes, M. V., Dale, C. E., Zuccolo, L., Silverwood, R. J., Guo, Y., Ye, Z., et al. (2014). Association between alcohol and cardiovascular disease: Mendelian randomisation analysis based on individual participant data. British Medical Journal, 349, g4164.CrossRefGoogle ScholarPubMed
Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., et al. (2010). Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. American Journal of Psychiatry, 167, 748751.CrossRefGoogle Scholar
Kandel, D. B., Yamaguchi, K., & Chen, K. (1992). Stages of progression in drug involvement from adolescence to adulthood: Further evidence for the gateway theory. Journal of Studies on Alcohol, 53, 447457.CrossRefGoogle ScholarPubMed
Kang, H. M., Sul, J. H., Service, S. K., Zaitlen, N. A., Kong, S.-Y., Freimer, N. B., et al. (2010). Variance component model to account for sample structure in genome-wide association studies. Nature Genetics, 42, 348354.CrossRefGoogle ScholarPubMed
Karlsson, R., Graae, L., Lekman, M., Wang, D., Favis, R., Axelsson, T., et al. (2012). MAGI1 copy number variation in bipolar affective disorder and schizophrenia. Biological Psychiatry, 71, 922930.CrossRefGoogle Scholar
Kendler, K. S. (2005). “A gene for . . .”: The nature of gene action in psychiatric disorders. American Journal of Psychiatry, 162, 12431252.CrossRefGoogle ScholarPubMed
Kendler, K. S. (2013). What psychiatric genetics has taught us about the nature of psychiatric illness and what is left to learn. Molecular Psychiatry, 18, 10581066.CrossRefGoogle ScholarPubMed
Kendler, K. S., Neale, M. C., Heath, A. C., Kessler, R. C., & Eaves, L. J. (1994). A twin-family study of alcoholism in women. American Journal of Psychiatry, 151, 707715.Google ScholarPubMed
Kessler, R. C., Chiu, W. T., Demler, O., & Walters, E. E. (2005). Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62, 617627.CrossRefGoogle ScholarPubMed
Kessler, R. C., McGonagle, K. A., Zhao, S., Nelson, C. B., Hughes, M., Eshleman, S., et al. (1994). Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States: Results from the National Comorbidity Survey. Archives of General Psychiatry, 51, 819.CrossRefGoogle ScholarPubMed
Klein, D. N., & Riso, L. P. (1993). Psychiatric disorders: Problems of boundaries and comorbidity. In Costello, C. G. (Ed.), Basic issues in psychopathology (pp. 1966). New York: Guilford Press.Google Scholar
Krueger, R. F., Caspi, A., Moffitt, T. E., & Silva, P. A. (1998). The structure and stability of common mental disorders (DSM-III-R): A longitudinal-epidemiological study. Journal of Abnormal Psychology, 107, 216227.CrossRefGoogle ScholarPubMed
Lahey, B. B., Van Hulle, C. A., Singh, A. L., Waldman, I. D., & Rathouz, P. J. (2011). Higher-order genetic and environmental structure of prevalent forms of child and adolescent psychopathology. Archives of General Psychiatry, 68, 181189.CrossRefGoogle ScholarPubMed
Lander, E. S., & Schork, N. J. (1994). Genetic dissection of complex traits. Science, 265, 20372048.CrossRefGoogle ScholarPubMed
Lawlor, D. A., Nordestgaard, B. G., Benn, M., Zuccolo, L., Tybjaerg-Hansen, A., & Smith, G. D. (2013). Exploring causal associations between alcohol and coronary heart disease risk factors: Findings from a Mendelian randomization study in the Copenhagen General Population Study. European Heart Journal, 34, 25192528.CrossRefGoogle ScholarPubMed
Lee, S. H., Yang, J., Goddard, M. E., Visscher, P. M., & Wray, N. R. (2012). Estimation of pleiotropy between complex diseases using single-nucleotide polymorphism-derived genomic relationships and restricted maximum likelihood. Bioinformatics (Oxford), 28, 25402542.CrossRefGoogle ScholarPubMed
Lobo, I. (2008). Pleiotropy: One gene can affect multiple traits. Nature Education, 1, 10.Google Scholar
Maier, R., Moser, G., Chen, G.-B., Ripke, S., Coryell, W., Potash, J. B., et al. (2015). Joint analysis of psychiatric disorders increases accuracy of risk prediction for schizophrenia, bipolar disorder, and major depressive disorder. American Journal of Human Genetics, 96, 283294.CrossRefGoogle ScholarPubMed
Mannuzza, S., Klein, R. G., Bessler, A., Malloy, P., & LaPadula, M. (1998). Adult psychiatric status of hyperactive boys grown up. American Journal of Psychiatry, 155, 493498.CrossRefGoogle ScholarPubMed
Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., et al. (2009). Finding the missing heritability of complex diseases. Nature, 461, 747753.CrossRefGoogle ScholarPubMed
Marceau, K., Palmer, R. H., Neiderhiser, J. M., Smith, T. F., McGeary, J. E., & Knopik, V. S. (2016). Passive rGE or developmental gene–environment cascade? An investigation of the role of xenobiotic metabolism genes in the association between smoke exposure during pregnancy and child birth weight. Behavior Genetics, 46, 365377.CrossRefGoogle ScholarPubMed
McCarthy, M. I., Abecasis, G. R., Cardon, L. R., Goldstein, D. B., Little, J., Ioannidis, J. P., et al. (2008). Genome-wide association studies for complex traits: Consensus, uncertainty and challenges. Nature Reviews Genetics, 9, 356369.CrossRefGoogle ScholarPubMed
McGue, M., Zhang, Y., Miller, M. B., Basu, S., Vrieze, S., Hicks, B., et al. (2013). A genome-wide association study of behavioral disinhibition. Behavior Genetics, 43, 363373.CrossRefGoogle ScholarPubMed
Meyers, J., Cerdá, M., Galea, S., Keyes, K., Aiello, A. E., Uddin, M., et al. (2013). Interaction between polygenic risk for cigarette use and environmental exposures in the Detroit neighborhood health study. Translational Psychiatry, 3, e290.CrossRefGoogle ScholarPubMed
Miller, B. J., Buckley, P., Seabolt, W., Mellor, A., & Kirkpatrick, B. (2011). Meta-analysis of cytokine alterations in schizophrenia: Clinical status and antipsychotic effects. Biological Psychiatry, 70, 663671.CrossRefGoogle ScholarPubMed
Miller, G. A., & Rockstroh, B. (2013). Endophenotypes in psychopathology research: Where do we stand? Annual Review of Clinical Psychology, 9, 177213.CrossRefGoogle ScholarPubMed
Moffitt, T. E. (1993). Adolescence-limited and life-course-persistent antisocial behavior: A developmental taxonomy. Psychological Review, 100, 674701.CrossRefGoogle ScholarPubMed
Moffitt, T. E., Caspi, A., Harrington, H., & Milne, B. J. (2002). Males on the life-course-persistent and adolescence-limited antisocial pathways: Follow-up at age 26 years. Development and Psychopathology, 14, 179207.CrossRefGoogle ScholarPubMed
Munafo, M. (2006). Candidate gene studies in the 21st century: Meta-analysis, mediation, moderation. Genes, Brain and Behavior, 5, 38.CrossRefGoogle ScholarPubMed
Neale, M. C., & Kendler, K. S. (1995). Models of comorbidity for multifactorial disorders. American Journal of Human Genetics, 57, 935953.Google ScholarPubMed
Ormel, J., Raven, D., van Oort, F., Hartman, C., Reijneveld, S., Veenstra, R., et al. (2015). Mental health in Dutch adolescents: A TRAILS report on prevalence, severity, age of onset, continuity and co-morbidity of DSM disorders. Psychological Medicine, 45, 345360.CrossRefGoogle ScholarPubMed
Otowa, T., Hek, K., Lee, M., Byrne, E., Mirza, S., Nivard, M., et al. (2016). Meta-analysis of genome-wide association studies of anxiety disorders. Molecular Psychiatry. Advance online publication.Google ScholarPubMed
Paaby, A. B., & Rockman, M. V. (2013). The many faces of pleiotropy. Trends in Genetics, 29, 6673.CrossRefGoogle ScholarPubMed
Plomin, R. (2014). Genotype–environment correlation in the era of DNA. Behavior Genetics, 44, 629638.CrossRefGoogle ScholarPubMed
Plomin, R., & Crabbe, J. (2000). DNA. Psychological Bulletin, 126, 806828.CrossRefGoogle ScholarPubMed
Plomin, R., DeFries, J. C., Knopik, V. S., & Neiderheiser, J. (2013). Behavioral genetics (6th ed.). New York: Worth.Google Scholar
Rhee, S. H., Willcutt, E. G., Hartman, C. A., Pennington, B. F., & DeFries, J. C. (2008). Test of alternative hypotheses explaining the comorbidity between attention-deficit/hyperactivity disorder and conduct disorder. Journal of Abnormal Child Psychology, 36, 2940.CrossRefGoogle ScholarPubMed
Rutter, M. (1989). Pathways from childhood to adult life. Journal of Child Psychology and Psychiatry, 30, 2351.CrossRefGoogle ScholarPubMed
Salvatore, J. E., Aliev, F., Bucholz, K., Agrawal, A., Hesselbrock, V., Hesselbrock, M., et al. (2014). Polygenic risk for externalizing disorders gene-by-development and gene-by-environment effects in adolescents and young adults. Clinical Psychological Science, 3, 189201.CrossRefGoogle Scholar
Sanislow, C. A., Pine, D. S., Quinn, K. J., Kozak, M. J., Garvey, M. A., Heinssen, R. K., et al. (2010). Developing constructs for psychopathology research: Research domain criteria. Journal of Abnormal Psychology, 119, 631.CrossRefGoogle ScholarPubMed
Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014). Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511, 421427.CrossRefGoogle Scholar
Sivakumaran, S., Agakov, F., Theodoratou, E., Prendergast, J. G., Zgaga, L., Manolio, T., et al. (2011). Abundant pleiotropy in human complex diseases and traits. American Journal of Human Genetics, 89, 607618.CrossRefGoogle ScholarPubMed
Smith, G. D., & Ebrahim, S. (2003). “Mendelian randomization”: Can genetic epidemiology contribute to understanding environmental determinants of disease? International Journal of Epidemiology, 32, 122.CrossRefGoogle ScholarPubMed
Smoller, J. W. (2013). Disorders and borders: Psychiatric genetics and nosology. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 162, 559578.CrossRefGoogle Scholar
Solovieff, N., Cotsapas, C., Lee, P. H., Purcell, S. M., & Smoller, J. W. (2013). Pleiotropy in complex traits: Challenges and strategies. Nature Reviews Genetics, 14, 483495.CrossRefGoogle ScholarPubMed
Sroufe, L. A., & Rutter, M. (1984). The domain of developmental psychopathology. Child Development, 55, 1729.CrossRefGoogle ScholarPubMed
Stephens, M. (2013). A unified framework for association analysis with multiple related phenotypes. PLOS ONE, 8, e65245.CrossRefGoogle ScholarPubMed
Sullivan, P. F., Daly, M. J., & O'Donovan, M. (2012). Genetic architectures of psychiatric disorders: The emerging picture and its implications. Nature Reviews Genetics, 13, 537551.CrossRefGoogle ScholarPubMed
Tackett, J. L., Lahey, B. B., Van Hulle, C., Waldman, I., Krueger, R. F., & Rathouz, P. J. (2013). Common genetic influences on negative emotionality and a general psychopathology factor in childhood and adolescence. Journal of Abnormal Psychology, 122, 11421153.CrossRefGoogle Scholar
Thompson, P. M., Stein, J. L., Medland, S. E., Hibar, D. P., Vasquez, A. A., Renteria, M. E., et al. (2014). The ENIGMA Consortium: Large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging and Behavior, 8, 153182.CrossRefGoogle ScholarPubMed
Tobacco and Genetics Consortium (2010). Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nature Genetics, 42, 441447.CrossRefGoogle Scholar
Torabi, M. R., Bailey, W. J., & Majd-Jabbari, M. (1993). Cigarette smoking as a predictor of alcohol and other drug use by children and adolescents: Evidence of the “gateway drug effect.” Journal of School Health, 63, 302306.CrossRefGoogle ScholarPubMed
Trzaskowski, M., Harlaar, N., Arden, R., Krapohl, E., Rimfeld, K., McMillan, A., et al. (2014). Genetic influence on family socioeconomic status and children's intelligence. Intelligence, 42, 8388.CrossRefGoogle ScholarPubMed
Turkheimer, E., Haley, A., Waldron, M., D'Onofrio, B., & Gottesman, I. I. (2003). Socioeconomic status modifies heritability of IQ in young children. Psychological Science, 14, 623628.CrossRefGoogle ScholarPubMed
Tyler, A. L., Asselbergs, F. W., Williams, S. M., & Moore, J. H. (2009). Shadows of complexity: What biological networks reveal about epistasis and pleiotropy. Bioessays, 31, 220227.CrossRefGoogle ScholarPubMed
van den Berg, S. M., de Moor, M. H., McGue, M., Pettersson, E., Terracciano, A., Verweij, K. J., et al. (2014). Harmonization of neuroticism and extraversion phenotypes across inventories and cohorts in the Genetics of Personality Consortium: An application of item response theory. Behavior Genetics, 44, 295313.CrossRefGoogle ScholarPubMed
van den Berg, S. M., de Moor, M. H., Verweij, K. J., Krueger, R. F., Luciano, M., Vasquez, A. A., et al. (2015). Meta-analysis of genome-wide association studies for extraversion: Findings from the Genetics of Personality Consortium. Behavior Genetics, 46, 170182.CrossRefGoogle ScholarPubMed
Vink, J. M., Hottenga, J. J., Geus, E. J., Willemsen, G., Neale, M. C., Furberg, H., et al. (2014). Polygenic risk scores for smoking: Predictors for alcohol and cannabis use? Addiction, 109, 11411151.CrossRefGoogle ScholarPubMed
Vrieze, S. I., Iacono, W. G., & McGue, M. (2012). Confluence of genes, environment, development, and behavior in a post Genome-Wide Association Study world. Development and Psychopathology, 24, 11951214.CrossRefGoogle Scholar
Wray, N. R., Yang, J., Hayes, B. J., Price, A. L., Goddard, M. E., & Visscher, P. M. (2013). Pitfalls of predicting complex traits from SNPs. Nature Reviews Genetics, 14, 507515.CrossRefGoogle ScholarPubMed
Yang, J., Lee, S. H., Goddard, M. E., & Visscher, P. M. (2011). GCTA: A tool for genome-wide complex trait analysis. American Journal of Human Genetics, 88, 7682.CrossRefGoogle ScholarPubMed
Zhou, X., & Stephens, M. (2014). Efficient algorithms for multivariate linear mixed models in genome-wide association studies. Nature Methods, 11, 407409.CrossRefGoogle ScholarPubMed